
Project number: RI 312579

Project acronym: ER-flow

Project full title:
Building an European Research Community through Interoperable Workflows and

Data

Theme: Research Infrastructures
Call Identifier: FP7-Infrastructures-2012-1

Funding Scheme: Coordination and Support Action

MS4.1: Data objects transfer service

CNRS

Due date of milestone: 01/09/2013 Actual submission date: 09/09/2013
Start date of project: 01/09/2012 Duration: 24 months

Dissemination Level: PU

Contents

1 Introduction 5

2 Desirable features 5

3 System design 7
3.1 System components . 7
3.2 Use cases . 8

4 Conclusion 9

References 10

WP4 - Study on interoperability of the scientific data in the workflow domain 2

List of Figures

1 Architectures for file transfers in Science-Gateways 7
2 Use cases that can be implemented using the file service. 8
3 Simple meta-workflow where native workflow A produces a file consumed by native

workflow B. 9

List of Tables

1 Status of deliverable . 4
2 Change History . 4

WP4 - Study on interoperability of the scientific data in the workflow domain 3

Status and Change History

Status Name Date Signature
Draft T. Glatard 5/9/13 n.n electronically

Reviewed J. Montagnat 9/9/13 n.n electronically

Approved K. Eigelis 13/9/13 n.n electronically

Table 1: Status of deliverable

Version Date Pages Author Modification
0.1 5/9/2013 all T. Glatard first draft
0.2 9/9/2013 all T. Glatard and J.

Montagnat
final document

0.3 17/9/2013 5,6,9,10 T. Glatard and J.
Montagnat

Added context about storage backends
in ER-flow (pages 5-6 and reference
page 10). Mentioned globusonline.eu
in conclusion (page 9).

Table 2: Change History

WP4 - Study on interoperability of the scientific data in the workflow domain 4

MS4.1: Data objects transfer service ER-flow 312579

1 Introduction

Creating meta-workflows from workflows of different languages running on different Distributed
Computing Infrastructures (DCI) has been proposed and developed in the SHIWA project, and is
now being offered to user communities through the ER-flow Science-Gateway. However, designing
fully functional meta-workflows is still clumsy because of the need to handle peculiarities of the
underlying DCIs while designing meta-workflow. In particular, meta-workflows have to be signif-
icantly instrumented to allow data transfers between embedded (a.k.a native) workflow systems,
as outlined in D4.1 study on data interoperability [2]. A corollary is the need for users to transfer
input data to the native systems connected to the inputs of the meta-workflow, and to transfer
results from the native systems connected to the output of the meta-workflow.

File transfers in Science-Gateways mainly occur between users hosts, job execution hosts, and
DCI storage systems. User hosts denote machines were input data usually reside, typically personal
workstations or file servers. Job execution hosts are DCI worker nodes, where jobs generated by
workflows actually execute. DCI storage systems are the storage hosts from where computing jobs
usually download their input data, and where they store output data. Files can be workflow inputs,
temporary data transferred between native workflow systems, and workflow outputs.

This document proposes an architecture to facilitate the handling of data transfers inside meta-
workflows, and between users and meta-workflows. Section 2 identify desirable features for a data
transfer service, and section 3 presents a first architectural design.

2 Desirable features

This section lists the main desirable features of the system, which have been collected from our
experience with the SHIWA platform and other Science-Gateways.

A uniform indexing space. First, a data transfer service must provide an indexing space where
files are represented by uniform resource identifiers (URIs). File management systems used in DCI,
such as file catalogs, already provide uniform indexing space, but they have to be harmonized when
multiple systems are used. A unifying system could then build on top of the existing uniform
indexing spaces, or re-aggregate files located on the various sites available to the DCIs.

A RESTful web API. This uniform file indexing space should preferably be accessible through
a RESTful web API in order to enable access from a large set of existing clients such as wget, curl
and others. The adoption of grid technologies has been limited by their initial use of new APIs to
access storage, such as the LCG File Catalog1 in EGI, the Globus Replica Location Service2 and
the Storage Resource Manager3. As explained in the introduction of this document, files handled
by Science-Gateways are usually accessed by multiple users, jobs, workflow systems and DCIs. It
is thus important that file management interface stay general, such as offered by RESTful APIs.

Multiple, heterogeneous storage backends. Data handled by Science-Gateways is usually
stored on multiple storage systems accessible through heterogeneous interfaces and protocols, and
sometimes federated by file catalogs. For instance, in ER-flow, the Astronomy community uses a
distributed file catalogue called the Virtual Observatory4, the MoSGriD community indexes files

1https://twiki.cern.ch/twiki/bin/view/LCG/LfcAdminGuide#LFC_CLI_and_API
2http://www.globus.org/rls/
3https://sdm.lbl.gov/srm
4http://www.ivoa.net

WP4 - Study on interoperability of the scientific data in the workflow domain 5

https://twiki.cern.ch/twiki/bin/view/LCG/LfcAdminGuide#LFC_CLI_and_API
http://www.globus.org/rls/
https://sdm.lbl.gov/srm

MS4.1: Data objects transfer service ER-flow 312579

in a database accessible through the Molecular Simulation Grid Portal5, and the Life-Science com-
munity in ER-flow uses EMI’s LCG File Catalog (LFC). More details about ER-flow’s community
requirements are found in MS5.1 [1]. A combination of several file transfer and referencing tech-
nologies has to be handled.

Monitoring interfaces. File transfers from user workstations may take a long time to complete,
due to the number of transferred files or their size. Therefore, transfers must be seen as tasks for
which a monitoring interface should be offered. This interface should allow to monitor the status of
the on-going transfers, the history of the past transfers, and the restart/recovery of failed transfers.

Asynchronous interfaces. Another feature coming from the frequent long duration of file trans-
fers is the ability to perform them asynchronously. Transfers of large files or large collections of
files should not block the user’s host, and be robust to machine reboots or network interruptions.
Trasnfers should be executed off-line, while end-user clients are disconnected from the service. A
few services such as Dropbox6 and Globus Online7 now provide this functionality.

No instrumentation of native workflow engines. A design choice in SHIWA has been to
instrument native workflow engines as little as possible so that their integration could be performed
with minimal effort. While this puts more efforts on the meta-workflow engine, we believe that this
principle should be kept to avoid any modification in the native engines.

Simple authentication. Managing personal credentials for multiple DCIs has been attempted
several times with mixed results but additional burden for users and service developers. For this
reason, we believe that a data transfer system should use its own, robot credentials to initiate file
transfers. These could take the form of a robot certificate8 or other forms of credentials allowing
applications to access services, for instance OAuth 2.09. Using robot credentials usually requires
that personalized logs of operations are kept, in our case the association between ER-flow users
and file transfers.

Performance, scalability, reliability. Performance (transfer time), scalability, and reliabil-
ity are consequences of trade-offs between centralized and de-centralized architectures adopted
for user↔Science-Gateway transfers and Science-Gateway↔jobs transfers. These different archi-
tectures are illustrated on Figure 1. Decentralized architectures improves scalability due to the
absence of any single point of failure. For instance, decentralized user↔DCI was adopted by grid
browsers such as VBrowser10 and the Java Universal eXplorer (JUX). These tools allowed users
to directly browser multiple grid resources from their workstation. Reliability, however, remains
an issue with these systems since connectivity between multiple users and multiple DCI storage
systems is difficult to maintain and debug. Consequently, most Science-Gateway adopted a cen-
tralized architecture to handle file transfers between DCIs and users. Performance and scalability
issues related to centralized architectures can be mitigated by caches and asynchronous interfaces.
Conversely, file transfers between DCIs and jobs remain mostly de-centralized, each individual job
contacting storage resources to transfer their own files. While this approach is meant to improve
scalability (the number of jobs handled by a Science-Gateway is usually greater than its number of
users), it also has performance and reliability issues when the number of storage resources or jobs

5https://mosgrid.de
6http://dropbox.com
7http://www.globusonline.org
8https://wiki.egi.eu/wiki/EGI_robot_certificate_users
9http://oauth.net

10http://sourceforge.net/projects/vlet/files

WP4 - Study on interoperability of the scientific data in the workflow domain 6

https://mosgrid.de
http://dropbox.com
http://www.globusonline.org
https://wiki.egi.eu/wiki/EGI_robot_certificate_users
http://oauth.net
http://sourceforge.net/projects/vlet/files

MS4.1: Data objects transfer service ER-flow 312579

Users DCI storage

 sites

(a) Users↔DCI, decen-
tralized

Users DCI storage

 sites

Science-

Gateway

(b) Users↔DCI, cen-
tralized

DCI storage

 sites

Computing

 jobs

(c) Jobs↔DCI, decen-
tralized

DCI storage

 sites

Computing

 jobs

 Site

 agent

(d) Jobs↔DCI, hierar-
chical

Figure 1: Architectures for file transfers in Science-Gateways

increases. File replication on multiple storage sites is a common strategy to cope with this. How-
ever, efficient automatic replication strategies are seldom used in production systems [4], which
makes it clearly out of the scope of ER-flow. An interesting trade-off between centralized and
de-centralized DCI↔job file transfers is to pre-stage files to computing sites before execution, re-
sulting in a hierarchical architecture for file transfers (see Figure 1(d)). For instance, this approach
is adopted in the ARC middleware11. Interesting transpositions of this hierarchical approach could
be studied and implemented on different DCIs.

3 System design

Following the analysis presented above, we suggest in this section a system design to facilitate data
transfers among workflow engines.

3.1 System components

Uniform indexing space. We propose to rely on the file naming systems used in the different
DCIs to uniquely index files in ER-flow. In practice, it means that each storage system integrated in
ER-flow should be checked to make sure that its file identifiers can be converted to URIs supported
by ER-flow. ER-flow should maintain a list of supported protocols, and possibly conversion rules
between URIs and DCI-specific file names. For instance, EGI logical file names stored in the
biomed VO are sometimes written as a path such as /grid/biomed/file.txt. Such paths should
be converted to URIs using contextual information about the biomed VO, resulting for instance in
URI lfn://lfc.biomed.in2p3.fr/grid/biomed/file.txt. Files stored in the Science-Gateway
itself must also be indexed. For instance, a file stored in a WS P-Grade portal and used in job
input or output sandboxes could be indexed using the URL of the portal, and possibly user- or
job-specific identifiers: http://portal.somewhere/userA/job1/file.txt.

API. A RESTful API must be defined to support the operations related to file transfers. We
propose the following methods for this API (Java-like syntax):

1. URI generateURI (String path, Enum system, String context): this method converts
a path to an ER-flow URI. If path is already a URI with a protocol supported by ER-flow, it is
returned as is. Otherwise, a URI is built using system-specific conversion rules parametrized
by context. Valid values for system are provided by the enumeration of workflow engines
supported by ER-flow.

11http://www.nordugrid.org/arc

WP4 - Study on interoperability of the scientific data in the workflow domain 7

http://www.nordugrid.org/arc

MS4.1: Data objects transfer service ER-flow 312579

DCI storage sites

File service isntance

2. er-flow user

3. Transfer agent1. Meta-workflow engine

Figure 2: Use cases that can be implemented using the file service.

2. URI transfer (URI source, URI destination): this method initiates a file transfer from
the source URI to the destination URI, returning an identifier for this transfer. This identifier
must be a URI allowing to locate the service in charge of this transfer. If source (resp.
destination) is a local URI, e.g. file:///tmp.file.txt, then the transfer results in a file
upload (resp. download) from the local machine. File transfers may be performed using this
method, or using any other native DCI client. In case the DCI doesn’t provide an ER-flow-
supported URI, generateURI can be used.

3. Status monitor (String transferID): this method returns the status of a file transfer.

Additional methods could also be added to control the file transfer life-cycle (for instance cancel

or suspend/resume) or to get information about the system (e.g. what are the supported systems).

File service. The file service implements the methods of the API. For performance, scalability
and reliability purposes, several file service instances can co-exist. File service instances do not
store any persistent information about files, therefore different services can be used concurrently
for most operations, even to access the same file. For instance, a file can be transferred from DCI
X to DCI Y using a given file service instance, and be downloaded from DCI Y using another one.
However, file service instances do store persistent information about transfers, which means that
a given file transfer has to be handled by a single file service instance. The file service must be
able to handle multiple storage backends. This can be achieved using existing solutions such as a
service like SCI-BUS Data Bridge, or libraries like JSAGA.

3.2 Use cases

Figure 2 summarizes the use cases that can be implemented with the file service. As explained
above, the number of file service instances can be increased to accommodate performance, scalability
and reliability issues.

Data transfers in meta-workflows. The file service can be used by meta-workflow engines
to simplify file exchanges between native workflows. Assuming that the enacted meta-workflow
consists of a native workflow A producing a single file consumed by a native workflow B (see
Figure 3), then the meta-workflow engine could implement the following sequence:

1. Generate a URI for file produced by native workflow A (calls method genrateURI).

WP4 - Study on interoperability of the scientific data in the workflow domain 8

MS4.1: Data objects transfer service ER-flow 312579

A

B

Figure 3: Simple meta-workflow where native workflow A produces a file consumed by native
workflow B.

2. If URI cannot be handled by native workflow B, transfer URI to a storage system that native
workflow B can handle (calls method transfer). Monitor transfer and send destination URI
to native workflow B when transfer completes.

3. If native workflow B requires file content, transfer URI locally (calls method transfer) and
pass it to native workflow B.

Information about what storage system is supported by a given native workflow engine is obviously
required for the meta-workflow engine to implement this scenario. We believe that this information
should not be maintained by the file service, but rather provided by the components interfacing
meta-workflow engines with the native workflow engines, for instance GEMLCA or the SHIWA
pool. Native workflow engines are not aware of the file service and do not need to be instrumented;
conversely, internal operations such as the handling of replicas, and of transfer to computing jobs is
totally delegated to the native system. A complete use-case would also require converting exchanged
files between A and B, using a pivot format as proposed in D4.1 [2].

Basic file transfer interface for users. A basic web interface can be implemented for the
file service to enable basic API operations by users, such as upload, download (using method
transfer), and transfer monitoring (using method status).

File transfer agents. File transfer agents can also be implemented to enable asynchronous
transfer operations from user workstations. For instance, an agent could be implemented to upload
files of a particular user directory to a remote directory on a specific DCI. Transfers could be started
using method transfer and their identifiers stored in a local database. Depending on the transfer
status, the agent could restart or cancel them. A similar principle can be implemented to download
workflow results.

4 Conclusion

We presented an architecture to facilitate the handling of data transfers in meta-workflows running
on different DCIs. A file service is used to adjust DCI paths in order to provide a unique indexing
scheme. It can be accessed through a RESTful API providing methods to generate URIs, transfer
files and monitor file transfers.

The architecture described in this document has not been implemented yet. Globus Online [3]12

can be considered to meet some of the requirements listed in this document. The SCI-BUS Data-
Bridge is a good candidate to implement it as it already provides several functionalities described
here. In comparison, Globus Online [3] and the EMI File Transfer Service13 are only interfaced
with a limited number of storage backends.

12http://www.globusonline.eu/
13http://www.eu-emi.eu/emi-2-matterhorn-products/-/asset_publisher/B4Rk/content/fts-1

WP4 - Study on interoperability of the scientific data in the workflow domain 9

http://www.globusonline.eu/
http://www.eu-emi.eu/emi-2-matterhorn-products/-/asset_publisher/B4Rk/content/fts-1

MS4.1: Data objects transfer service ER-flow 312579

References

[1] ER flow project consortium. Data interoperability requirements of applications. Technical
report, ER-flow FP7-Infrastructures-2012-1, RI-312579, 2013.

[2] ER flow project consortium. Virtual data objects specification. Technical report, ER-flow
FP7-Infrastructures-2012-1, RI-312579, 2013.

[3] Ian Foster. Globus online: Accelerating and democratizing science through cloud-based services.
Internet Computing, IEEE, 15(3):70–73, 2011.

[4] Jianwei Ma, Wanyu Liu, and T. Glatard. A classification of file placement and replication
methods on grids. Future Generation Computer Systems, 29(6):1395–1406, 2013.

WP4 - Study on interoperability of the scientific data in the workflow domain 10

	Introduction
	Desirable features
	System design
	System components
	Use cases

	Conclusion
	References

