
TOWARD THE CREAM CLUSTERING

Introduction

Today CREAM can be considered (Computing Resource And Management) a mature service for job
management. Facing the challenge of supporting an expanding community of users with new
requirements, as part of the European Middleware Initiative (EMI), such service needs to be
consolidated and evolved.
One of the main objectives described in its evolution plan, is the need to meet the High Availability
(HA) criteria. In particular, CREAM, like several popular Internet services (e.g. Google, Amazon),
must rely on large clusters of commodity computers for providing several features, including high
performance, scalability, availability and fault tolerance. From a user's point of view the main benefit
provided by this enhancement is the guaranteed access to her jobs and related resources (i.e. job
sandbox) during planned and unplanned outages. For these reasons, we are focusing on providing
CREAM with the ability to be continuously available to serve- user requests independently of critical
conditions which might arise.

Objectives

Enhancing CREAM with High Availability is the main objective; this implies the need to modify its
architecture to support clustering technology. There are several levels of complexity in implementing a
cluster of services and the best solution depends on what we really need. Often sophisticated clustered
systems are supported by dedicated private networks just for the execution of heartbeats, status and
control activities. Moreover, specific hardware devices (with comprehensive internal hardware
redundancy) are utilized to guarantee high performance and efficiency under heavy stress conditions.
Of course expensive servers, RAID disk arrays and fiber channels are welcome if available, but are out
of scope. Paradoxically, adding more components to an overall system design can undermine efforts to
achieve high availability. That is because complex systems inherently have more potential failure
points and are more difficult to implement correctly.
So, our intent is to keep the CREAM architecture simple by limiting the development of new
components and taking advantage from the existing ones. Moreover all software components should be
carefully replicated in order to avoid potential bottlenecks and SPOFs (Single Point Of Failure).
In the context of CREAM clustering, we call “CREAM node” a separate CREAM instance running on
its dedicated (virtual) machine, while a collection of such nodes is referred to as CREAM cluster. In
order to maintain the same level of serviceability/availability (QoS) in increased load conditions, the
CREAM nodes should share their work load. In the event of a (un)scheduled downtime, the involved
nodes should be dropped from the cluster without shutting down the overall system; these nodes should
also be replaced by backup nodes with a hot deploy. Moreover the cluster should be load balanced and
the whole system complexity should of course be hidden to the user, who is not interested in
distinguishing a single CREAM service from the clustered one.
As long term objective, we plan to provide the support of the cluster partitioning for hosting a subset of
these CREAM nodes on a physically different location. This would allow for continued operation even
in the case of a disaster occurring at one of the CREAM sites.

The current CREAM architecture

The relevant software components involved in the
current CREAM-CE architecture are schematically
shown in figure 1. The CREAM business logic has
been fully implemented in Java and its
functionalities are all exposed by a legacy Web
Service interface which guarantees a high
interoperability level. Moreover the CREAM service
is executed inside the Axis container deployed in the
Apache Tomcat application server. The user requests
travel along a pipeline of additional components
which, for example, take care of authentication
(TrustManager) and authorization issues (ARGUS)
or act as an abstraction layer for interacting with the
underlying LRMS (BLAH). Static and dynamic
information about jobs and user delegation proxies
are persistently stored in the local database (MySQL)
while all files accessed or produced during the job's
life cycle are stored in the local file system (job
sandboxes) and accessible remotely via a gridFTP
client.

The CREAM clustered architecture

The implementation of a clustered CREAM service entails the merging and/or logical centralization of
information coming from all CREAM instances in
the cluster; this affects several services that CREAM
uses, such as databases, sandboxes, BLAH, etc
(figure 2). In order to avoid SPOF in these services,
these should also undergo some form of replication.
The figure 2 illustrates the high level CREAM
clustered architecture which is based on a horizontal
topology. In particular the logical centralization of
information and all software components composing
the cluster is highlighted. For simplicity, replications
are explicitly omitted from the figure. The WEB
server (e.g. Apache) acts as gateway for incoming
requests of authenticated users. These requests are
delivered to the load balancer which redirects them
to the proper CREAM nodes taking decisions based
on the selected scheduling algorithm (e.g. Round
Robin, Weight based, etc). Moreover the load
balancer can even provide fault tolerance capability,
if appropriately configured. In turn the CREAM
node applies the authorization rules and, if allowed,

figure 2: the high level CREAM clustered architecture

Load balancer

WEB server
(apache)

CREAM
(node 1)

Job DB

Job
 sandbox

Dlg DB

Command
queue

LRMS

Internet
intranet

BLAH

CREAM
(node n)

BLAH

nfs nfs

BLAH synch
udp / unicast

BLAH
 registry

figure 1: the current CREAM architecture

Host

Tomcat

Axis

Job DB

WS interfaces

CREAM
(core)

AuthZ Handler

AuthN Handler (TrustManager)

BLAH

Job
 sandbox

Dlg DB

Command
queue

ARGUS

LRMS

Internet
intranet

processes the requests exactly like in the current architecture. Please note that the use of the WEB
server is just a possible approach for implementing the load balancing. Other more or less sophisticated
solutions could be implemented by the site administrator. For instance, a DNS server may be instructed
to forward user requests to the CREAM nodes on a scheduling algorithm based on the simplest Round
Robin (RR).

Requests for job management will still be stored in the
persistent command queue which, contrary to the current
architecture, will be logically centralized and accessed
concurrently by the CREAM nodes. So, every CREAM
instance can process requests independently of whoever
was queuing them (figure 3). This capability has already

been implemented and no further development is needed. Furthermore, given that by design CREAM is
a stateless Web Service which treats each request
independently, no explicit session replication is required.
Static and dynamic job information, including delegation
proxies will be stored in the (logically) centralized
database (MySQL) while the job sandboxes which
contain all input and output data files accessed and/or
produced during the job's life cycles, will be stored in the
shared file system (e.g. NFS, GPFS) and still be
accessible remotely via gridFTP (figure 4).
Since the database is a potential SPOF, it must itself be
clustered. The best approach relies on a concept such as a MySQL Cluster, which involves splitting the
software components that allow the data access (SQL processes) from the data itself so that SQL
processes and data will be hosted in different machines. Both processes and data must be replicated, in
particular data redundancy could be obtained at the physical (e.g. RAID) and/or logical (data replicas)

level. The number of logical replicas denotes the
number of copies of the same data item within the
database. Operations executed against a data item, are
replicated over all its replicas and the transaction will
terminate only when that operation is successfully
completed against the last replica. This implies the
existence of primary (first utilized) and secondary (the
true copies) replicas.
Figure 5 shows the scheme of the ideal solution which
requires the distribution of the database on at least, two
separate systems each one containing its own primary
replicas and the secondary ones of the other system.
So, in the event of damage or whatever event
compromising the activity of one system, the overall
database is still consistent and the data access
guaranteed. In particular the access will be always
available by exploiting two SQL engines, through a
unique IP address handled by a load balancer which
will distribute the SQL requests. To make the scheme

SPOF free, the load balancer should be replicated.
Finally, to implement the illustrated system in a realistic fashion, at least two dual CPU machines
equipped with 4 GB of RAM each, are needed.

figure 4: the shared job information

CREAM
(node 1)

NFSJob
 sandbox

CREAM
(node n)

Job
 sandbox

figure 3: the shared command queue

CREAM
(node y)

CREAM
(node n)

CREAM
(node n)

CREAM
(node n)

figure 5: logical structure of a clustered database

Load balancer
(primary)

Load balancer
(secondary)

SQL requests
(unique IP)

SQL engine
(A)

SQL engine
(B)

Primary replica
(first partition)

Secondary replica
(second partition)

Primary replica
(second partition)

Secondary replica
(first partition)

By analogy with the logical centralization of CREAM information, all relevant data handled by BLAH
must be centralized too (figure 2). On large batch systems with a high throughput of jobs it has been
observed that status requests can easily overload the LRMS daemon. To mitigate the problem BLAH is
provided with its own cache for all the batch system related information on submitted jobs. This cache,
called "job registry", is implemented as a flat file with some in-memory indexes to speed up access. A
daemon called BUpdater running on the CREAM node itself, periodically updates the local registry,
refreshing old information with (optimized) queries to the batch system. Unfortunately, the
centralization cannot be implemented by adopting the same approach as CREAM, since, in order to be
a lightweight component, BLAH limits the adoption of third-party software components (e.g. SQL
databases) in favor of custom solutions. A possible approach which solves the issue of the external
dependencies and even guarantees good performances is discussed below and illustrated in figure 6. In
a HA cluster environment, each BUpdater daemon running on different CREAM nodes would have to
keep its registry synchronized with all other nodes. In order to avoid proliferation of the queries, a new
feature has been added to the daemon. Whenever it refreshes the local registry from the LRMS, it also
sends the updated information either to a multicast address or to a list of unicast addresses, where the
other BUpdater daemons are listening. In turn, all BUpdaters update their registry without having to
ask the batch system. Moreover this synchronization mechanism guarantees that new BLAH instances
are updated whenever they are created. This completes the CREAM clustering design.

figure 6: logical structure of the clustered BLAH

Multicast channel

BLAH
(BUpdater)

BLAH
 registry

BLAH
(BUpdater)

BLAH
 registry

BLAH
(BUpdater)

BLAH
 registry

BLAH
(BUpdater)

BLAH
 registry

	Introduction
	Objectives
	The current CREAM architecture
	The CREAM clustered architecture

