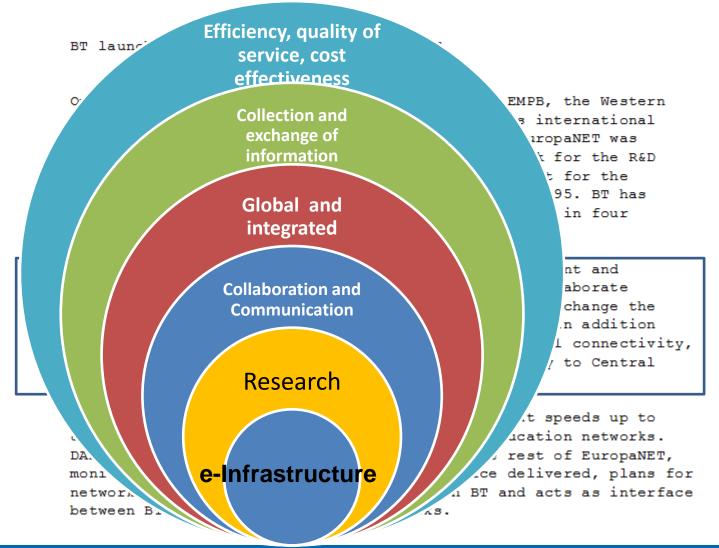


Status and future of the European Grid Infrastructure after 10 years of production activities

2004-2013

Tiziana Ferrari/EGI.eu EGI Chief Operations Officer


... a short journey through the history of international e-Infrastructures and their challenges

Capacity building

February 1994 - News from the Intercontinental "Front"

A contract for the provision of a 64 kbps line between EuropaNET and KREONET, the Korean research network, has been signed between DANTE and the CEC (DG-XIII). The line will be the first direct link between EU countries and an R&D network in the Pacific Rim. The aim is to stimulate the - so far - relatively weak co-operation between European and Korean researchers.

Intercontinental connectivity

45 Mbps between Europe and the US (shared with BT's commercial customers).

2 Mbps between Europe and Japan (NACSIS).

DANTE pushing towards world's first 100G transatlantic network for research and education

DANTE, representing the pan-European GÉANT network, and the America Connects to Europe project (ACE), managed by Indiana University, have launched a Prior Information Notice (PIN) to progress the implementation of the first ever 100G (gigabits per second) transatlantic links for the research and education community

13GC 2013, Taipei, 21-03-2013

When EGI was born. DataGrid

The DataGrid Project

DataGrid is a project funded by European Union. The objective is to build the next generation computing infrastructure providing intensive computation and analysis of shared large-scale databases, from hundreds of TeraBytes to PetaBytes, across widely distributed scientific communities.

January 2004:

Total number of jobs run by REGION and DATE (Excluded dteam and ops VOs)						
REGION	Jan 04	Feb 04	Mar 04	Apr 04	Total	%
CERN	13	17	2,117	1,198	3,345	9.03%
NGI_FRANCE	11	0	0	0	11	0.03%
NGI_IBERGRID	0	0	0	180	180	0.49%
NGI_IE	0	2	21	42	65	0.18%
NGI_NL	1,494	16,836	13,591	1,509	33,430	90.25%
Russia	11	0	0	0	11	0.03%
Total	1,529	16,855	15,729	2,929	37,042	
Percentage	4.13%	45.50%	42.46%	7.91%		

EGI 2004: EGEE-I

Deployment Status

Core Sites already integrated

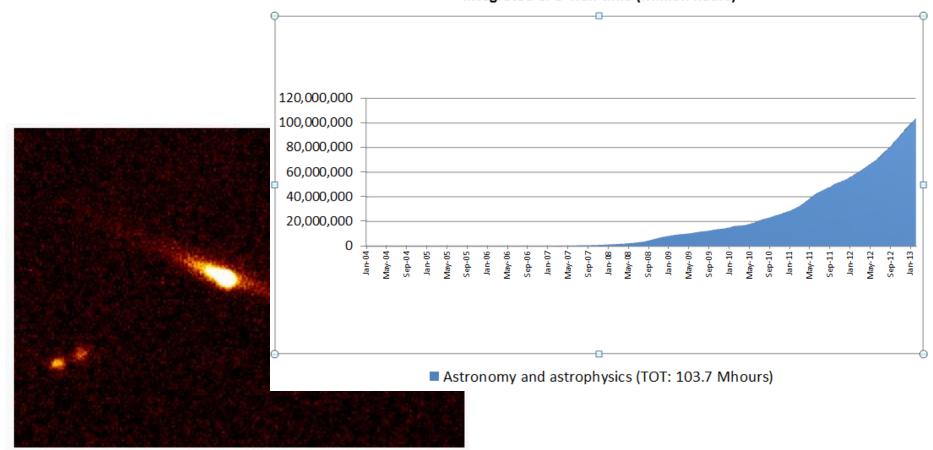
With the other sites (currently running LCG-1), the expected capacity will exceed the previsions foreseen for 2004:

around 4000 CPUs at about 30 sites

Site	CPU	
CERN (CH)	324	
FZK (D)	144	
PIC (E)	160	
FNAL (US)	4	
CNAF(I)	715	
Nikhef (NL)	250	
Taipei (AP)	98	
RAL (UK)	146	
Total	1841	

EGI Capacity building 2004-2013

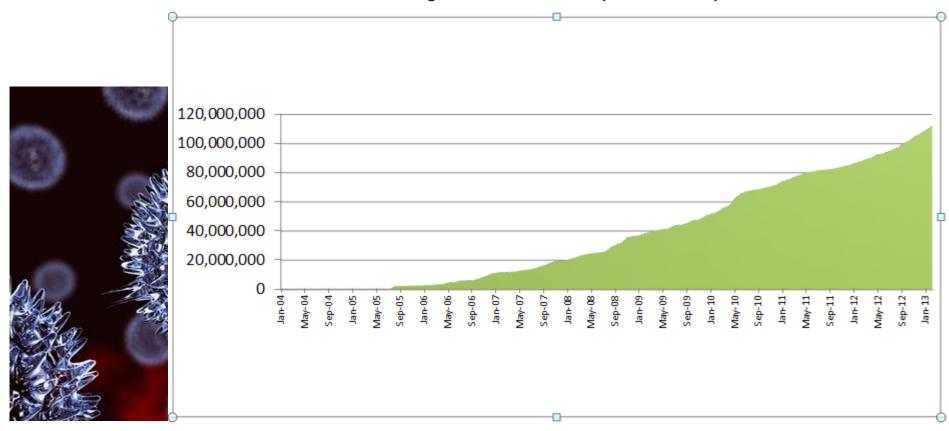
2004 2013


Sites 2004		
CERN	1	
NGI_NL	2	
Sweden	2	
NGI_BG	1	
Canada	1	
NGI_FR	1	
NGI_DE	3	
Russia	1	
NGI_UK	1	
NGI_GR	1	
NGI_FI	1	
Taiwan	1	

	Metrics March 2013		Value	
	Capacity	CPU cores (EGI and integrated resource providers) Disk/Tape (PB) Countries	372,612 (315 resource centres) 180/167 56	
	Average Job/day Jobs (Million)		1.67 (2.25 including local computation)	
38		High-Energy Physics	93.78%	
	% of total	Astronomy and Astrophysics	2.78 %	
	norm. CPU wall time	Life Sciences	1.31%	
	consumed	Remaining disciplines	2.13%	
	CPU wall time	Integrated, Billion hours Jan 2004-Mar 2013	4.8 36.8 (normalized HEP-SPC06)	

Supporting research Astronomy and Astrophysics

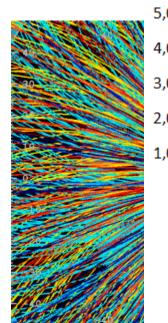
Astronomy and astrophysics integrated CPU wall time (Million hours)

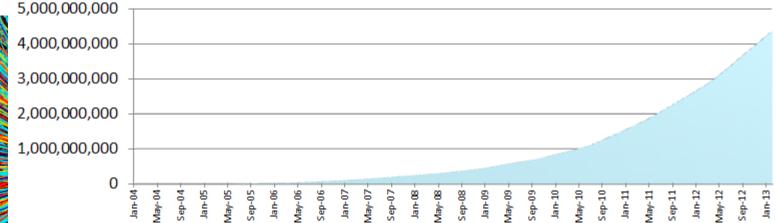

Origin of main-belt comets http://www.egi.eu/case-studies/main-belt_comets.html

Supporting research Life Science

Life science integrated CPU wall time (Million hours)

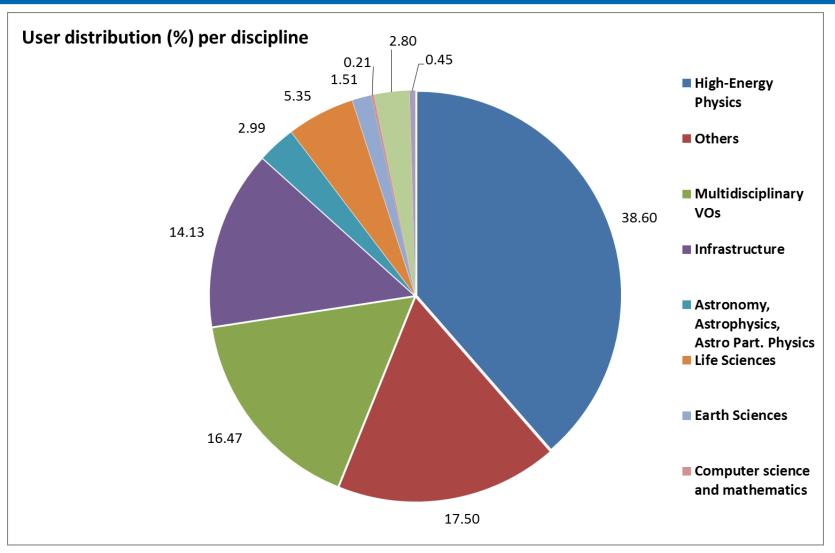
Life science (TOT: 112.0 Mhours)


Hunting for viruses


http://www.egi.eu/cms/case-studies/hunting_for_viruses.html

Supporting research High Energy Physics

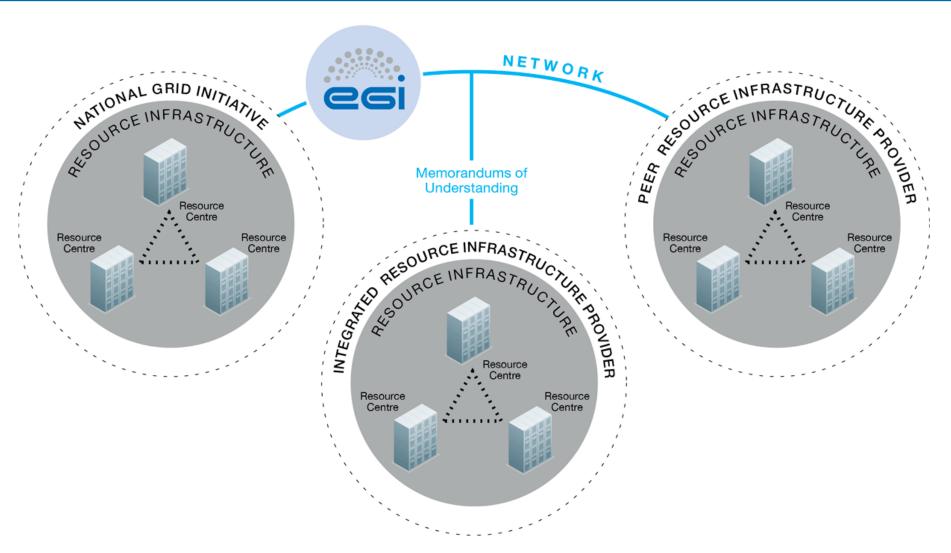
High Energy Physics integrated CPU wall time (Million hours)


Large Haulon Jonius

High Energy Physics (TOT: 4.37 Billion hours)

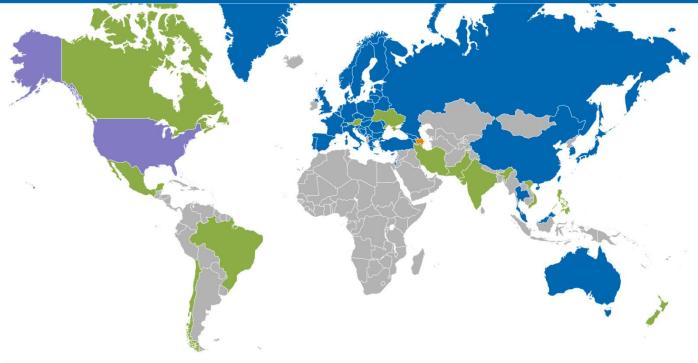
http://www.egi.eu/cms/case-studies/WLCG.html

... and many other sciences



Global and integrated 1/3

- - Members of the EGI collaboration (EGI Council/EGI-InSPIRE)
 - External providers
 - Austria and Ukraine, Latin America, Canada, Asia Pacific
- Peer infrastructure providers → own operations tools and procedures, compatible policies, loose operations collaboration with EGI
 - Open Science Grid

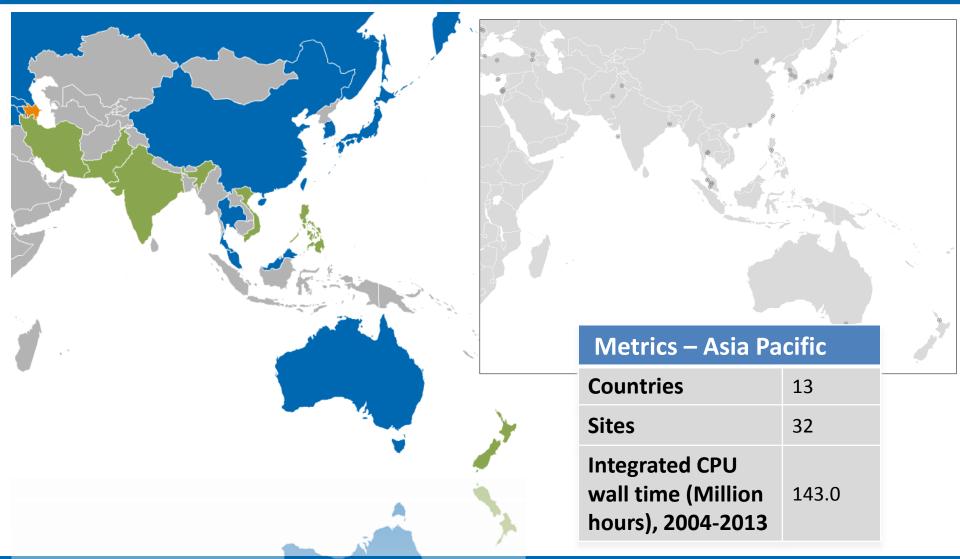


Global and integrated 2/3

Global and integrated 3/3

Integrated EGI-InSPIRE Partners and EGI Council Members

Internal/External RPs being integrated


External RP

Peer RP

Asia Pacific region

Integration: EGI service platforms

- Core platform
 - to enable the federation of resources
- Community platform
 - access computing resources
 - access and manage data and storage
- Cloud platform
 - access cloud resources

THE platform - 2005

Gee6

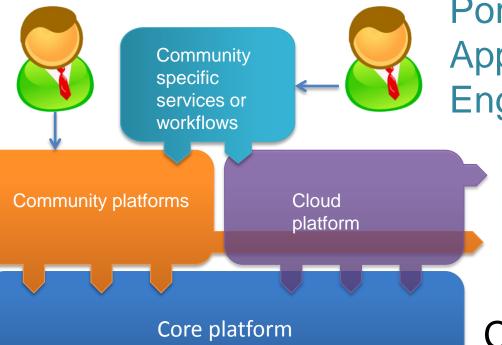
SA1: grid operations, mgmt & support

Enabling Grids for E-science

Scale of the production service

- Den Haag: ~8k CPUs/80 sites Athens: ~14k CPUs/130 sites
 This greatly exceeds the no. sites planned for the end of EGEE
- Continuous improvements to LCG-2 middleware

LCG-2.4 recently released

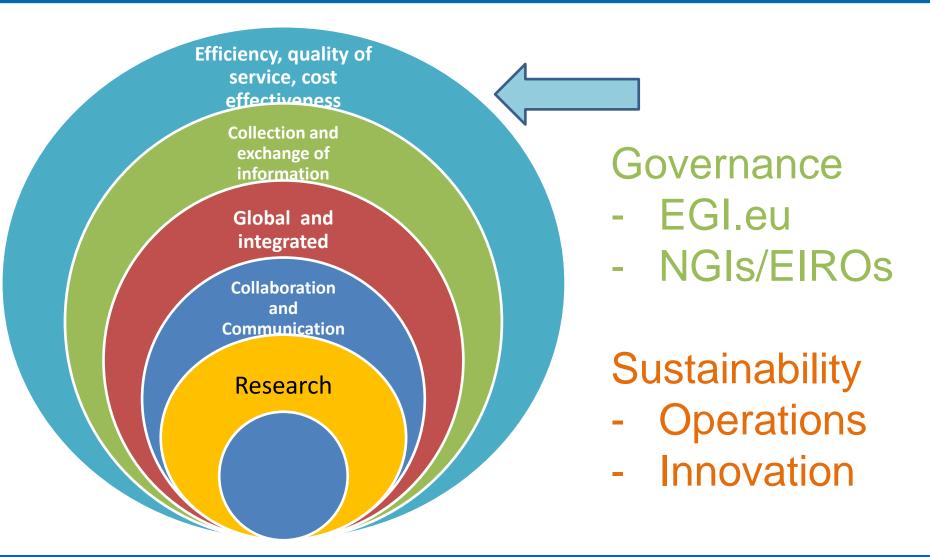


- Set-up of CIC/ROCs
 - Rotating operational responsibility now in place
- Inter-operability increasing with other grids (Grid3/OSG)
- gLite certification now a priority
 - Setting-up pre-production service for end-users

EGI platforms - 2013

ARC, dCache gLite Globus QCG Unicore

Monitoring, Accounting, EGI Helpdesk
Service registry and disc


Service registry and discovery

Portals, gateways, Applications, wflow

> Compute, Storage Data archives, Desktop Grids, HPC

Last step in our journey...

EGI as vehicle for Innovation

- Deploying Technology Innovation
 - Distributed Computing continues to evolve
 - To include: Grids, Desktops, Virtualisation, Clouds, ...
- Enabling Software Innovation
 - Provide reliable persistent community platform
- Supporting Research Innovation in Europe
 - Infrastructure for data driven research
 - Support for international research (e.g. ESFRI)

Service Evolution

- 'Old' Model
 - Isolated Technology Platforms
 - High Throughput Computing
- 'Current' Model
 - Integrated Technology Platforms
 - HPC, HTC, Data
- 'Future' Model
 - Federated Cloud Platform
 - Community Platforms

Towards Horizon2020

- EC projects to support innovation
 - E-Infrastructure integration
 - Virtual research environments
 - Collaboration and human capital
- Community funding
 - EGI.eu Core platform
 - NGI Core platform, operations
- Exploring
 - Resource allocation on-demand
 - Pay per use models