

This material by Parties of the EGI-Engage Consortium is licensed under a Creative Commons
Attribution 4.0 International License.
The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142 http://go.egi.eu/eng

EGI-Engage

Integration of assisted pattern recognition tools

D6.1

Date 22 October 2015
Activity SA2 – Knowledge Commons
Lead Partner CSIC
Document Status DRAFT
Document Link https://documents.egi.eu/document/2647

Abstract

This deliverable addresses the technical point of exploring the integration and deployment of

pattern recognition tools on EGI specific resources, including for example servers with GPUs or

other relevant hardware for image/sound recognition.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://go.egi.eu/eng
https://documents.egi.eu/document/2647

 2

COPYRIGHT NOTICE

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EGI-

Engage project is co-funded by the European Union Horizon 2020 programme under grant number

654142.

DELIVERY SLIP

 Name Partner/Activity Date

From: Eduardo Lostal BIFI/SA2 11/11/2015

Moderated by: Gergely Sipos EGI.eu-SZTAKI/SA2

Reviewed by

Approved by:

DOCUMENT LOG

Issue Date Comment Author/Partner

v.1 22/10/2015 Document creation Eduardo Lostal /
BIFI

v.2 23/10/2015 Added Executive Summary, Introduction and Feedback
on Satisfaction sections

Eduardo Lostal /
BIFI

v.3 26/10/2015 Added Service architecture section and statistics Francisco Sanz /
BIFI

v.4 26/10/2015 Added Release notes and Future Plans sections,
provide statistics on Feedback on Satisfaction section

Eduardo Lostal /
BIFI

v.5 26/10/2015 Revision Eduardo Lostal,
Francisco Sanz /
BIFI

TERMINOLOGY

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/

http://www.egi.eu/about/glossary/

 3

Contents

1Introduction .. 5

2Service architecture .. 7

2.1.1High-Level Service architecture ... 7

2.1.2Integration and dependencies .. 8

3Release notes .. 9

3.1Requirements covered in the release ... 9

3.1.1Functional Requirements .. 9

3.1.2Non-Functional Requirements .. 9

3.1.2.1Performance .. 9

3.1.2.2Security .. 9

4Feedback on satisfaction .. 10

5Future plans .. 13

 4

Executive summary

This deliverable deals with the task of exploring the integration and deployment of pattern

recognition tools on EGI specific resources from a technical point of view. It includes the research

on hardware and software solutions for image/sound recognition. After a short introduction, the

architecture of the proof-of-concept prototype is presented along with the integration and

dependencies of the solution. Fulfilled requirements are listed and briefly detailed followed by

some numbers and comments on the performance of the abovementioned prototype. Some future

work is proposed to continue the improvement of the current development.

Some frameworks were tested as a result of the state of the art research on pattern recognition

and convolutional neural networks systems. Caffe was the selected to developed the prototype.

Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is

developed by the Berkeley Vision and Learning Center. Some datasets have been tested on a GPU

optimized for the libraries used by Caffe. Results are good enough but some foreseen work is

needed to improve their performance.

It is possible to conclude that the selected framework works properly for the goals of the

prototype. It has been deployed in the available servers running the tests over a particular GPU for

which the used libraries are optimized.

 5

1 Introduction

The present deliverable addresses the search and testing of a framework that may be used for

image recognition on the cloud. Therefore, it encompasses several issues going from the research

on the state-of-the-art, the selection of the tool, its deployment, preparing the tests and

evaluating its performance. Besides being able to learn, that is, the framework must include a

neural network able to be trained, it must be possible to run in on the cloud taking advantage of its

benefits.

Research of the computer vision and deep learning tools raised two frameworks that suit the

requirements and could be eligible for testing. On one hand, Pastec that is an open source index

and search engine for image recognition based on OpenCV1. It was tested on a server at BIFI

facilities resulting on an easy installation and use with acceptable results. After some doubts about

its performance, main responsible for Pastec development were contacted who confirmed that it is

a general purpose framework that would not work for the requirements of the project. On the

other hand, the second framework and, eventually, the one that was chosen for its use, is Caffe2 a

deep learning framework that uses Convolutional Neural Networks and that is prepared to be

deployed on the cloud.

As well as this framework, an app developed for Android phones was developed as a proof-of-

concept. It accesses to a web service through an API that allows user to make classification

requests to the network.

The remaining of this document presents the architecture of the framework, requirements list and

details about its performance.

Tool name Caffe

Tool url Current version: http://lxbifi21.bifi.unizar.es:5000/

Final instance will be deployed for production under a different url

during the following weeks.

Tool wiki page TBD based on the final version of this document

Description Caffe is a deep learning framework made with expression, speed, and

modularity in mind.

Customer of the tool LifeWatch

User of the service Research groups; individual researchers

1http://www.pastec.io

2http://caffe.berkeleyvision.org

http://lxbifi21.bifi.unizar.es:5000/

 6

User Documentation http://caffe.berkeleyvision.org, + Above wiki page

Technical Documentation http://caffe.berkeleyvision.org, + Above wiki page

Product team BIFI

License Released under the BSD 2-Clause License

Source code https://github.com/BVLC/caffe, https://github.com/EGI-Lifewatch-CC

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/EGI-Lifewatch-CC

 7

2 Service architecture

The Caffe framework provides two main services, with the first one, train, a new model

can be trained, with the second one, providing one (or several) image(s) it(they) can be

classified according to the trained model. The first service, is a highly computing bound

task, and it can be speed-up using GPU (CUDA). The second is more I/O bound task, so it

can be run without GPU in an efficient way.

As said previously Caffe is a deep learning framework than can run both in CPU or GPU3,

the speed-up using GPU versus CPU is x9 (using the AlexNet model), moreover, one can

find x34 speed-up GPU + CuDNN v34. In order to use the CuDNN v3 library a GPU with

Maxwell(4th generation) or Kepler (3rd generation) architecture is required.

2.1.1 High-Level Service architecture

Both services can be implemented easily in the cloud, although we deployed the train

service both in a non-cloud host and a cloud host.

For the first service, that is, training the model, is highly recommended a Maxwell or

Kepler GPU with at least 4GB of RAM. We implemented this service both in cloud and non-

3More precisely, one needs a CUDA GPU

4https://developer.nvidia.com/cudnn

Illustration 1: Basic architecture

 8

cloud hosts. We want to note that as said in the official documentation, a portable version

of Caffe can be compiled using the command make portable.

The second service was deployed only in a non-cloud host, but it can be easily launched in

the cloud, as it is mainly a web service pointing to the Caffe binary in order to do the

image classification. Caffe framework provides also a web-service written in flask to allow

web classification. We developed a new web-service to offer an API to be used, for

example, with our android app described below.

2.1.2 Integration and dependencies

Installing Caffe is a straightforward task if one follows the official documentation5. All the

requirements and steps are published in that documentation. Here main requirements are

listed:

 CUDA is required for GPU mode.

 library version 7.0 and the latest driver version are recommended, but 6.* is

fine too

 5.5, and 5.0 are compatible but considered legacy

 BLAS via ATLAS, MKL, or OpenBLAS.

 Boost >= 1.55

 protobuf, glog, gflags, hdf5

Optional but highly recommended dependencies:

 cuDNN for GPU acceleration (v3)

Some others dependencies in order to use the python tools can be fulfilled following the

official documentation using the pip tool. Moreover, there is a receipt to build an AMI with

Caffe to be launched in the cloud in the following URL:

https://github.com/BVLC/caffe/wiki/Caffe-on-EC2-Ubuntu-14.04-Cuda-7

In order to train a new dataset, we used the oxford-102 approach, maintaining two

different folders, one for the Caffe framework itself, namely $CAFFE_HOME and the

second one that holds:

 Dataset itself

5http://caffe.berkeleyvision.org/installation.html

https://github.com/BVLC/caffe/wiki/Caffe-on-EC2-Ubuntu-14.04-Cuda-7
http://caffe.berkeleyvision.org/installation.html

 9

 Scripts to manage this dataset, that is, splitting the images into the test group, val

group and train group

 Model to be used to train, mainly the train_val.prototxt and deploy.prototxt files

explained below.

 10

1 Release notes

1.1 Requirements covered in the release

1.1.1 Functional Requirements

 The framework accepts pictures as input for their classification

 The framework’s output provide the five more accurate results as the classification

 Every result in the output comes with a number that indicates the certainty that the

framework has on that result

 The framework can be deployed to run over a cloud infrastructure

 The framework can be deployed on GPUs

 The framework can be accessed as a web service

 When the framework is accessed as a web service, it must allow users to upload the

pictures

 The framework allows to train the models

 Android app uploads the pictures to the web service

 Android app displays the output of the framework in the phone

 Android app manages the connection to the server (the framework)

 Android app allows to take pictures to be uploaded

 Android app allows to choose pictures from the phone gallery to be uploaded

1.1.2 Non-Functional Requirements

1.1.2.1 Performance

 Classification time should be under 20 seconds

 Accepted input picture formats are at least JPG and PNG

1.1.2.2 Security

 Source code must be available at a Github account

 11

1 Feedback on satisfaction

The framework was tested through several datasets to assess its performance. First data set was a

control one to ensure the proper behaviour of the tool. It was chosen a dataset from the Oxford

Robotics Research6 already tested on Caffe. Then, replicating their steps, it would be possible to

learn how the platform works and check that it gives as a result the expected output. Installation

and test of this dataset was successful and the accuracy obtained was higher than the 95%, as

expected according to Oxford results. To achieve that results, a pre-trained model from Imagenet

dataset was used over which a fine-tuning, that consists in more training over the previous model

with the images of the new data set, was applied.

The steps giving shape to the roadmap for making use of new datasets can be extracted from this

example. Given a new data set, first of all documents for training must be created.

train_val.prototxt and deploy.prototxt (names may vary, but these are commonly used) contain the

definition of the neural network with all the layers. In both of them, at least the last layer must be

modified to update the number of outputs to the new data set. Since final users are not expected

to have expertise on Neural Networks, the rest of the layers of the network can remain as before.

In a nutshell, intermediate layers are trained to recognize colours, shapes, edges, etc., while final

layers are the ones that orchestrate all that information to choose the correct (estimated) output.

That is why it makes sense to reuse previous definition of the network. It will be also necessary to

update the solver.prototxt that is the file with the definition of the model, learning rates, etc. and

again it is advisable modifying it as less as possible. Following the example of the Oxford data set

fine-tuning, global learning rate is reduced, while the final fully connected layer learning rate is

higher than the others. In this document, it can be also set the number of iterations. That number

is relevant since too less iterations mean the network is not properly trained, but too many

iterations may get an over-fit network. Besides the synset_words.txt document with the string of

the output, train.txt and test.txt files must be also prepared. They contain the address of an image

per line along with the proper output. Those files are used to train and test the network. A third

similar file may be created with the pictures for validation (not used by the framework during

training). Thus, the framework can be evaluated through not familiar pictures. Once all these files

are ready, it is possible to train the network.

The second data set tested was one from Portuguese flora. It is made up of almost 1890 pictures of

which 63 genus were used as outputs. Aiming to build a consistent data set, genus with less than

30 pictures were discarded. Those 30 pictures were divided equally into the three files: train, test

and valid. An algorithm was used to unsort the lines of those files what improves the final accuracy

of the model since modifications during learning are doing for every genus incrementally, while if

the whole modifications are done at the beginning of the learning for one genus, subsequent

6https://github.com/jimgoo/caffe-oxford102

 12

changes on the network that do not include that genus will produce their features getting

forgotten. First attempt for training got an over-fit network after more than 400000 iterations.

Subsequent trainings were done following two different models of fine-tuning based on Oxford

works. First one, it was realized through AlexNet approach getting around 51% of accuracy after

20000 iterations in less than three hours with a tiny stabilized loss. Second one, over VGGS

approach getting around 56% of accuracy after 20000 iterations in less than three hours. As an

example, in the following it is displayed a snapshot of the GPU resources and performance during

one of the trainings (statistics are similar for both approaches).

As shown in illustration 1, training the Portuguese dataset average consumption with the GTX960

is placed between 110 and 130W while the memory usage on the GPU is around 1591MiB.

Previous results are considered reasonably good. It is worth mentioning that contents of the data

set are one of the most significant aspects that may increase (or decrease) the final accuracy. For

instance, the Portuguese data set contains a small set of samples for each output (used 10 pictures

for training and 10 for testing, although this splitting is the recommended by oxford-102).

Moreover, pictures of the same genus are very distinct among them (some contains only the

flower, some the whole plant from farther distance, some of the stalk…) what makes harder for the

Illustration 0: Output of nvidia-smi during training

 13

framework to extract features of the plant to be classified. Keeping in mind those considerations,

given the provided framework, building a consistent and goo data set will affect significantly on the

final accuracy of the framework.

The third dataset was provided by the Real Jardín Botánico7. It consists on 662 different images,

but only 6 genus has more than 20 images. We followed the same algorithm than the previous

dataset to split the images into three groups, 10 for training, 10 for testing and all the rest to

validating. After 9000 iterations we reached 70% of accuracy, but we don't consider this test as a

valid one due to the small amount of different images.

---- HERE WILL BE SOME NUMBERS COMPARING THE DIFFERENT GPUs, DATASETS, ACCURACY ---

The developed app for Android phones allows the user to take a new picture or choose one from

the phone gallery to be uploaded to the server where an instance of the framework has been

deployed. Server returns the output of the framework that it is displayed on the phone. The app

works fine as a proof-of-concept. The Apk takes 1.205.229 bytes (1,2 MB) on disk. When using WiFi

upload time for the picture is very reduced, while using the data plan upload may take up to 50

seconds. Connection time is very small, as well as the output sending time.

Three different github repositories were created along the project life, one for the android

application available at:

 https://github.com/Ibercivis/CaffeUseExample

And two more for the source code of the two datasets scripts.

 https://github.com/EGI-Lifewatch-CC/orchidee

 https://github.com/EGI-Lifewatch-CC/portuguese-flora

7http://www.rjb.csic.es/jardinbotanico/jardin/

 14

1 Future plans

The final goal of this part of the project is to demonstrate the viability of using cloud

infrastructures for deep learning frameworks and how final users will benefit from that kind of

deployment. Therefore, future work is focused on that direction. Current work has been carried

out as a proof-of-concept, a prototype of what can be done. Use of the cloud will allow increasing

scalability moving to better trained networks with a higher level of complexity. Once the model is

working properly, next step is its deployment on the cloud and study its performance.

Oriented to get a tool useful for the final user, a web-based tool would be advisable as an entry-

point to the framework automating and hiding low-level details to the user. In addition to this tool,

Android app could be improved focusing the efforts in reducing the time for pictures uploading to

the server.

Finally, as above-mentioned how good a data set is determines significantly the final accuracy of

the network. Thus, some effort should be done in addressing the assessment of the data sets

ensuring that they are suitable for training a network providing good results.

