	[image: image5.jpg]

	[image: image6.jpg]

	[image: image7.png]e-infrastructure

EGI-InSPIRE

Science Gateways Primer
	Document link
	https://documents.egi.eu/document/1463

	Last modified
	22/11/2012

	Version
	0.5

	Document Status
	Public - draft

	Abstract
This document …

I. Copyright notice

This work by members of the EGI-InSPIRE collaboration is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0. This license let you share, remix, and make commercial use of the work. Although you can adapt this work, you must acknowledge EGI.eu but you do not have to license your derivative work on the same terms. Reproductions or derivative works must be attributed by attaching the following reference to the copied elements: “Based on work by members of the EGI-InSPIRE collaboration used with permission under a CC-BY 3.0 license (source work URL: https://documents.egi.eu/document/1463)”.

II. AuthorS List (alphabetic order)
	Name
	Affiliation

	Barbera, Roberto
	INFN, University of Catania

	Chen, Hsin-Yen
	ASGC

	Diaz, Ricardo Graciani
	University of Barcelona, DIRAC

	Kacsuk, Peter
	MTA SZTAKI, SCI-BUS project coordinator

	Loureiro-Ferreira, Nuno
	EGI.eu – User Community Support Team

	Lovas, Robert
	MTA SZTAKI, NGI_HU

	Martín, Elisa Cauhé
	University of Zaragoza, BIFI

	Olabarriaga, Silvia D.
	AMC, LSGC VRC, SCI-BUS Project, COMMIT Project

	Shahand, Shayan
	AMC, LSGC VRC, COMMIT Project

	Sudholt, Wibke
	CloudBroker GmbH

	Vudragovic, Dusan
	IPB, NGI_RS

III. Document Log

	Issue
	Date
	Comment
	Author

	1
	04-11-2012
	v0.1 EGI-InSPIRE document template
	NLF

	2
	13-11-2012
	v0.2 Merge contributions and editions
	Tibor Gottdank

	3
	19-11-2012
	v0.3 Merge contributions and editions
	Tibor Gottdank

	4
	22-11-2012
	v0.4 Merge contributions and editions
	Tibor Gottdank

	5
	22-11-2012
	V0.5 First public draft version released with minor changes to v0.4
	NLF

IV. Acknowledgment
VT document was contributed by Name/Affiliation in Section I. Members of the VT will retain all rights to their contributions of pre-existing works, and works to which they contribute while participating in the VT. All documents of the VT must be free to use, share and make commercial use of the work with the exception of attribution as defined in the Copyright Notice. Each chapter of the VT document have the main author/s explicitly attached at the chapter Title.

This work is partially funded by <project, organisation>

V. Terminology

A complete project glossary is provided at the following page http://www.egi.eu/about/glossary/.

The following list provides a set of terms that are used in this document.

	Term
	Definition

	Enabling technology
	

	Science Gateway framework
	

	Science Gateway instance
	

	Application
	Some simulator or data analysis program that will be executed on some infrastructure (via the SG)

TABLE OF CONTENTS

71
Introduction

82
Definitions

82.1
"Enabling Technology", "SG Framework", and "SG Instance"

92.2
Front-end, Back-end

102.3
People Roles

123
SG FUNCTIONAL FUNCTIONALITIES

123.1
Processing Management

123.1.1
Predefined vs. User-defined Applications

133.1.2
Communication with the DCI

133.1.3
Workflow (WF) execution

143.1.4
Processing on different DCIs

143.1.5
Scheduling

143.1.6
Error handling

153.1.7
Provenance

153.2
Data Management

153.2.1
Storage facilities

153.2.2
Data operations

163.2.3
User interface vs. Application programming interface

163.2.4
Metadata

163.2.5
Access Control and Sharing

163.3
Security

163.3.1
Authentication and Authorization

173.3.2
Accounting

183.4
Community Support

183.5
Monitoring and Reporting

193.6
Visualization

214
SCIENCE GATEWAYS AND CLOUDS

214.1
Introduction

214.2
Cloud Computing

214.2.1
Cloud definition

224.2.2
Base technologies

224.2.3
Cloud services

234.2.4
Types of clouds

234.2.5
Cloud in EGI and SCI-BUS

244.2.6
Further information

244.3
Utilization of Clouds

244.3.1
Gateway architecture

254.3.2
Utilization considerations

264.3.3
Examples

264.4
Running in the Cloud

264.4.1
Principles

274.4.2
Cloud web support

274.4.3
Cost considerations

274.5
Cloud Business Model

274.5.1
Gateway sustainability

284.5.2
Gateway business models

284.6
Summary and Conclusions

284.7
Acknowledgements

294.8
References

305
Science Gateway QUALITIES

305.1
SG Developers

315.2
SG Operators

315.3
Application Developers

325.4
End-Users

346
Science gateways LIST AND COMPARISON

346.1
Production Gateway Frameworks

356.2
Production Gateway Instances

366.3
Prototype Gateway Instances

377
FOR FRAMEWORK DEVELOPERS AND OPERATORS

377.1
What is their Role?

377.2
What is Expected from Them?

377.3
Who are these Players in Europe?

377.3.1
CloudBroker platform

377.3.2
Genuin SG framework

377.3.3
VineToolkit SG framework

377.3.4
WS-PGRADE/gUSE SG framework

398
FOR INSTANCE DEVELOPERS AND OPERATORS

398.1
What is their Role?

398.2
What is Expected from Them?

398.3
Who are these Players in Europe?

398.3.1
AutoDock Gateway

409
STEPS OF BUILDING YOUR Science gateway

409.1
Create an Exact List of Requirements your SG Should Meet

419.2
Choose Technologies based on Resources and Time

419.3
Building Portals from Reusable Components

429.4
Select a Development Team with User Interface Experience

429.5
Plan for the Long Term

439.6
Develop in Stages

4410
INTEGRATION WITH EGI INFRASTRUCTURE

4410.1
EGI.eu Policies

4410.1.1
Overview

4410.1.2
Policies approved and in use by the EGI community

4510.2
How to Integrate Portals & Enabling Technologies with EGI AppDB

4510.2.1
Overview

4610.2.2
Applications Database in a nutshell

4610.2.3
AppDB relevant features

4810.2.4
How to register an EGI science gateway in AppDB

4910.3
How to Integrate Portals with EGI Monitoring System

5311
References

5412
There are no sources in the current document.

1 Introduction
In May 2012 the Science Gateway Primer Virtual Team launched in the frame of the EGI-Inspire project with the main aim to direct more focus on and help the science gateway developer community.

Without diving into the details a typical science gateway can be described as a selection of community-specific tools, applications, or data collections that are integrated together via a web portal, a desktop, or a mobile application, providing access to large number of resources and services e.g. from the European Grid Infrastructure. If one takes closer look at the functionalities of such solutions, these gateways are able to give high-level, user-friendly support for a wide variety of technologies and procedures (among others) complex workflows, virtualisation of software and hardware, scientific visualization, automated resource discovery, remote job execution, ‘one-stop shop’ like access to data repositories, applications and further tools.

Concerning the background the EGI.eu User Community Support Team together with its partners from the National Grid Initiatives and Virtual Research Communities had already collected valuable information about science gateways and related technologies for developers. Dedicated webpages to present basic information about ready to use SGs (http://www.egi.eu/services/support/science-gateways/science_gateways_for_users.html) and about SG enabling technologies (http://www.egi.eu/services/support/science-gateways/science_gateways_for_developers.html) are in place, and these efforts are considered as the baseline for the presented work in this Primer document.

The main motivation of the Primer document is to help developers identify easier the most suitable set of technologies, collect and apply best practices and solutions to have a science domain specific gateway. For this purpose the Virtual team created and released the first version of a comprehensive document titled 'Science Gateways Primer' that describes the fundamental definitions (Section 2) and functionalities (Section 3), than based on the expected science gateway related qualities (Section 5) the gateway frameworks and instances are systematically compared (Section 6). The Primer document collects and presents information about the available framework technologies (Section 7), and also about the individual instances (Section 8) that form together the technology base for the recommended steps to be followed by the targeted audience, the science gateway developers (Section 9). Dedicated parts of the Primer document deal with the integration of EGI policies and the wide range of exploitable services operated by EGI (Section 10), and also with the emerging opportunities and issues of Cloud integration (Section 4).
The authors welcome feedbacks from the affected communities particularly from the key stakeholders; the providers of gateway instances and science gateway enabling technologies as well as the existing and potential new gateway developers.
Beside the Primer document, another important aim of the Virtual Team is to have up to date and complete information in the EGI Application Database about science gateways and science gateway enabling technologies based on the lessons learnt during the creation of this Primer document.
The presented work and the final version (to be released by the end of 2012) the result of active contributors and observers of the Virtual Team (altogether 34 experts including 5 NILs) from Armenia, France, Greece, Hungary, Ireland, Italy, Netherlands, Poland, Serbia, Malaysia, Spain, Switzerland, Taiwan, UK, and Ukraine. The Acknowledgement and Authors list sections give more details on the contributors.
2 Definitions

2.1 "Enabling Technology", "SG Framework", and "SG Instance"

An enabling technology provides the required software stack to develop Science Gateway (SG) frameworks and SG instances. Typical examples of such enabling technologies are:

· Web application containers (Tomcat, Glassfish, etc.)
· Portal or web application frameworks (Liferay, Spring, etc.)

· Database Management Systems (MySQL, etc.)

Gateways can be divided into two main categories: SG framework and SG instance. An introduction and a brief overview of the pros and cons of each category follow.
SG frameworks or generic distributed computing infrastructure (DCI) gateway frameworks are not specialized for a certain science area and hence scientists from many different areas can use them. NGIs (National Grid Initiatives) are good candidates to set up such gateways to support their very heterogeneous user communities. For example, the UK NGS, Grid Ireland, Malaysian KnowledgeGrid, etc. set up a P-GRADE portal for such purpose. Typical gateways belonging to this category are Genius[], GridPort[], P-GRADE[], Vine Toolkit[], WS-PGRADE/gUSE[19], etc. The problem with these gateways is that they expose a large set of services for their users. Thus, in order to exploit their full power, scientists need a relatively long learning period to efficiently use all the available features. Such complexity distracts many end-user scientists using DCIs even through these SG frameworks.

SG instances or application-specific SGs target a well-defined set of scientists typically working on a specific field of science. They provide a simplified user interface that is highly tailored to the needs of the given scientific community. As a result, on the one hand the scientists do not have to learn too much for using the services provided by the gateway, on the other hand these services are very limited and hence if a scientist needs a more complex service, for example, utilizing a new type of DCI, it cannot be created and managed by these gateways with minimal effort. Typical example is the rendering portal developed at the Laurea University[] in Finland. In order to create such SG instances there are two options:

· The first option is to write the gateway from scratch. Since their services are limited and there are good enabling technologies like Liferay, it is relatively easier to develop such SG instances (compared with SG frameworks). However, such simplified gateways typically support the usage of only one particular DCI and may not support some advanced features such as workflow execution. Typical examples of this approach are the gateways developed by the WeNMR project, for example the NRG-CING portal[]. Some communities selecting this option may underestimate the required manpower and time to produce a robust gateway that can be provided as a production 24/7 service for the large number of members of the community. Meanwhile, while building such gateways the different communities usually solve again and again the same technical issues independently from each other. This redundancy of gateway development effort is a huge waste of cost and manpower. Many times they do not reach the required production level by the time their project is over and then all the efforts building the gateway become useless. Sometimes they manage to produce the gateway in time but when the project is over they do not have the required financial support and manpower to maintain the gateway according to the progress of the underlying software stack. This aspect of maintaining gateways and making them sustainable is often underestimated. Related to this issue is scalability both from the functionality and usability point of view. Once a gateway is provided as a production service, the user community would like to have new functionalities, access to additional types of DCIs, and these wishes often require substantial gateway developments. Another serious problems rises when large number of users start to use the gateway and then turns out that it was not properly designed to serve large number of users in a scalable way.
· The other option is to customize an existing versatile SG framework according to the needs of a certain user community. In this case the full power of the underlying portal framework can be exploited for example by developing comprehensive and sophisticated workflows for the community and hiding these complex workflows behind a simplified application-specific user interface. This is the approach that was followed by the SystemX project in Switzerland where they developed their proteomics science gateway[] based on P-GRADE and recently on WS-PGRADE. A similar approach was followed in the UK ProSim project where they created a gateway[] for biologists to model carbohydrate recognition based on the WS-PGRADE/gUSE portal framework. The advantage of this approach is that the DCI access services are solved and provided in a robust way by a SG framework and hence the user communities can concentrate on producing their application-specific layers of the science gateway. In this way the redundancy of developing the same DCI access mechanisms by many different communities can be avoided. Due to the same reason the development time of SG instances can be significantly reduced and there is a good chance that within the lifetime of the requiring project the science gateway can be built and provided as a production service. Obviously the cost of producing such a gateway is usually substantially lower than in the case of the first approach. Since the gateway is a customization of an existing robust and scalable SG framework the produced production SG instance will also be robust and scalable with a good chance. The sustainability of such a SG instance is more guarantied than in the case of the first method provided that the sustainability of the SG framework is solved since in this case the community of the SG instance should maintain only a narrow set of user-specific services the rest is maintained by the SG framework developer community. This latter should be an open source community that maintains the code as community effort. This approach is followed by the EU SCI-BUS (SCIence gateway Based User Support) project that develops the WS-PGRADE/gUSE based SG framework and derives currently 17 different SG instances for various user communities.

2.2 Front-end, Back-end

In both SG frameworks and SG instances we have to distinguish between two main components:

· Front-end
· Back-end

The role of the front-end is to provide the necessary user interface. In the case of SG instances it is much customized to the particular needs of the science user communities. For example, chemists and biologists would like to see visualization tools for molecules whereas meteorologists need various types of map visualizations. This should be the major task of developing SG instances to develop this kind of specialized user interfaces to provide the right front-end for the target user community. In the case of a SG framework it is typically more generic providing user interface for generic features that might be needed for many different user communities and SG instances. For example, user interfaces for certificate management, file and data management, job submission, workflow creation and management, monitoring, etc. These parts of the front-end typically could be taken from a SG framework even when SG instances are developed.

Quality requirements for a front-end:

· User-friendliness: provides intuitive user interface.
· Efficiency: provides small response time even for complex user requests.

· Scalability: provides small response time even for large number of simultaneous user requests.

· Robustness: keeps working under any circumstances and recovers gracefully from exceptions.

· Extensibility: it must be easy to extend with new interfaces and functionalities.

The back-end provides the necessary DCI access mechanisms that are needed to realize the typical gateway functionalities like certificate management, file and data management, job submission, workflow management, monitoring, etc. for various DCIs. The back-end is typically generic, i.e., the same back-end can be used by many different SG instances. Therefore the main advantage of developing SG frameworks and deriving the SG instances for them appears in the field of developing the back-ends. If a generic back-end is developed in a robust way by a SG framework, all the SG instances derived from this SG framework can take the benefit of using this robust back-end with no or little development effort in this direction. A good back-end can support several DCI types (clusters, grids, desktop grids, clouds, etc.) therefore a distinguishing feature of SG frameworks is how many different DCIs they can support.

Quality requirements for a back-end:

· Efficiency: provides small response time even for complex submitted jobs or service calls.

· Scalability: provides small response time even for very large number (even for millions) of simultaneous submitted jobs or services calls.

· Robustness: keeps working under any circumstances and recovers gracefully from exceptions.
· Flexibility: ability to manage many different types of DCIs and many concrete instances of DCIs.
· Extensibility: it must be easy to extend with the support of new types of DCIs, with new concrete DCIs, and new back-end services.
2.3 People Roles

People around gateways have different roles and a good gateway should provide support for all those people who work with the gateway.

The first category is the gateway developers who develop the gateways. Here we have to distinguish SG framework developers and SG instance developers. The primary goal of SG framework developers is to develop the SG framework back-end in a portable way that enables SG instance developers to use it without modifications. Their second goal is to develop the generic part of the front-end. This is also important for the SG instance developers and some parts even for the SG instance users, too. The main task of the SG instance developers is to customize a SG framework for their user community. It means that the user interface of the SG framework should typically be extended with new application-specific interfaces. However, if the SG instance is developed from scratch the SG instance developers have the same tasks as the SG framework developers and additionally, developing the application-specific interfaces.

Once the SG frameworks or SG instances are developed they should be set up and operated. Here comes the role of gateway operators. They should be able to deploy, configure, run and maintain the gateway service running for the user communities. For these purposes, good gateways provide installation and configuration wizards, user management support interface, etc. These again – in good practice – can be developed in a generic way within a SG framework and just be used (maybe adapted) by SG instances.

Once the SG frameworks or SG instances are set up and operated the user can come forward and start to use them. We have to distinguish two user categories: end-users and application developers. In fact, they need different front-ends. The application developers develop DCI applications, for example in terms workflows, which are used by the end-users. The application developers are typically IT people or scientists (chemists, etc.) with good understanding of the underlying IT technology. They should get relatively detailed information on the underlying DCIs while this information could partially or completely be hidden for the end-users. Therefore, the SG frameworks are primarily targeted to the application developers and the SG instances are typically designed for the end-users. Of course, this typical usage does not exclude the possibility that some SG framework can be used by end-users and SG instances can provide front-end necessary for DCI application development. However, the good practice is the clear separation of these two concepts.

3 SG FUNCTIONAL FUNCTIONALITIES

The basic functionalities that a science gateway, collectively via its front-end and back-end, should offer relate to providing access to distributed computing infrastructures (DCIs), in particular:

· Processing
· Data

In addition to these basic functionalities, other important ones are:
· Security: provide means to control the access to the gateway and underlying resources;

· Monitoring and reporting: provide means to observe the activities/tasks performed via the gateway. This involves both dynamic information, generated while the activity is taking place (monitoring), as well as reporting and statistics about past activity.

· Community support: gateways are platforms shared by various users that might be organized in sub-groups and/or need communication means.

· Visualization: since gateways are essentially interactive tools, the visual presentation of data and other information is an important factor.

Each of these topics will be discussed in more detail in the sections below.
Reminder: create some simple diagram
3.1 Processing Management

In most of the cases, SGs facilitate access to resources to handle large-scale computations for some applications. This can be achieved in various ways and the following dimensions that need to be considered:
· Type of application: predefined or user-defined applications.
· Communication with the DCI: how tasks at the application level are translated into jobs on the DCI.
· Workflow execution: how to execute complex processing pipelines on DCI(s).
· Processing on different DCIs.
· Scheduling: how to utilize resources efficiently.
· Error handling: what happens when errors occur.
· Process provenance: record processing activities.
3.1.1 Predefined vs. User-defined Applications

· A limited set of predefined applications is usually available for novice users. These applications are stable and optimized. These applications are not changeable, which means the users cannot replace their functional components, but their parameters are configurable. Based on the authentication mechanism used for the gateway users (see Section 3.3.1) and the policies of DCI providers (see Section 10.1), users might have only access to predefined applications. This is the typical case for SG instances.
· Advanced users, if the gateway authentication mechanism and DCI provider policies allow, should be able to define and execute the applications that they have developed themselves. The gateway supports their development cycle, for example by providing means for debugging, tracing, and log inspection. This is the typical case for SG frameworks.
3.1.2 Communication with the DCI

The simplest is to submit “jobs” from the application using the middleware directly. This requires modifying the code of the application, being the most invasive and difficult approach. It has the advantage that the application can be efficiently parallelized to reduce latency, and also instrumented to communicate with the gateway for exchanging progress information. This custom approach is only feasible when a small number of well-established applications need to be offered at the gateway, and requires significant human effort.

The next approach is to write a script (or wrapper) that runs the application as a job on the infrastructure without touching the code. The wrapper script takes the executable and input files and submits them to the target DCI with the job description required by the target DCI. The script then downloads the data to the node, runs the application, and uploads the results back to some storage that can be reached by the user. The script can also be instrumented to provide progress information for the gateway. Such a wrapper script is a good candidate to place in a portal building blocks repository since they are typically redundantly developed by each gateway developer community.

Parallelization is achieved in a simple way by splitting the data and running the script simultaneously in many resources. The gateway should coordinate data splitting and execution accordingly.
In the previous approaches custom strategies are needed at the gateway to combine processing pieces that might be needed to accomplish more complex processing pipelines. Another alternative is to use workflow management technology (see the section on Workflow execution X.y.z)
3.1.3 Workflow (WF) execution

A workflow is a graph where the nodes of the graph represent jobs or service calls (e.g., WS calls) and the directed edges connecting the nodes represent the data or synchronization dependencies between the nodes. We can imagine the edges as the logical representation of the file transfer mechanism that delivers the necessary input files from the generator node (source) to the consumer node (destination).
The workflow management system (WfMS) is responsible for executing the nodes of a workflow in the order of the defined dependencies. In a data driven workflow a node can be executed when all of the input edges of the node have delivered the required input file. It is the task of the WfMS to recognize this situation and then initiates the submission of the job related to the node. The job submission is based on the job execution mechanism described above (Section 3.1.2). If the node represents a service call then the corresponding service call is initiated.

There are several WfMSs exist. Some of the most popular ones in Europe are: ASKALON, Kepler, MOTEUR, Pro-Active, Taverna, Triana, and WS-PGRADE. Unfortunately, most of them are not integrated with gateways. Further problem is that typically they are tightly connected to one particular DCI so if a user community adopts a WfMS, they are consequently bound to a specific DCI, too. (A notable exception is the WS-PGRADE WfMS that is integrated into the WS-PGRADE/gUSE gateway framework and is able to executed workflows on more than 10 different DCIs including grids, desktop grids, clouds, and local clusters.) In order to solve this problem the FP7 SHIWA project created the SHIWA Simulation Platform (SSP) that enables the usage of various WfMSs in the same gateway and run them on more than 10 different DCIs including grids, desktop grids, clouds, and local clusters.

3.1.4 Processing on different DCIs

It is usually the case that SGs provide access to several DCIs. In this case a seamless access to computing resources on these DCIs is essential. Different aspects such as authentication, authorization, accounting, scheduling, job/wrapper conversion and coordination between different DCIs should be taken into account to achieve this.

There are two services that can be used for accessing several DCIs from any gateway:

· SAGA: is an OGF standard solution to access the following DCIs: ARC, gLite, Globus, UNICORE.

· DCI Bridge: any gateway using the OGF standard BES interface can submit jobs to the following DCIs through the DCI-Bridge: ARC, gLite, GT2, GT4, GT5, UNICORE, BOINC, Amazon, OpenStack, IBM Cloud, Eucalyptus, LSF, PBS. (The clouds are accessed via the CloudBroker Platform – a product of CloudBroker GmbH.)

3.1.5 Scheduling

The simplest approach to schedule jobs is to use middleware schedulers such as Workload Management System (WMS). These tools schedule jobs on the DCI resource level leveraging low level services that operate computing elements such as CREAM service.
Pilot job frameworks are used to provide more flexibility and control at the scheduling time. They send dummy agent jobs to the middleware schedulers to reserve a resource. Once the resource is available the actual jobs are sent as payloads to those agents. Examples are DIANE, DIRAC.
Application level scheduling is the highest level of scheduling where the application developers optimize and control the resource allocation based on the business logic of the application.
3.1.6 Error handling

fault handling: retry, restart, pause/resume
DCIs provide best effort services and it is not unusual to face situations that eventually cause a job or workflow to fail. Therefore it is important to provide mechanisms to the SG users to deal with failures. The obvious and essential mechanisms are:
· Pause and resume execution of a job or workflow. This mechanism is especially useful during the scheduled maintenance windows.

· Retry (restart) from beginning or a check point specially for long lasting workflows/jobs.
3.1.7 Provenance

Complex processes are performed on DCI resources. Therefore, process provenance information is important to gather for later reference, troubleshooting, and audit. Process provenance should be able to answer questions such as:
· Where and when the processing has been done?

· What were the hardware and software specifications of the machine on which the processing has been done?

· Which input data or parameters have been used?

· If there were errors what type of errors have been detected?

· How much CPU time, memory, and scratch disk have been used?

· What and when was the transition of states during the job runtime (queued, scheduled, running, paused, resumed, failed, finished successfully)?

3.2 Data Management

Data is the most important entity in scientific research and therefore a SG is not complete without effective data management facilities. Data operations, user and programmable interfaces, metadata management, access control, and data sharing are some of the main topics in data management that are discussed in this section.
3.2.1 Storage facilities

From the user’s point of view the data storages could be categorized into two main groups:
· Local: for example local hard drive, a file server inside the user’s institute. Essentially local storages are those that are behind a firewall.
· Remote: for example grid storage (SRM), cloud storage.
3.2.2 Data operations

Files are typically located on different local and remote infrastructures. To use and process these files the following basic data operations should be considered:
· Upload from local storages to remote storages
· Download from remote storage to local storage
· 3rd party file transfers between two remote storages
· Delete and edit operations on remote storages
Different protocols and different credentials (see section 3.3) should be used to perform these operations. Metadata attached to the data should persist and expanded after (most of) these operations.
3.2.3 User interface vs. Application programming interface

These operations are initiated either by the user through a user interface or by programs through an application programming interface (API). An example of data operations through an API would be a workflow engine that stages files from a local storage to a remote storage before enactment of workflow jobs.
3.2.4 Metadata

Metadata is a piece of information that describes a piece of data. A rich set of metadata is essential for data discovery, sharing, and processing. Metadata can be categorized into three groups:
· Generic metadata: e.g., data format, data and time of creation or modification.

· Provenance metadata: e.g., author, means and steps that created the data.

· Domain specific metadata: e.g., a file is a MRI scan of a brain, domain specific standards used.

Science gateways should enable their users to discover data by providing tools to query on metadata. SGs should also provide tools to modify and curate these metadata. Metadata, especially data provenance, should be kept up-to-date through automatic collection of provenance information during the lifetime of data.
3.2.5 Access Control and Sharing

Data and metadata operations should be controlled based on the access rights of the users and the groups (or communities) that they belong to. SGs should enable data sharing with other users and groups while receiving credit for this (possibly via data provenance metadata - see 3.2.4). Ideally access control needs to be enforced both on the SG level and on the remote and local storage facilities.
3.3 Security

Security has three axes: authentication, authorization and accounting (also known as AAA). Because SGs are located between the user space and DCI space, each one of these axes has two faces, one to the user side and one to the DCI side. In other words security is vertical in the software stack and should be enforced from user to DCI and vice versa through transparent and automatic translation of AAA methods. For example in Chain project…
3.3.1 Authentication and Authorization
Users should be authenticated before getting access to the SGs and consequently to the resources provided by the DCIs through the SGs. Users can be authenticated by one or a mixture of the following methods:
· Username and password are provided to the users after registration to the SG.

· Federated identities: for example using the same username and password that they use to access the email account in their organization. This method removes the burden of registration and keeping track of username and passwords from the user shoulders.

· Grid certificate: users can authenticate with the SG if they have their Grid certificate installed in their browser, example is the X509 based authentication for EGI Operations Portal or the EGI Accounting Portal.

One of the benefits of using SGs is to provide a federated mechanism to authenticate with different DCIs with different types of authentication mechanisms through the gateway. This is possible if the user already defined and stored the proper authentication attributes in his/her account, or authorized the gateway to authenticate on his/her behalf, or some sort of community authentication is provided by the gateway (for example robot grid certificate). One of the benefits of using SGs is to provide a federated mechanism to authenticate with different DCIs with different types of authentication mechanisms through the gateway. This is possible if the user already defined and stored the proper authentication attributes in his/her account, or authorized the gateway to authenticate on his/her behalf, or some sort of community authentication is provided by the gateway, for example robot grid certificate. Robot grid certificate is used by the SG to authenticate itself and get authorized access to grid resources that are utilized by authenticated users in a controlled environment, for example only to execute predefined applications.
Authenticated users get access to the resources offered by and through the gateway (e.g. computing resources, data, services, applications). Based on the user authentication method and available authentication methods to different DCIs, the authorization differs. SGs should handle authorizations transparently according to the available authentication and authorization methods and policies on both user and DCI side.
3.3.2 Accounting

All user activities should be recorded for later audit, for example to assess damage if some security breach happens or to prevent future incidents. This is particularly important when a community authentication and authorization method (for example a robot grid proxy) is used by the SG. Accounting is also necessary to apply fair use policy, enforce usage quotas, and billing. Accounting is required by the EGI policies (see Section 10).

keep and provide information about gateway usage
follow egi policy (see the last chapter)
on the user side: user authentication (user-passwd, federated ids, grid certificates) user authorization (compute resources, data, applications): differences depends on DCIs
on the DCI sideÇ access to processing (different DCI, different types of security mechanisms) access to data (might be different from processing - db vs grid resources, local file systems, ftp, firewalls)
accounting: normally gateways negotiate DCI resources on behalf of users. gateway needs to keep track of activity data to inform users and DCI providers? (see last chapter)
security is vertical, needs to be streamlined/translated from/to user to DCI e.g.:robot certificate (simplify DCI side and user side, need to re-implement data access control at the gateway level example: chain egi munich)
Draft based on Ricardo Graciani’s presentation @ EGI TF 2012:

https://indico.egi.eu/indico/contributionDisplay.py?contribId=250&confId=1019
3.4 Community Support

SGs support complex interactions between and among (research) groups with diverse expertise. SGs facilitate knowledge exchange among experts from several scientific domains. For example the following experts are involved in a typical neuroscience research project: physicists, medical doctors, image processing experts, computer scientists, project investigators, etc. People take several roles in one or different projects. Roles define functional responsibilities of their holders in a project, examples are: workflow developer, workflow optimizer, data curator, e-infrastructure support. The following figure summarizes these relationships.
[image: image1.png]Project

Role

Person.

General entities and relations in an SG community
People who are involved in the scientific projects collaborate with each other by sharing data, methodologies and knowledge (expertise, advice). It is the scope of projects that defines the access to these informational resources. This means resources might be shared between projects. In the scientific domain: users share data and methodologies, collaborate: groups management and access control, roles, communication among users and also between admins and users like announcements blogs, wikis, forums, content managements. There are already existing Liferay portlets supporting these kind of community-oriented activities in the Liferay Portlet Repository.

Beyond the usual community tools, scientific communities need various repositories where they can share portlets, applications, workflows, cloud images, etc. For sharing portlets we recommend the use of the Liferay portlet repository. EGI provides the AppDB repository for storing metadata on applications running on the EGI infrastructures (see details in section 9.2). The myExperiment community repository stores meta-information of various workflow (WF) applications. The Taverna applications even can be executed from the repository. The SHIWA repository stores not only meta information on WFs but also their execution-related information. SHIWA also provides the SHIWA gateway that enables the execution of the WFs stored in the SHIWA Repository in various DCIs.

3.5 Monitoring and Reporting
SGs should help their users to monitor their processing and data activities for example, the progress of a workflow execution or file transfer. Process monitoring depends on the methods that are used to communicate with the DCI, scheduling method, and whether or not the SG is using a WfMS (see Section 3.1 for more details). Similarly data activity monitoring also depends on the technologies that are used in remote and local resources. Like any other portal functionality, security is also a necessity in monitoring, so only those who have permissions can monitor activities based on their role, for example system admins should be able to monitor everything, while group managers should only be able to monitor activities that are happening within their own group.

Automatic system monitoring and notification is also essential for (early) event detections such as attack, finished or failed processes, corrupted or missing data. Respective users should get notifications via a configurable notification mechanism if such events are detected.

Orthogonal to monitoring is reporting that automatically generates reports of activities performed in the SG (system-wide), in a project, or by a particular user. Some examples of such activities are CPU/Disk/Memory usage (usage statistics), errors and types of errors. Reporting is also related to accounting (see Sections 3.3.2 and 10.3).
3.6 Visualization

Visualization could be categorized into generic and domain specific visualizations. Examples of generic visualizations are workflow, statistics, and provenance visualizations. These visualizations are meant to help users quickly examining complex system data and events, for example to pinpoint the cause of an error. Domain specific visualizations usually concern visualizing input/output data for example to extract new information or examine correctness of it. Some examples of scientific gateways are able to provide a community-centric view, workflow/dataflow services and a friendly use in accessing the worldwide distributing computing resources. In each of science contexts, those play a key role since it allow scientists to transparently access distributed data repositories and metadata sources to carry out search & discovery activities, as well as visualization and analysis ones. It is helpful to attract the new users and represent a relevant centralized information/knowledge repository in the different sciences context. This is a collaborative integration environment that those researchers are able to work on the same or similar tasks to perform computational challenges by sharing the software tools and the big scientific datasets. Domain-specific visualizations follow:
[image: image2.png]S

Computing resource
(Grid, BOINC,and
Cloud)

framework ChemAxon job scheduler
w
(&) JZy3d simulation
web-server visualization
preparation

GVSS Portal

(i) Sy

b

ysaL:

GVSS Portal Service
· Visualization is included as a visual workflow process that user is able to prepare the input datasets, check the intermediate result and view the final results which user can do further process or extract the information. For the GVSS, there is Joml a common molecular viewer, Joml, that is able to visualize the protein and ligand in the pdb, mol and xyz formats. It also has the 2-D information of the ligand database that user can query and check out the input parameters. Therefore, we need the ChemAxon to prepare those properties. After the job is successfully executed, the user can visualize the protein-compound complex and extract those the interaction energy, then plot the 2-D energy histogram or 3-D principal components analysis. Those tools were developed on the service portal.
4 SCIENCE GATEWAYS AND CLOUDS

4.1 Introduction

Cloud computing is one of the most important technology trends that has aroused in the last few years. As such, it is of high importance both for science gateways as well as for EGI as a whole. The goal of this chapter is thus to explore the connection between science gateways and clouds. In particular, it is of interest in which ways science gateways are related to cloud computing, how they are influenced by cloud technology, and from which cloud concepts they might profit.

In general, one may divide between three principle approaches by which science gateways can interact with cloud computing:

· Science gateways can utilize cloud computing resources for the services they offer

· Science gateways can run in the cloud themselves

· Science gateways can adopt the cloud business model

In this chapter, first a short overview about cloud computing will be given. In the following three sections, the approaches listed above will be described in more detail. The chapter then ends by a summary and conclusions section.

4.2 Cloud Computing

4.2.1 Cloud definition

There are many different ways how to define cloud computing (see, e.g., [1]), and up to now, no community agreement onto a single definition could be found. An often-used concept is the cloud definition of the US National Institute of Standards and Technology (NIST) [2]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

The NIST requires five “essential characteristics” from the cloud model:

· “On-demand self-service”

· “Broad network access”

· “Resource pooling”

· “Rapid elasticity”

· “Measure service”

This means that cloud computing provides immediate access to computer resources via the inter- or intranet, without much initial investment in time, money or expertise. Cloud resources are shared in a multi-tenant model, and provide nearly unlimited scalability, meaning that the resource size can grow and shrink upon request. Metering and corresponding pay-per-use in small steps, often associated with micropayments, result in capital expenditures (CapEx) being substituted by operational expenditures (OpEx). It is important to check each cloud offering one encounters for the principles given here, to make sure that it can really be considered being cloud.

Overall, cloud computing represents not only a change in technology, but more importantly a change in the operational and business model how computer resources are exposed to users. In particular, in cloud computing finally the interface between providers and users set is at the right place, in that the users can chose between the different levels and ways of how the cloud services are offered to and used by him/her. The further sections of this document will explain how this relates to science gateways.

4.2.2 Base technologies

Of course, cloud computing would not be possible without the previous development of its underlying technologies. Some of the most important concepts in this regard should be shortly listed here for reference:

· Internet, web

· Distributed and cluster computing, server farms

· Grid and utility computing

· Application service provider (ASP)

· Service-oriented architecture (SOA), web services

· Virtualization

· Automation

As already became clear in other chapters of this science gateway primer, many of these technologies are closely related to or even employed in the context of science gateways. Thus a connection of science gateways to clouds is obvious.

4.2.3 Cloud services

Citing again from the NIST definition of cloud computing [2], it separates between three different “service models” how cloud computing is delivered:

· “Software as a Service (SaaS)”

· “Platform as a Service (PaaS)”

· “Infrastructure as a Service (IaaS)”

SaaS means delivery of cloud services on the level of applications. Typically, this means business, office, etc., applications, as exemplified by Salesfore (http://www.salesforce.com) or Google Apps (http://www.google.com/apps/). In the context of science gateways, of course scientific and technical applications are of highest relevance here.

PaaS is usually associated with various programming and deployment frameworks offered in the cloud. Often also additional functionalities such as distribution, messaging, monitoring, databases, etc., are provided. Typical examples include Google App Engine (http://cloud.google.com/appengine/) and core parts of Windows Azure (http://www.windowsazure.com). Of course also science gateways can utilize the corresponding platform tools.

IaaS usually consists of hardware and operating system building blocks such as virtual machines, storage, network, etc., provided in the cloud. Well-known providers here are for example Amazon Web Service (http://aws.amazon.com), Elastic Compute Cloud (EC2) and Simple Storage Service (S3), as well as Rackspace (http://www.rackspace.com). Since science gateways naturally need underlying computer infrastructure, is obvious that science gateways may also consume such services out of the cloud.

4.2.4 Types of clouds

The final definition that can be found in the NIST document [2] is that of four cloud “deployment models”:

· “Private cloud”

· “Community cloud”

· “Public cloud”

· “Hybrid cloud”

Private clouds can be in-house or hosted for a particular organization, just for its internal use. They are usually multi-tenant across organization sites, departments, groups and/or users. Their main focus is typically on self-service and accountability inside the organization.

Community clouds go a bit further, in that those clouds are not only for a single organization, but for a bigger, though still separated community across different organizations or individuals. They still follow similar principles, though with a higher emphasis on the sharing aspects of cloud.

Public clouds are offered by certain organizations or cloud providers to a larger community or basically to everybody. This means that they are multi-tenant across organizations and/or individuals. Here the focus is usually on the on-demand and pay-per-use advantages of cloud computing.

Hybrid Clouds finally are a mixture of public, community and/or private clouds. Their focus is typically on providing scalability and failover features.

Science gateways may be related to and/or utilize all forms of clouds, as will be further discussed in the following.

4.2.5 Cloud in EGI and SCI-BUS

Recent years have seen a huge hype and an exploding market in cloud computing offers, which can thus not be fully presented here. However, the raising interest in clouds has also induced EGI to invest into this technology. Its main goal is “to facilitate the setup of a pan-European federated cloud based on the resources of the NGIs” (http://www.egi.eu/infrastructure/cloud/). For this, a Federated Cloud Task Force has been established (http://www.egi.eu/infrastructure/cloud/cloudtaskforce.html, https://wiki.egi.eu/wiki/Fedcloud-tf). It generates a blueprint document and test bed as well as communicates with providers, users and other influencers.

The EGI Federated Cloud test bed (https://wiki.egi.eu/wiki/Fedcloud-tf:Testbed, https://wiki.egi.eu/wiki/Fedcloud-tf:UserCommunities) consists of resources from various resource providers. It is mainly based on OpenStack (http://www.openstack.org) and OpenNebula (http://opennebula.org) open source IaaS tools. The protocols exposed by the EGI Federated Cloud to users are the Open Cloud Computing Interface (OCCI), Cloud Data Management Interface (CDMI), the Glue schema, and X509 for the authentication (https://wiki.egi.eu/wiki/Fedcloud-tf:UserCommunities#Interfaces_and_protocols).
Another example with close relation to the Science Gateway Primer is the EU FP7 project “SCIentific gateway Based User Support” (SCI-BUS, http://www.sci-bus.eu). It aims at developing gateway technology and community gateways in various domains to provide researchers seamless access to major computing, data and networking infrastructures and services, with focus on scientific workflows. In SCI-BUS, the connection of science gateways to clouds is performed by means of the CloudBroker Platform (http://www.cloudbroker.com). It provides SaaS/PaaS services for scientific and technical applications on top of various IaaS clouds. These include Amazon EC2 and S3 (https://aws.amazon.com) and IBM SmartCloud Enterprise (http://www.ibm.com/services/us/en/cloud-enterprise/) as public clouds and OpenStack (http://www.openstack.org), Eucalyptus (http://www.eucalyptus.com) and OpenNebula (http://opennebula.org, still in preparation) as open source private cloud tools. Its public version (https://platform.cloudbroker.com) can be used for free with own cloud resources and software under certain conditions.

4.2.6 Further information

Within this Science Gateway Primer, only a very short introduction into cloud computing can be given. A number of documents deal in much more detail with the relevance of cloud computing for science, research and academia. The reader is in particular referred to reports from UC Berkely [3], CERN [4] as well as the US Department of Energy [5].

4.3 Utilization of Clouds

4.3.1 Gateway architecture

In this and the following two sections, we will look in more detail into the three different ways that science gateways can connect to cloud computing, as they were mentioned in the introduction of this chapter.

The first and most classical variant is science gateways using cloud services as their backend. This means that instead of clusters, supercomputers and/or grids, clouds are employed as DCIs. Cloud computing thereby often provides a perfect fit for the science gateways, as the backend DCIs are usually only needed on demand. The following figure gives a graphical visualization of the corresponding overall scientific gateway technology stack.
[image: image3.png]Science Gateway

Gateway Technology (Liferay, WS-PGRADE/gUSE, etc.)

L
L
L
L
u
)

Architecture for science gateways using cloud services as backend (reprinted with permission from CloudBroker GmbH)

4.3.2 Utilization considerations

As can be seen from the figure above, science gateways can use all sorts of cloud services as DCI:

· IaaS, in particular compute and storage resources for scientific calculations and data

· PaaS, that is programming and deployment environments for scientific software

· SaaS, providing access to complete scientific applications

The biggest difference here is that the lower the level of cloud services that is used, the more functionality (e.g., automation) has to be provided by the science gateway technology itself, and/or the more raw cloud access has to be exposed to the users on the frontend side. On the other hand, using a lower-level cloud service may provide more flexibility in the way it is implemented in the science gateway or how it is utilized by the users. Furthermore, there are not many cloud standards yet, and the functionality of different cloud offers even on the same level might be quite different and incompatible. In any case, this leads to considerable differences in the efforts for building science gateways and/or in the usability that can be provided, and thus should be considered in the planning of a science gateway based on clouds. However, it can be expected that more and more generic-purpose technologies that science gateways are constructed upon will include build-in access to various cloud services in the future.

Another important aspect that should be considered when constructing a science gateway on top of cloud DCIs is if private, community, public or hybrid cloud infrastructures should be used. Here among others the following considerations are usually of importance for the gateway developers and operators:

· Which cloud services are already provided by or used by the community that I address with the gateway?

· What are my and/or the considerations of my users regarding security, performance, scalability, variability, failover, geographic location, applicable law, SLAs, certification, vendor lock-in, etc.?

· Can there be a direct payment for the cloud services either by my organization or by the users of my gateway?

Overall, detailed research and planning regarding which cloud level, type and service to use and how is strongly advised.

4.3.3 Examples

There are some science gateways and general gateway technologies that already use cloud services as a backend. Only a few examples are mentioned here:

· As already explained in the cloud computing section, the SCI-BUS project (http://www.sci-bus.eu) employs the CloudBroker Platform (http://www.cloudbroker.com) for its connection to various IaaS clouds. The platform’s SaaS and PaaS features are thereby directly built into the WS-PGRADE/gUSE (http://www.guse.hu) framework that SCI-BUS uses as generic-purpose gateway technology, via the CloudBroker Platform APIs.

· Galaxy is an open, web-based platform for data-intensive biomedical research (http://www.galaxyproject.org). It can be used either via a free public server or an own, private installation. Galaxy employs Amazon Web Services (http://aws.amazon.com) to launch Galaxy clusters in the cloud.

· iPlant (http://www.iplantcollaborative.org) targets computational support for plant biology. Its Atmosphere (http://www.iplantcollaborative.org/discover/atmosphere) tool provides a cloud infrastructure service platform that for example allows starting preconfigured virtual machines in the cloud.

4.4 Running in the Cloud

4.4.1 Principles

The second possibility of how science gateways can profit from the advantages of cloud computing is to run the gateway’s frontend using cloud services. Again, here all sorts of cloud services can be employed:

· IaaS, PaaS or SaaS

· Private, community, public or hybrid

Also, similar thoughts as in the section about using clouds for the science gateway’s backend above should be applied here in selecting a suitable cloud service for the gateway’s backend:

· How much effort, flexibility and/or usability is suitable?

· What are the considerations for locating and selecting a cloud service?

Of course, both cloud frontend and cloud backend services can be combined in a single science gateway.

4.4.2 Cloud web support

In many cases, science gateways are nothing more than a special type of website or other online-accessible software with advanced functionality and a distinct audience. Many cloud providers offer a lot of different services for exactly this very generic purpose, which is not specific to science gateways. These can now be used for developing, deploying and running the gateway’s frontend.

Typical cloud services for websites employed for science gateways include:

· Utilizing virtual machine instances in public or private IaaS clouds to operate the science gateway web server, database server, etc.

· Using public or private PaaS environments to develop, deploy and operate the science gateway.

· Creating special sections, installations or derivatives in the public or private SaaS offers of providers of generic-purpose technology for science gateways, or starting from even more generic online website building frameworks

Combining this with the options to use private, community, public or hybrid cloud setups shows the large number of selection possibilities. Again, detailed research and planning is required here.

4.4.3 Cost considerations

When operating science gateway frontends within clouds, it should be considered that they usually need to be online all the time, as users expect this. This often makes no difference in private or community clouds, but public clouds are generally charged for the usage of time and/or resources. Thus beyond comparing different cloud services, a price comparison with simple hosting offers or own operation should be considered.

However, more points than just the plain direct costs should be taken into account. It may also be useful to utilize cloud resources to prevent any large initial investments, for scalability during peak demands, as well as for backup and failover scenarios. Furthermore, outsourcing to clouds will allow the gateway providers to focus on their core competencies, and thus may free up personnel resources. A full cost of ownership analysis may thus be desirable, although often difficult to perform.

4.5 Cloud Business Model

4.5.1 Gateway sustainability

The third way how science gateways can take over ideas from cloud computing, deals with business aspects. As already explained in the cloud computing section, cloud computing is more a change in the business model than it is in the underlying technology.

One request that is usually made to science gateways is that over time they need to become sustainable. Of course it does not make sense to offer a gateway if there is not enough user interest in it. It can be observed that there are more and more moves towards metering and billing also academic services. And many governments do not have enough money for large CapEx anymore and thus prefer stepwise OpEx. Unfortunately, though, sponsors are hard to attract to science gateways, and not always gateways can be outsourced or a spin-off company generated from them.

It can thus be expected that for academic and community gateways, base government and NGO funding to build, operate and support the gateways is still needed. However, beyond that one may apply the cloud business model also to science gateways.

4.5.2 Gateway business models

The idea here is to understand science gateways as high-level cloud services themselves, that is as “Gateway as a Service” (GaaS). Then also all corresponding business features from clouds such as pay-per-use and OpEx instead of CapEx can be applied, together with known concepts from web services, social media and open source commercialization.

Some possibilities for setting this up are the following:

· Build science gateways from cloud building blocks

· Charge for not freely accessible resource consumption and application usage

· Have a freemium model with extra charges for additional services

· Offer user subscriptions with different features and prices

· Let commercial and other external users pay for gateway services

· Have a shareholder charge-back model

· Provide and charge for professional consulting, training and support

· Include advertisements and/or user/usage analytics

In the end, each gateway, depending on its features (product) and audience (market), needs to develop its own business model. Of course this requires deep thinking and calculations, and only some initial suggestions can be listed here. Furthermore, the selected business model then also has to be realized on the technical side. However, for example within the SCI-BUS project (http://www.sci-bus.eu) such possibilities are already being explored.

4.6 Summary and Conclusions

In this chapter, the relation of science gateways with cloud computing was explored. After a short overview of clouds in general, three principle ways of how science gateways can profit from the cloud concept were discussed:

· Clouds for gateway backends

· Clouds for gateway frontends

· Cloud as gateway business model

Overall, cloud computing provides a large variety of great opportunities for science gateways. However, detailed considerations are necessary for each individual case. In the future, cloud functionalities included in the base gateway technologies will considerable ease this.

4.7 Acknowledgements

The work leading to this chapter has partially been supported by the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 283481 (SCI-BUS). This chapter is based in part on the presentation of Wibke Sudholt, “Science Gateways and Clouds”, Science Gateways session, EGI Technical Forum, Prague, September 20, 2012.

4.8 References

1. Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, Maik Lindner, “A Break in the Clouds: Towards a Cloud Definition”, ACM SIGCOMM Computer Communication Review, Volume 39, Issue 1, January 2009, Pages 50-55

2. Peter Mell, Timothy Grance, “The NIST Definition of Cloud Computing”, NIST Special Publication 800-145, September 2011

3. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, Matei Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2009-28, February 10, 2009

4. Maryline Lengert, Bob Jones, “Strategic Plan for a Scientific Cloud Computing Infrastructure for Europe”, CERN-OPEN-2011-036, August 8, 2011

5. Katherine Yelick, Susan Coghlan, Brent Draney, Richard Shane Canon, Lavanya Ramakrishnan, Adam Scovel, Iwona Sakrejda, Anping Liu, Scott Campbell, Piotr T. Zbiegiel, Tina Declerck, Paul Rich, et al., “The Magellan Report on Cloud Computing for Science”, U.S. Department of Energy, Office of Advanced Scientific Computing Research (ASCR), December 2011

5 Science Gateway QUALITIES

Science gateway (SG) qualities can be accessed from the point of view of different people using the gateway:

· SG developers
· SG operators
· Applications developers
· End-users

5.1 SG Developers

Science gateway developers are mainly concerned with how easy to further develop the gateway:

· Open source code
· Quality of the code including documentation
· Usage of standard software development technologies
· Support for code developers

First of all, the code should be open source for several reasons:

· Avoid vendor lock-in
· Enable the modification according to the specific needs of a certain community
· Developing code by community effort improves the quality of the code (for example, forces the developers to provide better comments, better documentation, etc.).
· Community effort enables more people to work on code development and hence results in shorter time to produce new required functionalities

The quality of the code can be assessed according to the following criteria:

· Is the gateway software architecture clear, SOA based and/or layered?
· Do the communicating components use existing standards? If there is no standard, then the developed protocol is clear and simple?
· Are the comments sufficient and clear?
· Is the documentation detailed enough and clear?

There are many software development technologies. It is important to follow a state-of-the-art technology that enables the fast and reliable development and release creation. Is there any testing methodology? If yes, the quality of the testing procedure is also a major quality factor. The release policy also should be well-defined.

In order to enlarge the developer community, good support for code developers is important. This can include:

· Forum discussions
· Training materials
· Training courses if required

Quality requirements for the front-end:

· It should be extensible, i.e., it must be easy to extend with new portlets and functionalities.

Quality requirements for the back-end:

· It should be extensible, i.e., it must be easy to extend with the support of new types of DCIs and with new concrete DCIs.

All these aspects are very important for SG framework developers. For SG instance developers some of the requirements can be omitted. For example, to serve a small user community the SG instance code could be proprietary code. In such case the community might be satisfied with less detailed documentation and does not need forum discussions. On the other hand for SG instance developers who would like to derive their SG instance from an SG framework, an additional quality criterion is how this customization procedure is supported in the selected SG framework:

· Is there any customization support?

· If yes, how easy to use this support?

It is the task of the community to choose which of the quality requirements written above will be used for their particular SG instance. The SCI-BUS project would like to apply all the above mentioned criteria both for the SG framework and for the SG instances. SCI-BUS puts significant efforts to develop an easy-to-use customization method in order to derive SG instances from the SCI-BUS SG framework.

5.2 SG Operators

For the science gateway operators the most important quality requirements are:

· How easy to install the gateway? Is there any installation wizard?

· How easy to configure the gateway? Is there any configuration wizard?

· How easy to re-start the gateway?

· How easy to diagnose if a problem occurs? What support the operator can get from the gateway developers?

· How frequent are the gateway releases?

· How easy to update the gateway for new releases?

· How user management is supported? Is there any tool, user interface for this purpose?

5.3 Application Developers

For application developers the quality requirements can separately be investigated for the front-end and back-end.

Quality requirements for the front-end:

· It should provide rich functionalities supporting application development

· Workflow editor (textual and/or graphical)

· User-oriented certificate management

· Job and workflow submission to various DCIs

· Execution monitoring to observe and if possible control the execution in the different DCIs

· Etc. See further functional requirements in chapter 3

· It should be user-friendly and intuitive.

· It should provide user interface (UI) access to an application repository where partially developed and completed applications can be stored and shared with other application developers.

· It should provide UI access to an application repository where ready-to-use applications can be uploaded, stored and provided for end-users.

· It should be efficient, i.e., it should provide small response time even for complex user requests.

· It should be scalable, i.e., it should provide small response time even for large number of simultaneous user requests.

· It should be robust, i.e., it must not be collapsed or frozen under any circumstances.

· It should be extensible, i.e., it must be easy to extend with new portlets and functionalities.

Quality requirements for the back-end:

· It should be flexible, i.e., it must be able to manage many different types of DCIs and many concrete DCIs.

· It should provide monitoring and status information on job/workflow execution.

· It should provide fault-tolerance features that hide the unreliability of the underlying DCI.

· It should be efficient, i.e., it should provide small response time even for complex submitted jobs or services calls.

· It should be scalable, i.e., it should provide small response time even for very large number (even for millions) of simultaneous submitted jobs or services calls.

· It should be robust, i.e., it must not be collapsed or frozen under any circumstances

· It should provide access to an application repository where partially developed and completed applications can be stored and shared with other application developers.

· It should provide access to an application repository where ready-to-use applications can be uploaded, stored and provided for end-users.

5.4 End-Users

For the end-users, the quality requirements can separately be investigated for the front-end and back-end.

Quality requirements for the front-end:

· It should provide rich application-specific functionalities for end-users:

· Various visualization facilities

· User-oriented certificate management

· Job and workflow submission to various DCIs

· Execution monitoring to observe job/workflow execution in the different DCIs

· Etc.

· It should be even more user-friendly and intuitive than for the application developers.

· It should provide very simple UI access to an application repository from where ready-to-use applications can be downloaded by end-users.

· It should be efficient, i.e., it should provide small response time even for complex user requests.

· It should be scalable, i.e., it should provide small response time even for large number of simultaneous user requests.

· It should be robust, i.e., it must not be collapsed or frozen under any circumstances

Quality requirements for the back-end:

· It should be flexible, i.e., it must be able to manage many different types of DCIs and many concrete DCIs.

· It should provide monitoring and status information on job/workflow execution.

· It should provide fault-tolerance features that hide the unreliability of the underlying DCI.

· It should be efficient, i.e., it should provide small response time even for complex submitted jobs or services calls.

· It should be scalable, i.e., it should provide small response time even for very large number (even for millions) of simultaneous submitted jobs or services calls.

· It should be robust, i.e., it must not be collapsed or frozen under any circumstances.

· It should provide access to an application repository where ready-to-use applications can be downloaded by end-users.
6 Science gateways LIST AND COMPARISON

6.1 Production Gateway Frameworks
	Gateway frameworks
	Job management
	Workflow

editor
	Workflow management
	Error handling
	Supported DCIs
	Cloud access
	Repository access support
	Open source
	Monitoring and Reporting
	Community Support
	Security

Authentication Authorization Accounting

	WS-PGRADE/

gUSE

kacsuk@sztaki.mta.hu
	Yes
	Graphical
	Yes (own language)
	Yes
	ARC, gLite, GT2, GT4, GT5, BOINC, PBS, LSF
	Via CloudBroker Platform to Amazon, IBM, OpenStack, Eucalyptus
	Yes (own repository, SHIWA repository)
	Yes (Source-Forge)
	Yes
	Possible based on Liferay portlets/

technology
	Certificate
	Virtual organization
	no

	Genius

roberto.barbera@ct.infn.it
	
	
	
	
	
	
	
	
	
	
	
	
	

	Vine Toolkit

krzysztof. kurowski@man.poznan.pl
	
	
	
	
	
	
	
	
	
	
	
	
	

	CT-Science Gateway
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	ANY

(JSAGA)
	
	YES

(Source-Forge)
	
	
	
	
	

	GridPort
	
	
	
	
	
	
	
	
	
	
	
	
	

6.2 Production Gateway Instances
	Gateway instances
	Job management
	Workflow

editor
	Workflow management
	Error handling
	Supported DCIs
	Cloud access
	Repository access support
	Open source
	Monitoring and Reporting
	Community Support
	Security

Authentication Authorization Accounting

	SZTAKI Autodock Gateway
(Docking)

kacsuk@sztaki.mta.hu
	Yes
	No
	Yes (hidden)
	Yes
	BOINC:

EDGeS@home
	No
	Yes (own repository)
	No
	Yes
	Yes
	Certificate
	No
	no

	RenderFarm

(Rendering)

julius.tuomisto@laurea.fi
	Yes
	No
	No
	Yes
	BOINC
	Soon
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	No

	NRG-CING
	
	
	
	
	
	
	
	
	
	
	
	
	

	SystemX

(Proteomics)

peter.kunszt@systemsx.ch
	Yes
	Super user
	Yes
	Yes
	ARC, local cluster, clouds via CloudBroker
	Yes
	Yes
	Yes
	Yes
	Yes but only systemsx: sybit project
	Yes, currently only local LDAP, shibboleth coming
	Yes - Liferay builtin
	No

	ProSim

(Biology)

T.Kiss@

westminster.ac.uk
	
	
	
	
	
	
	
	
	
	
	
	
	

	VisIVO

(Astrophisics)

ugo.becciani@oact.inaf.it
	Yes
	Yes
	Yes
	Yes
	HPC Cluster, gLite
	No
	Yes
	Yes
	Yes
	Yes
	Yes (Liferay)
	Yes (Liferay)
	Yes (gLite certificate)

	MoSGRID

(Molecular Simulation)

krueger@informatik.uni-tuebingen.de
	Yes
	Yes, for experts
	Yes, for experts
	Yes
	D-grid
	No
	Yes
	Soon
	Yes
	Yes
	Certificate
	Virtual organization
	No

	EUMED
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	No
	Yes
	Yes
	
	
	
	
	

	CHAIN
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	Yes
	Yes
	Yes
	
	
	
	
	

	GISELA
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	No
	Yes
	Yes
	
	
	
	
	

	DECIDE
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	No
	Yes
	No
	
	
	
	
	

	EARTHSERVER
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	No
	Yes
	Yes
	
	
	
	
	

	agInfra
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	Yes
	Yes
	Yes
	
	
	
	
	

	IGI
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	No
	Yes
	Yes
	
	
	
	
	

6.3 Prototype Gateway Instances
	Gateway instances
	Job management
	Workflow

editor
	Workflow management
	Error handling
	Supported DCIs
	Cloud access
	Repository access support
	Open source
	Monitoring and Reporting
	Community Support
	Security

Authentication Authorization Accounting

	SZTAKI agInfra Gateway
	Yes
	Yes
	Yes (hidden)
	Yes
	gLite, BOINC
	No
	Yes (own repository)
	No
	Yes
	Yes
	X509
cert.
	VO based

	No

	Klios
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	No
	Yes
	Yes
	
	
	
	
	

	COGITO-Med
	Yes
	No
	No
	Yes
	ANY (JSAGA)
	Yes
	Yes
	Yes
	
	
	
	
	

7 FOR FRAMEWORK DEVELOPERS AND OPERATORS

7.1 What is their Role?

The role of science gateway (SG) framework developers is to develop robust, scalable and efficient SG framework that can be easily adapted and customized by SG instance developers. SG operators should install gateways and run them as production services for application developers as users.

7.2 What is Expected from Them?

SG developers should be IT people who understand:
· the enabling technologies in order to develop good (user-friendly, robust, scalable and efficient) front-ends,
· the organization and interface of various DCI middlewares in order to develop good (robust, scalable, efficient and flexible) back-ends.

SG framework operators should be IT people who are able to:
· install and configure SG framework,
· manage users,
· take care of security issues (for example, manage firewalls, etc.),
· regularly update the gateway and the underlying software stack.

7.3 Who are these Players in Europe?

7.3.1 CloudBroker platform
7.3.2 Genuin SG framework
7.3.3 VineToolkit SG framework
7.3.4 WS-PGRADE/gUSE SG framework

WS-PGRADE/gUSE is a generic workflow-oriented SG framework. WS-PGRADE is the front-end and gUSE is the back-end in this SG framework. WS-PGRADE/gUSE provides customization interface in order to support the quick and easy creation of WS instances. The gUSE backend supports the following DCIs to access even simultaneously from the same workflow:

· Clusters: PBS, LSF
· Grids: ARC, gLite, GT2, GT4, GT5, UNICORE
· Desktop grids: BOINC
· Clouds via the CloudBroker Platform: Amazon, Eucalyptus, OpenStack

Available SG instances derived from WS-PGRADE/gUSE:

· AraGRID gateway (BIFI-Unizar)

· Docking gateway (MTA SZTAKI)

· EDGI gateway (MTA SZTAKI)

· ETICS 4D gateway (4DSoft Ltd.)

· MoSGrid gateway (MoSGrid community)

· Seismology gateway (METU)

· SHIWA Simulation Platform gateway (Uni. of Westminster)

· Swiss proteomics gateway (ETH Zurich)

· VisIVO gateway (INAF, astrophysics community)

8 FOR INSTANCE DEVELOPERS AND OPERATORS

8.1 What is their Role?

The role of science gateway (SG) instance developers is to develop robust, scalable and efficient SG instances that can be easily used by the target user community and provide them specialized interfaces (e.g. visualization). The target users can be both application developers and end-user scientists.

SG operators should install gateway instances and run them as production services for the user community.

8.2 What is Expected from Them?

SG instance developers should be IT people who understand well:
· the enabling technologies in order to develop good (user-friendly, robust, scalable and efficient) front-ends,

· the organization and interface of various DCI middleware in order

· to develop good (robust, scalable, efficient and flexible) back-end if the gateway instance is developed from scratch or the gateway framework selected as the basis of the gateway instance should be extended with access to new DCIs

· to be able to install and run the gateway framework selected as the basis of the gateway instance for the target DCI(s)

SG framework operators should be IT people who are able to:
· install and configure SG instance,

· manage users,

· take care of security issues (for example, manage firewalls, etc.),

· regularly update the gateway and the underlying software stack.

8.3 Who are these Players in Europe?

8.3.1 AutoDock Gateway

SZTAKI has built the AutoDock Gateway derived from WS-PGRADE/gUSE using the end-user interface of this SG framework. The end-user interface hides the workflow development facilities of WS-PGRADE/gUSE but enables the access of the internal repository in order to download predefined workflow applications by the end-user scientists. The AutoDock Gateway currently provides 3 predefined applications. After downloading an application the user can parameterize it and submit to the EDGeS@home BOINC-based desktop grid system that has about 20.000 registered volunteer host machines to run these applications. See details at: https://autodock-portal.sztaki.hu/

9 STEPS OF BUILDING YOUR Science gateway
9.1 Create an Exact List of Requirements your SG Should Meet

Here we provide you the major possible items on your list:

· Target community
· Focussed in a certain branch of science - you need SG instance specialized for supporting that branch of science.
· Scientists from various fields (e.g. NGI SG) - a generic purpose SG framework might do.
· Size of the target community
· Small number of scientists - the scalability requirements are not so important
· Large number of scientists - the scalability requirements are very important
· Supported applications
· Focussed in one or very small number of predefined applications
· you need SG instance specialized for supporting that application(s)
· you need robot certificate
· Large set of applications that can be defined by the users
· you might need SG framework enabling the development of applications
· you need certificate management
· Large set of workflow applications that can be defined by the users
· you might need SG framework supporting workflow creation and management,
· you need certificate management,
· support for SHIWA workflow repository access would be useful.
· Target DCIs
· Focussed on one particular DCI.
· Enabling access to several different DCIs (e.g. an NGI where both clouds and different grids are supported) - your SG should be derived from a SG framework that can support many different DCIs.
· Generic requirements
· Robustness
· You want only a prototype of your SG - this is not an issue for you, you can develop your SG from scratch.
· You want to create a production SG service - Choose a robust SG Framework and create your SG instance with customization of the selected SG Framework (if the target SG is extremely simple you can build it from scratch, too).
· Supported functionalities
· Limited functionalities - you can try to develop your SG instance from scratch
· Rich functionalities - choose a SG Framework with rich functionalities and create your SG instance with customization of the selected SG Framework
· Sustainability
· You want to support the target user community only for the time of a project (2-3 years) - you can try to develop your SG instance from scratch.
· You want to support the target user community for a long term beyond the development project life-time - choose an open source based SG Framework behind which there is a large and active development and user community (this gives a chance that this SG Framework and your customized SG instance will be sustainable for a long term).
· Extensibility
· You are sure that you do not want to further develop your SG even if its users ask for it - any
· You assume that sooner or later your SG should be extended according to the new user needs - choose a SG Framework with layered and SOA architecture that is easily extendible and create your SG instance with customization of the selected SG Framework
· Scalability
· Your target community is small and you know that it will not grow in the future - scalability is not an issue for you
· Your target community either large or will grow to be large - choose a SG Framework with scalable architecture and create your SG instance with customization of the selected SG Framework

9.2 Choose Technologies based on Resources and Time

Before you start to build your SG it is very important to carefully plan the use of your available resources and time.
· Small number of PMS and short deadline - because of the small number of PMs it is better to use or customize an existing SG framework.
· Small number of PMS and long deadline - because of the small number of PMs it is better to use or customize an existing SG framework.
· Large number of PMS and short deadline - because of the short deadline it is better to use or customize an existing SG framework.
· Large number of PMS and long deadline - you can develop your own SG instance from scratch if you like but consider the disadvantages mentioned in previous chapters and sections. You can even develop your own SG framework but it is risky.

9.3 Building Portals from Reusable Components

The Liferay technology enables quickly building portals using the Liferay portal framework and the existing Liferay portlets. There is a public Liferay portlet repository where you can find a large set of ready-to-use portlets. These help to build simple SG instances from scratch. The problem with such generic portal frameworks is that they do not provide back-ends that support DCI access. Creating the back-end with the necessary DCI access could be time-consuming and there are already existing SG frameworks and services that can be used for this purpose. E.g. the DCI Bridge service developed in the SHIWA and SCI-BUS projects can be easily connected to any gateway via a standard BES interface and it provides access to a large set of different DCIs (clusters, grids, desktop grids, clouds).

It would be ideal to create a European SG portlet and service repository that contains portlets and services from which as building boxes SG developers could put together their desired SG instance. There are already such reusable portlets and services but the set of them is far not complete and their integration methods are not crystallized yet.

If you build a SG instance currently there are two options:

· Build from scratch: use standard portal building technologies (e.g. Liferay) that guarantees an initial framework and a large set of existing portlets. Use these portlets whenever it is possible and develop only those portlets that specialized for your needs.
· Customize an existing SG framework: usually they are built on top of Liferay so they have the same advantages as writing the SG directly on top of Liferay but they provide already many, useful additional functionalities compared to Liferay, portlets and back-end with access to various DCIs.
If you build a SG framework currently there are two options:

· Build from scratch: use standard portal building technologies (e.g. Liferay) that guarantees an initial framework and a large set of existing portlets. Use these portlets whenever it is possible and develop only those portlets that specialized for your needs.
· Customize an existing open source SG framework: usually they are built on top of Liferay so they have the same advantages as writing the SG directly on top of Liferay but they provide already many, useful further functionalities, portlets and back-end with access to various DCIs. However, it is better to collaborate with the developer community of the selected open source SG framework and jointly further develop that open source SG framework.

9.4 Select a Development Team with User Interface Experience

9.5 Plan for the Long Term

If your SG should be maintained for a long time it is very important to consider this requirement from the very beginning of designing your SG. This is a typically overlooked aspect of designing and establishing SGs. Many projects consider only the lifetime of their project and they do not care what will happen to the project products (including the developed SG) after the project is completed. As a result many SGs become unusable after the developing project is over. To avoid this pitfall the following recommendations should be followed:

· If there is any existing open source SG framework that can be customized to your need always develop your SG instance with SG framework customization and do not start to develop it from scratch:
· customization needs less development and maintenance cost than scratch-development,
· the open source community behind the SG framework has got chance to enforce the required future costs for sustainability.
· If your user community is small do not put much effort to the development of the SG instance: a small community is not able to enforce the required future costs for sustainability.
· Try to enlarge your user community: a large user community has got chance to enforce the required future costs for sustainability.

9.6 Develop in Stages

It is very difficult to develop and provide exactly that kind of SG that your community wants. Instead of putting many efforts to find out completely what the user community wants it is better to build a simple SG instance for them with small development effort. Then provide SG service to the user community and ask for feedback.

It is important that even this simple SG instance should be robust and user-friendly otherwise the user community will be disappointed with the service provided looking for alternatives. If the user community likes the simple SG then they will tell you what to improve and extend. Based on this feedback you can enter into the second stage of SG development. At this point it is very important that even the simple SG should be scalable and extensible. These features enable the fast extension of the SG and the fast grow of the number of the users. Do not put too many new services in the new version of the gateway. Every new version should provide some clear new functionalities and the new version should be as robust as the previous one was, otherwise users will not come back to your SG.

In summary, providing frequently small extensions as new releases is a better practice than rarely providing a new release with lots of extensions.

10 INTEGRATION WITH EGI INFRASTRUCTURE

10.1 EGI.eu Policies

10.1.1 Overview
EGI.eu policies are clear, formal and mandatory statements or positions adopted by the EGI.eu governance bodies for issues relevant to the EGI community. EGI.eu policies are important in providing strategic guidance, improve decision making processes, clarify roles and responsibilities amongst all actors and provide help in managing risks. The policies cover a wide range of issues, starting from long-term strategic cooperation with other e-infrastructure providers, to specific problems affecting EGI user communities. The successful implementation of EGI.eu policies within a well-defined strategic framework will contribute to the main goal of the EGI.eu and European Grid community in general.
Policies and procedures are developed either internally by

 HYPERLINK "http://www.egi.eu/about/policy/groups/index.html" policy groups or in collaboration with

 HYPERLINK "http://www.egi.eu/community/collaborations/index.html" external partners. The policy development process rests on the fundamental principles of openness, transparency and consensus. More information can be found at the EGI.eu Strategy and Policy Team webpages.

10.1.2 Policies approved and in use by the EGI community
Grid Security Policy
Policy Statement

This document presents the Policy regulating those activities of Grid participants related to the security of Grid services and resources.

Virtual Organization Portal Policy
Policy Statement

This Policy applies to all Portals operated by Virtual Organisations that participate in the Grid.

Service Operations Security Policy
Policy Statement

This security policy presents the conditions that apply to anyone running a Service on the Infrastructure, or to anyone providing a Service that is part of the Infrastructure. This policy is effective from 1st February 2012 and replaces two earlier security policies, namely the Grid Site Operations Policy and the Site Registration Security Policy.

Grid Security Traceability and Logging Policy
Policy Statement

This policy defines the minimum requirements for traceability of actions on Grid Resources and Services as well as the production and retention of security related logging in the Grid.
Security Incident Response Policy
Policy Statement

This document describes the policy and responsibilities for handling security incidents affecting the Grid.

Policy on Grid Multi-User Pilot Jobs
Policy Statement

Security policy for operation of multi-user pilot jobs.

Grid Policy on the Handling of User-Level Job Accounting Data
Policy Statement

This document presents the minimum requirements and policy framework for the handling of user-level accounting data created, stored, transmitted, processed and analysed as a result of the execution of jobs on the Grid.

For further information on all current EGI policies and procedures in place, check the following reference.
10.2 How to Integrate Portals & Enabling Technologies with EGI AppDB

10.2.1 Overview

Access to the European Grid Infrastructure (EGI) is possible through a range of different service interfaces. Science gateways are emerging as promising tools offering a collaborative environment and enabling a seamless access to computing and data storage resources, helping scientists to engage more actively with the underlying e-infrastructure.

The EGI.eu User Community Support Team together with its partners from the National Grid Infrastructures and Virtual Research Communities setup dedicated webpages to present basic information about ready to use science gateways and about science gateway enabling technologies for gateway developers. EGI science gateways and their enabling technologies are registered in the EGI Applications Database.

10.2.2 Applications Database in a nutshell

The Applications Database (AppDB) is a service that stores information about tailor-made scientific applications, as well as the profiles of the programmers and scientists who developed and make use of them. The software in AppDB is finished products, ready to be used on the European Grid Infrastructure and other European Distributed Computing Infrastructures (DCIs). Having a searchable catalogue of reusable applications and developer tools, means that scientific communities should spend less time developing and integrating software to DCIs while devoting their time on delivering science. AppDB helps the communities to identify related and reusable services, modules, and frameworks, whether they want to develop a new algorithm or want to run a widely used application on DCIs.
The database has been online since 1 July 2010 and is the natural successor to the Enabling Grids for e-science (EGEE’s) database. The overarching goal of EGI is to make AppDB a sustainable community-driven database for the community. AppDB is an open service, providing read-only access to everyone, while users with an EGI SSO account can take advantage of the authenticated write-enabled features of the portal. Requests for new AppDB features can be fed through the EGI RT system and bug reports through the EGI Helpdesk.

10.2.3 AppDB relevant features

The Applications Database has a rich set of features made available to the community. Under the scope of this Primer, the most relevant features available to enablers/developers of Science gateways will be briefly highlighted. The main features abridged touch topics such as mechanisms available for users to interact with the database as respective entries, interoperability, quality and dissemination of information.
Usage
· Search/Advanced search

Search boxes throughout the portal feature semantics enabled syntactic searching, meaning that they take filter expressions as search arguments which will be matched to results that are deemed relevant in the scope of the search target. Further information can be found in the AppDB FAQ.

· Associate people and applications

· Add contact person expertise

· Application Tagging

Tags can be attached to any of the stored items. Tag-based search and browse capabilities were added to the system.
User communication
· Join as a contact point

This feature allows new contacts to be added to current AppDB entries.

· Rating & comments

AppDB allows community members to provide feedback and to rate any of the stored items. This feature greatly simplifies the central content management team to correct and revoke any AppDB entry profile flagged as inaccurate or inappropriate. Reviews and ratings, associated with number of web visits per AppDB registry, will help the visitor to identify the most relevant entries.

· Send a message to a person associated with a given software item

Interoperability
· REST API v1.0 with write support

A REST API that supports authenticated writes and updates of the database is available. Third party application providers can make use of the API by forwarding their users' EGI SSO credentials, or by creating an AppDB system account to act on behalf of their users, in order to modify content and to read content that is not open to the general public. Authenticated access is granted based on permissions readily assigned to the account identified by the credentials passed. API documentation with examples and sample use cases is available in the EGI Wiki.

Quality of information
· Broken link detection tool

A ‘broken link detection engine’ is already in production. As the name implies it assesses all hyperlinks associated to AppDB profiles. The broken link notification system automatically sends e-mail notifications and reminders to the owners of AppDB registries, if associated links are inaccessible for a period of over 3 weeks. An action needs to be taken to update the links, otherwise the AppDB entry is tagged as inaccurate.

· Multiple application categories & extended categorization-based classification model

A mechanism that enables the community to classify the registered software under multiple high level categories. ‘Science Gateways’ category was already added to AppDB as a main category. The list of categories that the community would like to see in the system is under discussion, but the tool to implement new categories is already in place.
· Error & problem reporting

· Supports a review process

Authorized users can flag a content. End-users will not be able to see it until the review process is finished.

· Mechanism to keep entries up-to-date

A mechanism that identifies application entries that have not been updated in the last 12 months. Such applications are visually tagged with a small emblem that notifies users that the content about the application or tool may not be up to date. Users can optionally exclude such ‘probably outdated’ applications from their searches.
Dissemination of information
· Dissemination tool

A dissemination/outreach tool is in place to AppDB members with appropriate permissions. The feature will allow sending email messages to customized groups of users registered in the AppDB portal.
· News through Email subscriptions and RSS feeds

A notification system has been integrated into AppDB to allow subscription for email notifications or RSS feeds. This feature aims to simplify the task of knowing what’s happening for example within your scientific domain or country.

10.2.4 How to register an EGI science gateway in AppDB

EGI science gateways and their enabling technologies are registered in the EGI Applications Database. The Applications Database stores key information about the gateways and links to external pages providing additional information about them (e.g. access page, download page, available publications).

By registering your science gateway or gateway enabling technology in the Applications Database your service will be visible to the EGI community and to the general public not only through the EGI website, but also through numerous user community and National Grid Initiative websites that use the Applications Database web gadget. Through this web-gadget you can also embed the list of EGI gateways or gateway enabling technologies into your own website.

To register your EGI science gateway or gateway enabling technology in the database proceed as follows:

1. Log in with your EGI SSO account.
If you don’t have a SSO account, please register as a new user. It’s free and it will allow you to access most EGI-related web-based tools.
2. Login to the EGI Applications Database and click on the 'Register New' page.
3. If you want to register a web-based science gateway, then:
a. Register it as an application
b. Provide a 'Try it' link, so those who wish can access your gateway
c. Tag it with web.gateway
4. If you want to register a desktop application-based gateway, then:
a. Register it as an application
b. Provide a download link, so those who wish can install your gateway
c. Tag it with application.gateway
5. If you want to register a science gateway enabling technology, then:
a. Register it as a tool
b. Provide a download link, so those who wish can access your technology
c. Tag it with technology.gateway
If you have any further questions send an email to EGI.eu User Community Support Team.
10.3 How to Integrate Portals with EGI Monitoring System

Scientific Gateways (SG) have become an essential tool for research in the age of e-Science. Their operation and performance needs to be monitored in order to ensure quality of service for end users. Such monitoring also has to provide an integrated overview of the global status of the scientific gateways, as well as the detailed status of the individual scientific gateway layers and components. In addition, it has to enable sending of alerts to administrators when a particular issue is identified, to enable scheduling of downtimes during service maintenance, as well as to produce statistical reports on infrastructure performance.

Within the EGI-InSPIRE project, detection and diagnose of the operational problems is accomplished through several monitoring tools: GOC DB, GStat, SAM framework, Real Time Monitoring, GridView, Google Earth, and GridMap. On top of these, Operations Dashboard provides links and utilizes combined views to simplify monitoring tasks.

GOC DB is the central static information repository, and SGs will have to be registered there so as to enable their automated monitoring. GOC DB stores information about NGIs, Grid sites, services provided by the Grid sites, users, etc. It is commonly used by the Grid site administrators to declare maintenance for (un)scheduled events. GOC DB architecture consists of three main parts: a database – where all information is stored; a web portal – which interfaces with the database; and a programmatic interface – which exports initial configuration for the Grid information system.

The introduction of SGs into the GOC DB implies creation of a new GOC DB object. This object has to contain common attributes that will describe any SG, such as: name of the portal, portal URL, type of the portal (used technology), version of the portal, contact persons (administrators, user support, security, etc.), available applications, etc. In addition to these attributes, in order to allow SG instances to dynamically publish information to the Grid Information System, an SG LDAP URL has to be specified.

Current implementation of the Grid Information System relies on OpenLDAP, an open source implementation of the Lightweight Directory Access Protocol (LDAP). All Grid services publish information about themselves via a service called resource-level BDII. The resource-level BDII runs what is known as information provider to obtain relevant information about the particular instance of a Grid service and caches the result in an OpenLDAP database. The site-level BDII gather information about all Grid services running at that site by querying all the resource-level BDIIs, and caches the results in its OpenLDAP database. Finally, a top-level BDII queries all the site-level BDIIs that exist in the Grid infrastructure, defined by the configuration file exported from the GOC DB. Taking this into account, we see that integration of an SG into the Grid Information System requires installation of OpenLDAP server (resource-level BDII) per SG, which will enable provision of both static and dynamic SG properties to the Grid Information System. Using this resource-level BDII, SG will be able to publish real-time information such as: number of total, running, waiting jobs, number of jobs per application, number of available job slots, available applications, etc. When this is realized, various Grid Information System-based monitoring tools, like GStat, Google Earth or Grid Map, will be able to automatically provide monitoring of the SGs. In particular, GStat will be able to detect faults in SG information systems, to verify the validity of the information, and to give visualisation of the numerical properties. Google Earth, in conjunction with the information coming from GOC DB export system, will be able to generate maps for geographical distribution of SGs. And finally, Grid Map will be able to present graphical representation of the SG CPU power and its availability.

Central EGI-InSPIRE monitoring framework is Service Availability Monitoring (SAM). This system provides status and history of all services and sites within the infrastructure, visualization of services and sites’ availabilities, and web services for data exports. It relies on the existing technologies: Nagios and ActiveMQ. Nagios is used for scheduling and execution of probes, while the ActiveMQ (MSG messaging system) integrates other operational tools with Nagios instances. The SAM framework is a distributed monitoring tool, and uses three central databases: Aggregated Topology Provider (ATP), Metric Description Database (MDDB), and Metric Results Store (MRS), which centrally store distributed information for project monitoring purposes.

An essential part of the SAM framework is Nagios Config Generator (NCG). This tool enables automatic generation of a Nagios configuration, based on multiple information sources, but mainly on GOC DB and Grid Information System. Practically, this means that, once the SG has a working resource-BDII server (LDAP server) and announces this information through the GOC DB to the top-level BDIIs, NCG will be able, using this information, to generate configuration for the Nagios server that will monitor this particular SG, or SGs within the NGI, or all SGs within the infrastructure.

The SAM framework uses the Nagios technology during the last several years, and a set of guidelines and know-hows for the development of Grid Nagios probes are already available. These guides cover several of the most common cases: development of a simple probe, a multi-test proble, and a long-running probe. Single probes test a specific service in a single run (testing period is short). A multi-test probe in a single run performs multiple tests using combination of active and passive checks, while the long-running probe wraps Grid job submission, monitoring of the submitted job, and the retrieval of the job result. All these probe-types could find their place in the monitoring of SGs. For instance, single probes could be used for portal availability checks, multi-test probes for SG local storage checks (store, retrieve, and delete files), while the long-running probes could investigate a complete SG job life-cycle.

A generic SG architecture consists of several layers illustrated in [Figure]: Presentation layer – which is usually realised as a web portal; Middle layer – which contains workflow engine, SG information system, SG application repository, etc.; and Architecture layer – which is responsible for job submission to different DCIs. In the most generic case, all three layers are open for end-users. The presentation layer is usually used by non-experienced users, or users that just started porting of their application to the DCI. The middle layer could be interesting for the developers that make use of the running application portal, which is isolated from any batch system and workflow engines, and thus only the server machine itself is used for execution of applications. Finally, the architecture layer could be used by other portals and applications that have implemented the workflow engine capability, but the execution is limited to the local cluster. In such cases, the application will benefit from the available computation power provided by different DCIs and accessible through the SG.

[image: image4.jpg]Presentation Layer
(scientific gateway portal)

Middle Layer
P] (workflow engine, information system,
application repository)

=
o
2
o
£
g
e
s
<
wv

Architecture Layer
(job submission to different DCls)

Generic SG architecture

Monitoring of the Generic Scientific Gateway

SAM framework has to enable monitoring of all SG layers and components in order to ensure quality of service for end users. Nagios presentation layer probes will have to be developed to check availability of the portal and its components, portal authentication mechanism, the management of input data, workflow and data-flow tools, and application submission. Middle Layer probes will be responsible for validation of the portal application repository, workflow storage and interpreter, as well as portal local file storage. Finally, Nagios long-running probes will be used to validate submission to different DCIs (gLite, ARC, Unicore, Globus, LFS, PBS, BOINC, web service, local resource, Google App Engine, etc.) through the architecture layer.

Visually the most attractive EGI monitoring tool is the Real Time Monitoring (RTM). This real-time monitor overlays Grid activity onto a 3D globe, representing Grid sites with pulsing circles, WMS services with triangles, and on-going job activities with lines. SGs have to find their place on RTM maps, which are presented to various audiences, and thus will provide an attractive dissemination tool for SG Grid activities.

Finally, to simplify monitoring tasks and to provide combined views, as well as to enable sharing and dissemination of information and discussions within the EGI community, SGs have to become integral part of the Operations Dashboard. Such development will require filtering of messages related to SGs from the SAM framework's MSG messaging system, and their presentation in the form suitable for the operations teams. In addition to the existing COD and VO dashboards, a new SG dashboard should be introduced. It should give an overview of all detected problems related to SGs, and enable operations staff to track them. Quite popular VO info feature from the current Operations Dashboard could be extended to include information on SGs and how to support them (offer resources), thus promoting the use and support for SGs. Ultimately, Operations Dashboard broadcast system should be extended as to allow dissemination of information and announcements related to SGs (new version, new application, new feature, etc.).

11 References
12 There are no sources in the current document.
	EGI-InSPIRE INFSO-RI-261323
	© Members of EGI-InSPIRE collaboration
	PUBLIC
	1 / 1

[image: image5.jpg][image: image6.jpg][image: image7.png]