Table of Contents

Postgres, DRBD and HEARTBEAT
2

DRDB
2

Installing and Configuring DRBD
2

Setting Up a DRBD Primary Node
2

Setting Up a DRBD Secondary Node
4

Monitoring DRBD Device
4

Managing your DRBD Installation
5

Configuring Postgres for DRBD
6

Using Linux HA Heartbeat
6

Heartbeat Configuration
7

Using Heartbeat with Postgres and DRBD
8

Dealing with System Level Errors
9

Postgres, DRBD and HEARTBEAT

DRDB

The Distributed Replicated Block Device (DRBD) is a Linux Kernel module that constitutes a distributed storage system. You can use DRBD to share block devices between Linux servers and, in turn, share file systems and data. DRBD implements a block device which can be used for storage and which is replicated from a primary server to one or more secondary servers. The distributed block device is handled by the DRBD service. Writes to the DRBD block device are distributed among the servers. Each DRBD service writes the information from the DRBD block device to a local physical block device (hard disk). On the primary data writes are written both to the underlying physical block device and distributed to the secondary DRBD services. On the secondary, the writes received through DRBD and written to the local physical block device. On both the primary and the secondary, reads from the DRBD block device are handled by the underlying physical block device. The information is shared between the primary DRBD server and the secondary DRBD server synchronously and at a block level, and this means that DRBD can be used in high-availability solutions where you need failover support. When used with Postgres, DRBD can be used to ensure availability in the event of a failure. Postgres is configured to store information on the DRBD block device, with one server acting as the primary and a second machine available to operate as an immediate replacement in the event of a failure. For automatic failover support you can combine DRBD with the Linux Heartbeat package, which manages the interfaces on the two servers and automatically configures the secondary (passive) server to replace the primary (active) server in the event of a failure.

Installing and Configuring DRBD

To install DRBD you can choose either the pre-built binary installation packages or you can use the source packages and build from source. If you want to build from source you must have installed the source and development packages. If you are installing using a binary distribution then you must ensure that the kernel version number of the binary package matches your currently active kernel. Once DRBD has been built and installed, you need to edit the /etc/drbd.conf file and then run a number of commands to build the block device and set up the replication. Although the steps below are split into those for the primary node and the secondary node, it should be noted that the configuration files for all nodes should be identical, and many of the same steps have to be repeated on each node to enable the DRBD block device. For SL 5x, the drdb kernel module is located in contrib repository, so you have to enable this repository. Package name : kernel-module-drbd. Before update kernel to a newer version, verify that the corresponding package kernel-module-drdb is available for the new kernel version.

Setting Up a DRBD Primary Node

To set up a DRBD primary node you need to configure the DRBD service, create the first DRBD block device and then create a file system on the device so that you can store files and data. The DRBD configuration file /etc/drbd.conf defines a number of parameters for your DRBD configuration, including the frequency of updates and block sizes, security information and the definition of the DRBD devices that you want to create. The key elements to configure are the on sections which specify the configuration of each node. To follow the configuration, the sequence below shows only the changes from the default drbd.conf file. Configurations within the file can be both global or tied to specific resource.

1. Set the synchronization rate between the two nodes. This is the rate at which devices are synchronized in the background after a disk failure, device replacement or during the initial setup. Keep this in check compared to the speed of your network connection. Gigabit Ethernet can support up to 125 MB/second, 100Mbps Ethernet slightly less than a tenth of that (12MBps). If you are using a shared network connection, rather than a dedicated, then gauge accordingly. To set the synchronization rate, edit the rate setting within the syncer block:

 syncer {

 rate 10M;

 }

2. Set up some basic authentication. DRBD supports a simple password hash exchange mechanism. This helps to ensure that only those hosts with the same shared secret are able to join the DRBD node group.

 cram-hmac-alg “sha1”;

 shared-secret "some-shared-string";

3. Now you must configure the host information. Remember that you must have the node information for the primary and secondary nodes in the drbd.conf file on each host. You need to configure the following information for each node:

 • device: The path of the logical block device that is created by DRBD.

 • disk: The block device that stores the data.

 • address: The IP address and port number of the host that holds this DRBD device.

 • meta-disk: The location where the metadata about the DRBD device is stored. If you set this to internal, DRBD uses the physical block device to store the information, by recording the metadata within the last sections of the disk. The exact size depends on the size of the logical block device you have created, but it may involve up to 128MB. A sample configuration for our primary server might look like this :

 on drbd-one {

 device /dev/drbd0;

 disk /dev/sdd1;

 address 192.168.100.10:8888;

 meta-disk internal;

 }

 The on configuration block should be repeated for the secondary node (and any further) nodes:

 on drbd-two {

 device /dev/drbd0;

 disk /dev/sdd1;

 address 192.168.100.11:8888;

 meta-disk internal;

 }

The IP address of each on block must match the IP address of the corresponding host. Do not set this value to the IP address of the corresponding primary or secondary in each case.

4. Before starting the primary node, create the metadata for the devices:

 [root@appdb:~]# drbdadm create-md all

5. You are now ready to start DRBD:

[root@appdb:~]# /etc/init.d/drbd start

DRBD should now start and initialize, creating the DRBD devices that you have configured.

6. DRBD creates a standard block device - to make it usable, you must create a file system on the block device just as you would with any standard disk partition. Before you can create the file system, you must mark the new device as the primary device (that is, where the data is written and stored), and initialize the device. Because this is a destructive operation, you must specify the command line option to overwrite the raw data:

 [root@appdb:~]# drbdadm -- --overwrite-data-of-peer primary all

If you are using a version of DRBD 0.7.x or earlier, then you need to use a different command-line option:

 [root@appdb:~]# drbdadm -- --do-what-I-say primary all

 Now create a file system using your chosen file system type:

 [root@appdb:~]# mkfs.ext3 /dev/drbd0

7. You can now mount the file system and if necessary copy files to the mount point:

 [root@appdb:~]# mkdir /mnt/drbd

 [root@appdb:~]# mount /dev/drbd0 /mnt/drbd

 [root@appdb:~]# echo "DRBD Device" >/mnt/drbd/samplefile

Your primary node is now ready to use. Next, configure your secondary node or nodes.

Setting Up a DRBD Secondary Node

 The configuration process for setting up a secondary node is the same as for the primary node, except that you do not have to create the file system on the secondary node device, as this information is automatically transferred from the primary node. To set up a secondary node:

 1. Copy the /etc/drbd.conf file from your primary node to your secondary node. It should already contain all the information and configuration that you need, since you had to specify the secondary node IP address and other information for the primary node configuration.

 2. Create the DRBD metadata on the underlying disk device:

 [root@appdb:~]# drbdadm create-md all

 3. Start DRBD:

 [root@appdb:~]# /etc/init.d/drbd start

Once DRBD has started, it starts to copy the data from the primary node to the secondary node. Even with an empty file system this takes some time, since DRBD is copying the block information from a block device, not simply copying the file system data. You can monitor the progress of the copy between the primary and secondary nodes by viewing the output of /proc/drbd:

 [root@appdb:~]# cat /proc/drbd

 version: 8.0.4 (api:86/proto:86)

 SVN Revision: 2947 build by root@drbd-one, 2007-07-30 16:43:05

 0: cs:SyncSource st:Primary/Secondary ds:UpToDate/Inconsistent C r---

 ns:252284 nr:0 dw:0 dr:257280 al:0 bm:15 lo:0 pe:7 ua:157 ap:0

 [==>.................] sync'ed: 12.3% (1845088/2097152)K

 finish: 0:06:06 speed: 4,972 (4,580) K/sec

 resync: used:1/31 hits:15901 misses:16 starving:0 dirty:0 changed:16

 act_log: used:0/257 hits:0 misses:0 starving:0 dirty:0 changed:0

You can monitor the synchronization process by using the watch command to run the command at specific intervals:

[root@appdb:~]# watch -n 10 'cat /proc/drbd'

Monitoring DRBD Device

Once the primary and secondary machines are configured and synchronized, you can get the status information about your DRBD device by viewing the output from /proc/drbd:

 [root@appdb:~]# cat /proc/drbd

 version: 8.0.4 (api:86/proto:86)

 SVN Revision: 2947 build by root@drbd-one, 2007-07-30 16:43:05

 0: cs:Connected st:Primary/Secondary ds:UpToDate/UpToDate C r---

 ns:2175704 nr:0 dw:99192 dr:2076641 al:33 bm:128 lo:0 pe:0 ua:0 ap:0

 resync: used:0/31 hits:134841 misses:135 starving:0 dirty:0 changed:135

 act_log: used:0/257 hits:24765 misses:33 starving:0 dirty:0 changed:33

 The first line provides the version/revision and build information. The second line starts the detailed status information for an individual resource. The individual field headings are as follows:

 • cs: connection state

 • st: node state (local/remote)

 • ld: local data consistency

 • ds: data consistency

 • ns: network send

 • nr: network receive

 • dw: disk write

 • dr: disk read

 • pe: pending (waiting for ack)

 • ua: unack'd (still need to send ack)

 • al: access log write count

 In the previous example, the information shown indicates that the nodes are connected, the local node is the primary (because it is listed first), and the local and remote data is up to date with each other. The remainder of the information is statistical data about the device, and the data exchanged that kept the information up to date. You can also get the status information for DRBD by using the startup script with the status option:

 [root@appdb:~]# /etc/init.d/drbd status

 * status: started

 * drbd driver loaded OK; device status: ...

 version: 8.3.0 (api:88/proto:86-89)

 GIT-hash: 9ba8b93e24d842f0dd3fb1f9b90e8348ddb95829 build by root@drdb-one, 2009-03-14 23:00:06

 0: cs:Connected ro:Secondary/Secondary ds:UpToDate/UpToDate C r---

 ns:0 nr:0 dw:0 dr:8385604 al:0 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:b oos:0

 The information and statistics are the same.

Managing your DRBD Installation

For administration, the main command is drbdadm. There are a number of commands supported by this tool the control the connectivity and status of the DRBD devices. The most common commands are those to set the primary/secondary status of the local device. You can manually set this information for a number of reasons, including when you want to check the physical status of the secondary device (since you cannot mount a DRBD device in primary mode), or when you are temporarily moving the responsibility of keeping the data in check to a different machine (for example, during an upgrade or physical move of the normal primary node). You can set state of all local device to be the primary using this command:

[root@appdb:~]# drbdadm primary all

Or switch the local device to be the secondary using:

[root@appdb:~]# drbdadm secondary all

To change only a single DRBD resource, specify the resource name instead of all. You can temporarily disconnect the DRBD nodes:

[root@appdb:~]# drbdadm disconnect all

Reconnect them using connect:

[root@appdb:~]# drbdadm connect all

Configuring Postgres for DRBD

Once you have configured DRBD and have an active DRBD device and file system, you can configure Postgres to use the chosen device to store the Posgres data. When performing a new installation of Postgres, you can either select to install Postgres entirely onto the DRBD device, or just configure the data directory to be located on the new file system. In either case, the files and installation must take place on the primary node, because that is the only DRBD node on which you can mount the DRBD device file system as read/write. Store the following files and information on your DRBD device:

· Postgres data files, commonly stored in /var/lib/pgsql.

· Postgres configuration file(s) (typically in /etc/sysconfig/pgsql).

To set up Postgres to use your new DRBD device and file system:

1. If you are migrating an existing Postgres installation, stop Postgres:

 [root@appdb:~]# /etc/init.d/postgresql-9.0

2. Copy the configuration files onto the DRBD device. .

 [root@appdb:~]# mkdir /mnt/drbd/pgsql/sysconfig

 [root@appdb:~]# cp /etc/sysconfig/pgsql/* /mnt/drbd/pgsql/sysconfig

3. Copy your Postgres data directory to the DRBD device and mounted file system.

 [root@appdb:~]# cp -pR /var/lib/pgsql /mnt/drbd/pgsql/data

4. Create a symbolic link from /etc/sysconfig/pgsql to the new configuration fdirectory on the DRBD device file system.

 [root@appdb:~]# ln -s /mnt/drbd/pgsql/sysconfig /etc/sysconfig/pgsql

5. Unmount /mnt/drbd/pgsql, remove the /var/lib/pgsql tree, mount drbd device to /var/lib/pgsql

6. Now start Postgres and check that the data that you copied to the DRBD device file system is present.

 [root@appdb:~]# /etc/init.d/postgresql-9.0 start

Your Postgres data should now be located on the file system running on your DRBD device. The data is physically stored on the underlying device that you configured for the DRBD device. Meanwhile, the content of your databases is copied to the secondary DRBD node. Note that you cannot access the information on your secondary node, as a DRBD device working in secondary mode is not available for use.

Using Linux HA Heartbeat

The Heartbeat program provides a basis for verifying the availability of resources on one or more systems within a cluster. In this context a resource includes Postgres, the file systems on which the Postgres data is being stored and, if you are using DRBD, the DRBD device being used for the file system. Heartbeat also manages a virtual IP address, and the virtual IP address should be used for all communication to the Postgres instance. A cluster within the context of Heartbeat is defined as two computers notionally providing the same service. By definition, each computer in the cluster is physically capable of providing the same services as all the others in the cluster. However, because the cluster is designed for high-availability, only one of the servers is actively providing the service at any one time. Each additional server within the cluster is a “hot-spare” that can be brought into service in the event of a failure of the master, its next connectivity or the connectivity of the network in general. The Heartbeat program provides a basis for verifying the availability of resources on one or more systems within a cluster. In this context a resource includes Postgres, the file systems on which the Postgres data is being stored and, if you are using DRBD, the DRBD device being used for the file system. Heartbeat also manages a virtual IP address, and the virtual IP address should be used for all communication to the Postgres instance. A cluster within the context of Heartbeat is defined as two computers notionally providing the same service. By definition, each computer in the cluster is physically capable of providing the same services as all the others in the cluster. However, because the cluster is designed for high-availability, only one of the servers is actively providing the service at any one time. Each additional server within the cluster is a “hot-spare” that can be brought into service in the event of a failure of the master, its next connectivity or the connectivity of the network in general.

Heartbeat Configuration

1. Heartbeat configuration requires three files located in /etc/ha.d. The ha.cf contains the main heartbeat configuration, including the list of the nodes and times for identifying failures. haresources contains the list of resources to be managed within the cluster. The authkeys file contains the security information for the cluster. The contents of these files should be identical on each host within the Heartbeat cluster. It is important that you keep these files in sync across all the hosts. Any changes in the information on one host should be copied to the all the others. For these examples n example of the ha.cf file is shown below:

 logfacility local0

 keepalive 500ms

 deadtime 10

 warntime 5

 initdead 30

 mcast eth0 225.0.0.1 694 2 0

 mcast eth1 225.0.0.2 694 1 0

 auto_failback off

 node drbd1

 node drbd2

 The individual lines in the file can be identified as follows:

· logfacility: Sets the logging, in this case setting the logging to use syslog.

· keepalive: Defines how frequently the heartbeat signal is sent to the other hosts.

· deadtime: The delay in seconds before other hosts in the cluster are considered 'dead' (failed).

· warntime: The delay in seconds before a warning is written to the log that a node cannot be contacted.

· initdead: The period in seconds to wait during system startup before the other host is considered to be down.

· mcast: Defines a method for sending a heartbeat signal. In the above example, a multicast network address is being used over a bonded network device. If you have multiple clusters then the multicast address for each cluster should be unique on your network. Other choices for the heartbeat exchange exist, including a serial connection. If you are using multiple network interfaces (for example, one interface for your server connectivity and a secondary or bonded interface for your DRBD data exchange), use both interfaces for your heartbeat connection. This decreases the chance of a transient failure causing a invalid failure event.

· auto_failback: Sets whether the original (preferred) server should be enabled again if it becomes available. Switching this to on may cause problems if the preferred went offline and then comes back on line again. If the DRBD device has not been synced properly, or if the problem with the original server happens again you may end up with two different datasets on the two servers, or with a continually changing environment where the two servers flip-flop as the preferred server reboots and then starts again.

· node: Sets the nodes within the Heartbeat cluster group. There should be one node for each server.

 An optional additional set of information provides the configuration for a ping test that checks the connectivity to another host. Use this to ensure that you have connectivity on the public interface for your servers, so the ping test should be to a reliable host such as a router or switch. The additional lines specify the destination machine for the ping, which should be specified as an IP address, rather than a host name; the command to run when a failure occurs, the authority for the failure and the timeout before an nonresponse triggers a failure. A sample configure is shown below:

 ping 10.0.0.1

 respawn hacluster /usr/lib64/heartbeat/ipfail

 apiauth ipfail gid=haclient uid=hacluster

 deadping 5

 In the above example, the ipfail command, which is part of the Heartbeat solution, is called on a failure and 'fakes' a fault on the currently active server. You need to configure the user and group ID under which the command is executed (using the apiauth). The failure is triggered after 5 seconds. The authkeys file holds the authorization information for the Heartbeat cluster. The authorization relies on a single unique 'key' that is used to verify the two machines in the Heartbeat cluster. The file is used only to confirm that the two machines are in the same cluster and is used to ensure that the multiple clusters can coexist within the same network.

Using Heartbeat with Postgres and DRBD

Heartbeat manages the configuration of different resources to manage the switching between two servers in the event of a failure. The resource configuration defines the individual services that should be brought up (or taken down) in the event of a failure. The haresources file within /etc/ha.d defines the resources that should be managed, and the individual resource mentioned in this file in turn relates to scripts located within /etc/ha.d/resource.d. The resource definition is defined all on one line:

drbd1 drbddisk Filesystem::/dev/drbd0::/drbd::ext3 postgres 10.0.0.95

The line is notionally split by whitespace. The first entry (drbd1) is the name of the preferred host; that is the server that is normally responsible for handling the service. The last field is virtual IP address or name that should be used to share the service. This is the IP address that should be used to connect to the Postgres server. It is automatically allocated to the server that is active when Heartbeat starts. The remaining fields between these two fields define the resources that should be managed. Each Field should contain the name of the resource (and each name should refer to a script within /etc/ha.d/resource.d). In the event of a failure, these resources are started on the backup server by calling the corresponding script (with a single argument, start), in order from left to right. If there are additional arguments to the script, you can use a double colon to separate each additional argument. In the above example, we manage the following resources:

• drbddisk: The DRBD resource script, this switches the DRBD disk on the secondary host into primary mode, making the device read/write.

• Filesystem: Manages the Filesystem resource. In this case we have supplied additional arguments to specify the DRBD device, mount point and file system type. When executed this should mount the specified file system.

• postgres: Manages the Postgres instances and starts the Postgres server. Copy the postgres. Init script (typically /etc/init.d/postgresql-9.0) to /etc/ha.d/resources.d/postgres.

If you want to be notified of the failure by email, you can add another line to the haresources file with the address for warnings and the warning text: MailTo::youremail@address.com::DRBDFailure With the Heartbeat configuration in place, copy the haresources, authkeys and ha.cf files from your primary and secondary servers to make sure that the configuration is identical. Then start the Heartbeat service, either by calling /etc/init.d/heartbeat start or by rebooting both primary and secondary servers. You can test the configuration by running a manual failover, connect to the primary node and run:

[root@appdb:~]# /usr/lib64/heartbeat/hb_standby

This causes the current node to relinquish its resources cleanly to the other node.

Dealing with System Level Errors

Because a kernel panic or oops may indicate potential problem with your server, configure your server to remove itself from the cluster in the event of a problem. Typically on a kernel panic, your system automatically triggers a hard reboot. For a kernel oops, a reboot may not happen automatically, but the issue that caused that oops may still lead to potential problems. You can force a reboot by setting the kernel.panic and kernel.panic_on_oops parameters of the kernel control file

/etc/sysctl.conf. For example:

kernel.panic_on_oops = 1

kernel.panic = 1

You can also set these parameters during runtime by using the sysctl command. You can either specify the parameters on the command line:

[root@appdb:~]# sysctl -w kernel.panic=1

Or you can edit your sysctl.conf file and then reload the configuration information:

[root@appdb:~]# sysctl -p

Setting both these parameters to a positive value (representing the number of seconds to wait before rebooting), causes the system to reboot. Your second heartbeat node should then detect that the server is down and then switch over to the failover host.

�Paragraph is repeated.

