

This material by Parties of the EGI-Engage Consortium is licensed under a Creative Commons
Attribution 4.0 International License.
The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142 http://go.egi.eu/eng

EGI-Engage

Data repository for DARIAH

D6.2

Date 8 January 2016
Activity SA2 Knowledge Commons
Lead Partner INFN
Document Status FINAL
Document Link https://documents.egi.eu/document/2654

Abstract

This deliverable describes the outcome of the “Storing and Accessing DARIAH contents on EGI (SADE)” pilot

application of the DARIAH Competence Centre of the EGI-Engage project. The activity developed and deployed

two systems: (1) a digital repository based on gLibrary service and the EGI Federated cloud and grid infrastructure

and (2) a semantic search engine. The first system helps digital humanities communities b uild customised and

highly-available digital repositories, while the second enables the discovery and correlation of content across

geographically distributed digital repositories. The presented work was developed in EGI by the EGI DARIAH

Competence Centre of the EGI-Engage project.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://go.egi.eu/eng
https://documents.egi.eu/document/2654

 EGI-Engage

 2

COPYRIGHT NOTICE

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EGI-

Engage project is co-funded by the European Union Horizon 2020 programme under grant number

654142.

DELIVERY SLIP

 Name Partner/Activity Date

From: Giuseppe La Rocca, Roberto Barbera EGI.eu / INFN 8/1/2016

Moderated by: Matthew Viljoen EGI.eu 18/1/2016

Reviewed by Donatella Castelli
Daniele Bailo

DCH-RP

IT INGV
18/1/2016

Approved by: AMB and PMB 8/2/2016

DOCUMENT LOG

Issue Date Comment Author/Partner

V0.1 15/12/2015 First draft G. La Rocca, Antonio
Calanducci /EGI.eu

V0.2 17/12/2015 Finalised for internal review in the DARIAH CC G. Sipos / EGI.eu-SZTAKI
R. Barbera / INFN

V0.3 8/1/2016 Draft updated for external review G. La Rocca /EGI.eu
Antonio Calanducci/INFN
R. Barbera/INFN

FINAL 02/1/2016 Final version G. La Rocca/EGI.eu

TERMINOLOGY

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/

http://www.egi.eu/about/glossary/

 EGI-Engage

 3

Contents

1 Introduction ... 7

2 Service architecture ... 10

2.1 The gLibrary Digital Repository Service ... 10

2.2 gLibrary architecture with Science Gateways .. 12

2.3 The Parallel Semantic Search Engine High-Level Service architecture 13

2.3.1 Metadata Harvester ... 14

2.3.2 Semantic-Web Enricher ... 14

2.3.3 Search Engine .. 15

2.4 Integration and dependencies ... 18

3 Requirements .. 19

3.1 Functional Requirements .. 19

3.2 Non-functional Requirements ... 19

4 Feedback on satisfaction ... 20

5 Future plans ... 20

Appendix I. gLibrary 2.0 API Docs ... 21

Server endpoint ... 21

Authentication .. 21

Login .. 21

User creation ... 21

Authorization .. 22

ACLs ... 22

Repositories .. 22

List of all the repositories hosted on the server ... 23

Create a new repository .. 23

Collections ... 25

Create a new collection ... 25

Import data from an existing relational database .. 26

List all the collections of a repository .. 26

Retrieve the schema of a collection ... 27

 EGI-Engage

 4

Delete a collection ... 29

Items (previously entries) .. 29

Item creation ... 29

Item listing ... 29

Item detail ... 30

Item deletion ... 30

Item update ... 30

Queries with filters .. 30

Replicas ... 31

Replica creation ... 31

Retrieve all the replicas of the given item_id .. 31

Download a given replica ... 31

Upload a replica ... 31

Delete a replica .. 32

Relations ... 32

Retrieve related items ... 32

Contributors .. 32

 EGI-Engage

 5

Executive summary

This deliverable reports the status of the “Storing and Accessing DARIAH contents on EGI (SADE)”

mini project, one of the three mini-projects identified in the context of the DARIAH Competence

Centre (CC) of the EGI-Engage project. The project aims to raise awareness of A&H researchers of

the possible benefits of using e-Infrastructure and e-Science technologies in their research

programmes, create conditions for a sustained increase of the user community coming from A&H

and Social Sciences as well, and increase the number of e-Science services and applications for the

A&H researchers

The activities of this mini-project have been coordinated by the Italian National Institute for

Nuclear Physics (INFN). At the beginning the aim of this mini-project was to create a digital

repository of DARIAH contents for the A&H community. During the implementation of the work-

plan the original objective has shifted a little bit to take into account the requirements of a second

use case provided by the scientific community which expressed the interest to run SPARQL queries

in different digital repositories. As a consequence two services, which will be presented in this

report, were identified.

To implement the objectives of this mini-project the INFN, based on the experience matured

during the DCH-RP FP7 EU co-funded project, updated the architecture of gLibrary, the INFN

Digital Repository System, which helps scientific communities to build customised and highly-

available digital repositories. The new implementation of gLibrary (refers as gLibrary 2 in the

following sections) now offers the possibility to interface with digital repositories already available

in different databases back-ends and exploit the EGI Federated Cloud Infrastructure to manage

digital assets also in cloud Object Storages (Swift). Unfortunately at the time of writing the

Austrian Academic of Science (AAS) community is currently refining the use case and the

repository is under development.

In addition, during this collaboration the A&H community involved in the DARIAH CC expressed

their interest in running SPARQL queries on different digital repositories and search for some

potential correlations among results. To support this second use case, INFN decided to customize

the architecture of the Parallel Semantic Search Engine (SSE), the service which enables the

discovery and correlation of content across geographically distributed digital repositories, and to

offer this service to the target A&H community. This second service has been used to develop a

first demonstrative use case which is now available in production in the form of a web service. The

dedicated DARIAH CC Working Group will take care to coordinate the exploitation and the

dissemination of this first demonstrative use case among the A&H community.

For clarity’s sake the two services:

 Will be operated by the INFN 24h, 7*365;

 Will be available for use by any member of the DARIAH community through its DARIAH-CC.

 EGI-Engage

 6

The users of the two services, which will be described in details in the next sub-sections, are

represented by researchers of the A&H communities involved in the DARIAH CC project.

The outline of this deliverable is as follows: first, we introduce the use cases identified for this

mini-project. Then we present the high-level architectures of the two services developed by the

INFN along with the technological building blocks and their inter-dependencies. Finally, future

development activities are described in the final section. The document closes with an appendix

that includes the documentation of the online system.

 EGI-Engage

 7

1 Introduction

In the last decade, excellent Science has become more and more possible with e-Infrastructures.

However, although various research domains, such as Medicine, Chemistry, and Physics, have

already made extensive use of e-Infrastructure services, others, such as Arts and Humanities are

not yet exploiting these facilities at the same pace. To bridge this gap, the EGI DARIAH

Competence Centre (CC) project1 aims to provide a wider and more efficient access to, and use of

e-Infrastructures, particularly the Federated Cloud facility offered by EGI. The CC aims to make the

EGI Federated Cloud more convenient to use for members of the European digital research

infrastructure for the Arts and Humanities2.

In this document we report the status of the “Storing and Accessing DARIAH contents on EGI

(SADE)” pilot application that is part of the CC activities. SADE is one of the two mini-projects

within the CC and aims to raise awareness of the possible benefits in using e-Infrastructure and e-

Science technology in the A&H scientific domain.

For this mini-project the DARIAH contents have been provided by the Austrian Academy of

Sciences3 (AAS), one of the leading Austrian research institutions with a very long-running

experience and interest in the Arts and Humanities domain. The AAS datasets represent the work

on a 100+ years old collection on Bavarian dialects within the Austrian-Hungarian monarchy from

the beginnings of German language to nowadays. AAS datasets are currently stored within MySQL

databases without metadata and are available in different formats:

 Headwords (about 50,000 A-Z)4;

 Records (about 40,000 plants; about 70,000 in general)5;

 Multimedia with link to Audio-file6;

 Multimedia with collection (about 3,000)7;

 Multimedia connected to Headword (about 3,000)8;

 Project specific biographies9;

 Locations10.

1
 https://wiki.egi.eu/wiki/Competence_centre_DARIAH

2
 https://www.egi.eu/infrastructure/cloud/

3
 www.oeaw.ac.at

4
 http://wboe.oeaw.ac.at/dboe/indices/lemma/A1

5
 http://wboe.oeaw.ac.at/dboe/beleg/142175

6
 http://wboe.oeaw.ac.at/dboe/quelle/19040

7
 http://wboe.oeaw.ac.at/dboe/quelle/18335

8
 http://wboe.oeaw.ac.at/dboe/lemma/25996

9
 http://wboe.oeaw.ac.at/dboe/indices/person/A/1

10
 http://wboe.oeaw.ac.at/dboe/indices/ort/A/1

https://wiki.egi.eu/wiki/Competence_centre_DARIAH
https://www.egi.eu/infrastructure/cloud/
http://www.oeaw.ac.at/
http://wboe.oeaw.ac.at/dboe/indices/lemma/A1
http://wboe.oeaw.ac.at/dboe/beleg/142175
http://wboe.oeaw.ac.at/dboe/quelle/19040
http://wboe.oeaw.ac.at/dboe/quelle/18335
http://wboe.oeaw.ac.at/dboe/lemma/25996
http://wboe.oeaw.ac.at/dboe/indices/person/A/1
http://wboe.oeaw.ac.at/dboe/indices/ort/A/1

 EGI-Engage

 8

Several data types are taken into account: text, multimedia (images, audio files etc.), URIs; as well

as primary collection data, interpreted data, secondary background data and geo-data with

different license opportunities.

The AAS datasets have Latin headwords connected with geo-references, names of persons who

collected the data, usually a time reference and are interlinked with linked data resources to find

out what is available on the internet on the certain topic.

In the plant names use case, there are many Latin headwords which can be found in the

AGROVOC11 dictionary, several geo-references in GEONAMES12, some definitions in GERMANET13,

and some additional data resources available on Wikipedia and other wiki-projects.

To discover and correlate content in geographically distributed digital repositories the Parallel

Semantic Search Engine (PSSE), developed by the INFN in the contest of the CHAIN and CHAIN-

REDS14 projects, has been extended in order to include the possibility to run SPARQL queries in

parallel on some additional digital repositories (e.g. GENONAMES, DBpedia15 and Europeana16) and

start to introduce the support to different dictionaries (e.g. ISLEX17 and GERMANET).

Moreover, to help the A&H community to organize AAS datasets stored in different DB back-ends

and develop digital repositories of DARIAH contents on top of the EGI Cloud Storages, INFN

decided to further extend the architecture of gLibrary with the Node.Js API Framework

LoopBack18. With this new architecture of the gLibrary A&H researchers have now a powerful tool

to create and organize digital repositories with datasets stored in different DB back-ends and use

the Cloud technology as storage back-end to host AAS datasets. With regards to the storage back-

end, cloud technologies are mature enough to improve the reliability and the availability of data.

Clouds can provide the possibility of dynamic data replication among computing centres in a user-

transparent way, preventing data loss as a result of localized disasters.

 The Italian National Institute for Nuclear Physics (INFN) setup two different services in the pilot to

demonstrate capabilities relating to the two key aspects of digital repositories:

1. Building customised and highly-available digital repositories;

2. Discover and correlate content in geographically distributed digital repositories.

The first one provides a lightweight and sophisticate tool for members of the DH community to

organize and manage digital repositories on top of the EGI Federated Cloud. This system is based

on gLibrary. The second one offers a Parallel Semantic Search Engine (PSSE) for the DH community

11

 http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
12

 www.genonames
13

 www.sfs.uni-tuebingen.de/GermaNet/
14

 www.chain-project.eu
15

 http://dbpedia.org
16

 www.europeana.eu
17

 www.islex.is/
18

 http://loopback.io/

http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://www.genonames/
http://www.sfs.uni-tuebingen.de/GermaNet/
http://www.chain-project.eu/
http://dbpedia.org/
http://www.europeana.eu/
http://www.islex.is/
http://loopback.io/

 EGI-Engage

 9

that can be used for keyword-based content discovery. In the following, we present the

architecture of the two services that have been setup and tailored for the DH community.

The following tables provide a summary of the key aspects of the two systems:

Tool name gLibrary, the INFN Digital Repository System

Tool url Project homepage: https://glibrary.ct.infn.it

API endpoint (for developers): https://glibrary.ct.infn.it:3500
(Access to be required to INFN)

Tool wiki page https://csgf.readthedocs.org/en/latest/glibrary/docs/index.html

Description A service to create and manage repositories of digital assets on grid,
cloud and local storage

Customer of the tool DARIAH CC

User of the service Research groups; individual A&H researchers

User Documentation

Technical Documentation https://csgf.readthedocs.org/en/latest/glibrary/docs/index.html

http://csgf.readthedocs.org/en/latest/glibrary/docs/glibrary2.html

(APIs documentation)

Product team INFN

License Released under the Apache License 2.0

Source code https://github.com/csgf/glibrary (source code)

Tool name The Parallel Semantic Search Engine

Tool url Current link: http://csgf.egi.eu/dariah-sse-parallel

Tool wiki page https://csgf.readthedocs.org/en/latest/parallel-semantic-search-
portlet/docs/index.html

Description A service conceived to demonstrate the potential of Open Access
Data infrastructures coupled with semantic web technologies to
address the issues of data discovery and correlation

Customer of the tool DARIAH CC

User of the service Research groups; individual A&H researchers

User Documentation https://csgf.readthedocs.org/en/latest/parallel-semantic-search-
portlet/docs/index.html (PSSE)

http://csgf.readthedocs.org/en/latest/semantic-search-

https://glibrary.ct.infn.it/
https://glibrary.ct.infn.it:3500/
https://csgf.readthedocs.org/en/latest/glibrary/docs/index.html
https://csgf.readthedocs.org/en/latest/glibrary/docs/index.html
http://csgf.readthedocs.org/en/latest/glibrary/docs/glibrary2.html
https://github.com/csgf/glibrary
http://csgf.egi.eu/dariah-sse-parallel
https://csgf.readthedocs.org/en/latest/parallel-semantic-search-portlet/docs/index.html
https://csgf.readthedocs.org/en/latest/parallel-semantic-search-portlet/docs/index.html
https://csgf.readthedocs.org/en/latest/parallel-semantic-search-portlet/docs/index.html
https://csgf.readthedocs.org/en/latest/parallel-semantic-search-portlet/docs/index.html
http://csgf.readthedocs.org/en/latest/semantic-search-portlet/docs/index.html

 EGI-Engage

 10

portlet/docs/index.html (SSE)

http://csgf.readthedocs.org/en/latest/semantic-search-
api/docs/index.html (API SSE)

Technical Documentation https://csgf.readthedocs.org/en/latest/parallel-semantic-search-
portlet/docs/index.html

Product team INFN

License Released under the Apache License 2.0

Source code https://github.com/csgf/parallel-semantic-search-portlet (PSSE)

https://github.com/csgf/semantic-search-portlet (SSE)

https://github.com/csgf/semantic-search-api (API)

2 Service architecture

In this section we describe the high-level service architecture of the two services, along with their

dependencies, API and software requirements, that have been customized for the Arts and

Humanities scientific community. The first one is gLibrary, the digital repository system developed

by INFN to offer an easy-to-use service and a powerful system to handle digital assets. The second

one is the Parallel Semantic Search Engine (PSSE), the service conceived to demonstrate the

potential of information coupled with semantic web technologies to address the issues of data

discovery and correlation. With the SSE user can search keywords in the e-Infrastructure

Knowledge Base, in more than 100 languages across more than 30 million resources contained in

the thousands of semantically enriched Open Access Document Repositories (OADRs) and Data

Repositories (DRs). Search results are ranked according to the Ranking Web of Repositories19. For

supporting the requirements of the Arts and Humanities scientific community a parallelised

version of the SSE has been configured to simultaneously search, using different Java threads,

across the above e-Infrastructure Knowledge Base and other platforms.

2.1 The gLibrary Digital Repository Service

gLibrary is the digital repository system developed by INFN. It has been used in different national

and international EU-funded projects in fields such as Humanities, Earth Science and High Energy

Physics. In the past months, gLibrary has evolved from a system based on Grid Storage and

metadata only to a more general service, capable of handling repositories on both Grid and Cloud

Storages with metadata and data records stored in both relational and/or non-relational

19

 http://repositories.webometrics.info/

http://csgf.readthedocs.org/en/latest/semantic-search-portlet/docs/index.html
http://csgf.readthedocs.org/en/latest/semantic-search-api/docs/index.html
http://csgf.readthedocs.org/en/latest/semantic-search-api/docs/index.html
https://csgf.readthedocs.org/en/latest/parallel-semantic-search-portlet/docs/index.html
https://csgf.readthedocs.org/en/latest/parallel-semantic-search-portlet/docs/index.html
https://github.com/csgf/parallel-semantic-search-portlet
https://github.com/csgf/semantic-search-portlet
https://github.com/csgf/semantic-search-api
http://repositories.webometrics.info/

 EGI-Engage

 11

databases. The new version of the system, called gLibrary 2.0, offers access both to existing data

repositories and the creation of new ones via a simple REST API.

For the sake of completeness, and to help reader’s comprehension, below we report some

terminologies used in the gLibrary lingo.

A repository is a virtual container of one or more data collections.

A collection provides access to data records stored on a relational DB table or to a non-relational

(NoSQL) DB collection. Currently gLibrary supports MySQL, PostgreSQL, Oracle and MongoDB.

Each repository can group together one of more collections, providing a virtual and uniform

interface to data tables coming from different databases that could be potentially of different

types (for example one collection provides access to a PostgreSQL table and another to a

MongoDB collection) and in local and/or remote servers. JSON is used as input and output data

format.

Once collections are imported or created from scratch, the gLibrary REST API can be used to

retrieve, create, update and delete collection's records, that in gLibrary lingo are called items, and

to manage replicas. A powerful filtering system is available to make queries on collections. All

criteria are specified using the query string of the REST API call. (e.g.,

/v1/repos/fantasy_company/orders?filter[where][userId]=acaland&filt

er[where][orderQuantity][gt]=200&filter[where][limit]=100

will search for 100 orders issued by the user “acaland” with a quantity of 100).

Each item can have one or more attachments, which are called replica. Replicas can be stored on

Grid Storage Elements (functionalities offered by DPM - Disk Pool Manager) and/or on Cloud

Storage (OpenStack Swift is currently supported). The service offers API calls for uploading and

downloading files to the configured storages, using a system based on Temporary URLs that

permits direct data transfers from clients to destination storages and vice versa, without caching

them on the gLibrary intermediate server.

Relations between two collections of the same repository can be created, if foreign keys are

properly assigned. Currently we support one-to-many relations.

gLibrary can be useful for users that need a secure way to save and share their assets. REST API

calls are authenticated using a session token based system, while authorization to repositories,

collections and items can be selectively changed based on Access Control Lists (ACLs) and Roles.

Being an API based service, gLibrary can be easily integrated with other services, in particular web

applications, Science Gateways, command line jobs, desktop and mobile applications.

For the previous version of gLibrary (1.0), several front-ends were available: a standalone web

application20 and several portlets deployed in a number of Liferay-based Science Gateways that

20

 https://glibrary.ct.infn.it

https://glibrary.ct.infn.it/

 EGI-Engage

 12

offer feature to browse various repositories, download replicas, upload and register files to Grid

and Cloud storages.

In the context of the DARIAH CC project, the Node.JS API Framework LoopBack21 has been used to

extend the architecture of gLibrary with new functionalities. Thanks to these new functionalities

will be possible to import datasets already available on different back-ends and use Science

Gateways and mobile applications to access to them.

2.2 gLibrary architecture with Science Gateways

gLibrary 2.0 has been rewritten from scratch and based on the Node.JS API Framework LoopBack.

The high-level architecture of the gLibrary 2.0 deployed with a Science gateway or mobile device

front-end is sketched in Fig.1

Figure 1 – The gLibrary architecture in combination with SGs

When used in combination with Science Gateways and federated authentication, an API gateway

(generally deployed in the Science Gateway machine) is needed:

 The AuthN & AuthZ module: gLibrary currently supports the Federated Authentications, the

traditional PKI authentications based on the adoption of X.509 certificates and based on

session tokens in exchange for a username/password couple. Access to the Grid and Cloud

storages are secured using the digital credentials generated on-the-fly by the eTokenServer,

the standard-based solution developed by the INFN for central management of robot

certificates and provisioning of proxies to get seamless and secure access to computing e-

21

 http://loopback.io/

http://loopback.io/

 EGI-Engage

 13

Infrastructures, based on Grid and Cloud middleware supporting X.509 standard for

authorization;

 As mentioned in the previous section, several backends can be used to store metadata and

data records on local storage systems, Grid Storage Elements based on DPM22 services with

a WebDAV interface and Cloud Storage (OpenStack Swift is supported). In particular, the

exploitation of the EGI Federated Cloud Infrastructure will offer to the A&H community a

distributed storage infrastructure accessible in a seamless and transparent way. This will

contribute to increasing the resilience and the availability of the solution provided to this

community.

2.3 The Parallel Semantic Search Engine High-Level Service

architecture

Essential improvements for the A&H research community to dealing with RDF, XML files and

SPARQL queries on different Open Access Document Repositories (OADRs), semantically enriching

OADRs and Data Repositories (DRs) with a specific ontology, and to build a search engine on the

related linked data to discover new science and support the reproducibility of science.

With this regard, INFN provided access to the Parallel Semantic Search Engine (PSSE) service that

has been customized to address the requirements of the DARIAH CC project. In the new version of

the PSSE it has been included the possibility to search across OpenAgris, PubMed and DBPedia

liked data, support the integration with Altmetric23 data and increase both speed and fault

tolerance of the whole service. Next steps will be the link to dictionaries provided by the A&H

community. Thanks to this service, users from the A&H research community can search in the e-

Infrastructure Knowledge Base, in more than 100 languages across more than 30 million resources

contained in the thousands of semantically enriched OADRs and DRs.

The multi-layered architecture of the Parallel Semantic Search Engine is presented in Fig. 2 where

both the official and “de facto” Semantic Web standards and technologies24 adopted are indicated

by small logos. The first two components of the service are described below Fig. 2.

22

 www.gridpp.ac.uk/wiki/DPM_Install
23

 www.altmetric.com
24

 http://semanticweb.org/wiki/Semantic_Web_standards

http://www.gridpp.ac.uk/wiki/DPM_Install
http://www.altmetric.com/
http://semanticweb.org/wiki/Semantic_Web_standards

 EGI-Engage

 14

Figure 2 – Architecture of the Parallel Semantic Search Engine

2.3.1 Metadata Harvester

As shown in Fig. 2, the metadata harvester is a process running either on a Grid or on a Cloud

infrastructure which consists of the following steps

1. Obtain the address of each repository publishing an OAI-PMH standard25 endpoint;

2. Retrieve, using the OAI-PMH repository address, the related Dublin Core26 encoded

metadata in XML format;

3. Get the records from the XML files and transform the metadata in RDF format , using the

Apache Jena API27;

4. Save the RDF files into a Virtuoso28 triple store according to an OWL-complaint ontology built

using Protège29.

2.3.2 Semantic-Web Enricher

Each RDF file retrieved and saved in the Virtuoso triple store is mapped onto a Virtuoso Graph that

contains the ontology expressly deployed for the search engine, shown in Fig. 3 for the sake of

completeness. The ontology, built using Dublin Core and FOAF standards, consist of:

 Classes that describe the general concepts of the domain: Resource, Author, Organisation,

Repository and Dataset (where Resource is a given open access document);

 Object properties that describe the relationship among the ontology classes;

25

 www.openarchives.org/phm
26

 www.dublincore.org
27

 http://jena.apache.org
28

 http://virtuoso.openlinksw.com
29

 http://protege.standford.edu

http://www.openarchives.org/phm
http://www.dublincore.org/
http://jena.apache.org/
http://virtuoso.openlinksw.com/
http://protege.standford.edu/

 EGI-Engage

 15

 Data properties (or attributes) that contain the characteristics or classes’ parameters.

The third, and high-level, component is the Search Engine itself, which is described in details in the

next sub-section.

Figure 3 – Schema of the ontology used for the e-Infrastructure Knowledge Base

2.3.3 Search Engine

The home page of the Parallel Search Engine customized for the DARIAH CC project is shown in

Fig. 4. Using the portlet, visitors can enter a keyword (or more keyword at the same time) and

submit a SPARQL query to the Virtuoso triple store. The service is currently configured to

simultaneously search across the above e-Infrastructure Knowledge Base30, Europeana31, Cultura

Italia32, Isidore33, OpenAgris34, PubMed35 and DBpedia36 platforms. Others repositories can easily

be added since the service has been designed with modular plugins and the searches are made in

parallel using different Java threads.

30

 www.chain-reds.eu/web/old-project/knowledge-base
31

 http://europeana.ontotext.com/sparql
32

 http://dati.culturaitalia.it/sparql
33

 http://rechercheisidore.fr/sparql/
34

 http://202.45.139.84:10035/catalogs/fao/repositories/agris#query
35

 http://pubmed.bio2rdf.org/sparql
36

 http://dbpedia.org/sparql

http://www.chain-reds.eu/web/old-project/knowledge-base
http://europeana.ontotext.com/sparql
http://dati.culturaitalia.it/sparql
http://rechercheisidore.fr/sparql/
http://202.45.139.84:10035/catalogs/fao/repositories/agris#query
http://pubmed.bio2rdf.org/sparql
http://dbpedia.org/sparql

 EGI-Engage

 16

The home page of the parallel SSE37 tailored to address the requirements of the A&H community is

presented in Fig. 4.

 From the text field researchers can enter a keyword and submit in parallel SPARQL queries across

several digital repositories.

 Figure 4 – Typical results of the given query

37

 http://csgf.egi.eu/dariah-sse-parallel

http://csgf.egi.eu/dariah-sse-parallel

 EGI-Engage

 17

The results of a given query are listed in the summary view shown at the bottom part of Fig. 4. For

each record found, the title, the author(s) and a short description of the corresponding resource

are provided. Clicking on “More Info”, visitors can access the detailed view of the resource, as

shown in Fig. 5.

Figure 5 – Detailed view of a record found by the Parallel Semantic Search Engine

In the “Dataset information” panel users get the link to the open access document and, if existing,

to the corresponding dataset. Clicking on the “Altmetrics”38 link, it is possible to monitor the

impact of the discovered result in the academia. Clicking on the “Linked data” tab, which appears

at the top of the summary view, users can select one of more of the resources found and get a

graphic view of the semantic connections among Authors, Subjects and Publishers, as shown in

Fig. 6.

38

 http://www.altmetric.com/

http://www.altmetric.com/

 EGI-Engage

 18

Figure 6 – Representation of the resource with all its metadata with LodLive

2.4 Integration and dependencies

gLibrary 2.0 requires a MongoDB (>3.x)39 server running. It is used to maintain

repositories' configurations and also for metadata and data records storage for local

repositories. Node.js (> 0.12)40 is required too.

Being a server service, a tool that ensures it indefinitely runs or restarts automatically is

recommended. We have successfully deployed gLibrary both with forever41 and pm242. For

testing purposes, Nodemon43 is a valid option.

The Parallel Semantic Search Engine service can easily be installed deploying a simple JSR

286 compliant portlet in the Application Server. For this pilot we have tested the Parallel

Semantic Search Engine on GlassFish (v3.1.1) as Application Server.

To graphically represent the resource with all its metadata with LodLive44, the tool has to

be installed separately in the application server. Instructions to install and configure

LodLive are the following:

]$ sh <glassfish_path>/bin/asadmin –u liferayadmin \

 –W <glassfish_path>/domain/liferay/config/local-password deploy LodLiveGraph.war
45

39

 https://www.mongodb.org
40

 https://nodejs.org/
41

 https://github.com/foreverjs/forever
42

 https://github.com/Unitech/pm2
43

 https://github.com/remy/nodemon
44

 https://github.com/dvcama/LodLive

https://www.mongodb.org/
https://nodejs.org/
https://github.com/foreverjs/forever
https://github.com/Unitech/pm2
https://github.com/remy/nodemon
https://github.com/dvcama/LodLive

 EGI-Engage

 19

3 Requirements

Cloud computing has already proven it can deliver lower IT costs, reduce infrastructure

complexity, enhance flexibility and deliver high-quality new services. This include also the

possibility to deal with/exchange dynamic data among computing centres in a user-transparent

way, preventing data loss due to localized disasters. In this deliverable we have presented a

solution to manage digital repository in cloud-based infrastructure.

3.1 Functional Requirements

The PSSE service:

 Aims to correlate scientific papers to datasets used to produce them and to discover

data and documents in an easy way;

 Provides a simple and very intuitive user-friendly interface to allow researchers with

limited ICT skills to search keywords in different digital repositories. Results of these

queries are presented in table format. ;

 Can be easily deployed on GlassFish Application server and be accessed anytime and

everywhere as a Web service;

 Has an harvester process to link Open Access Repositories (OAR) and Data

Repositories (DRs) that can be executed both on Grid and Cloud infrastructures.

3.2 Non-functional Requirements

Performance

 Speed and fault tolerance for the parallel SSE have been improved with Java threads

to run SPARQL queries in parallel in different Open Access Repositories;

 To avoid users wait too long, a timed-out feature has been included to stop the

search if no entries are found in 1 minute

Availability

 Source codes for gLibrary and the SSE services are available on GitHub. INFN will

keep documentations and source codes updated;

 Both services will be available 24h, 7*365 for end-users and will be accessed by

varying number of users;

 Travis Integration tests are implemented.

45

 https://github.com/osct/LodLiveGraph/blob/master/LodLiveGraph.war

https://github.com/osct/LodLiveGraph/blob/master/LodLiveGraph.war

 EGI-Engage

 20

4 Feedback on satisfaction

Semantic search offers interesting information to researchers in general and to the culture

heritage community in particular. A number of humanities related searches were attempted

(linguistics, history) and the search engine performed as expected on each occasion. The software

used, the features and the architecture are outlined and exhaustive, references to the software

used are reported. The document explains in a clear way the background framework of the

DARIAH competence centre and the two use cases (mini-projects) developed within it.

5 Future plans

To raise the awareness of A&H researchers about the necessity of digital research, the two

services will be presented during workshops, webinars and/or training courses that will be

organized by the DARIAH CC project.

This will contribute to advertise the project results and, based on the feedback received from the

community, pave the way to drive the further development of these services and/or identify new

areas of collaborations.

Future developments include the possibility to:

 Improve the response time that too long if compared with more traditional search engines

users are used to;

 Do some preliminary steps to increase the quality of the metadata harvested. The low

quality of metadata is very well known problem when creating search engines from existing

external data sources. The point is that the quality of the service as perceived by the user

strongly depends also on the quality information retrieved. This quality of the metadata also

can also negatively affect the underlying generation of semantic links;

 Enrich the information accessed through the Parallel Semantic Search Engine including some

general-purpose and domain-specific repositories (e.g. GENONAMES46) and dictionaries (e.g

GERMANET47 andISLEX48);

 Extend the ontology based on Protègè to include DARIAH-specific knowledge;

 Discuss about possible integration with other high-level tools developed in the context of

the DARIAH CC project;

 Include other DARIAH-specific tools.

46

 www.genonames
47

 www.sfs.uni-tuebingen.de/GermaNet/
48

 www.islex.is/

http://www.genonames/
http://www.sfs.uni-tuebingen.de/GermaNet/
http://www.islex.is/

 EGI-Engage

 21

Appendix I. gLibrary 2.0 API Docs

Server endpoint
http://glibrary.ct.infn.it:3500

Authentication

Before sending any request, users must be authenticated. Currently, the authentication is based on
username/password couple. This will return a session token id that needs to be used with any of the
following requests. There are two options to send the access_token:

• via a query parameter:

 curl -X GET http://glibrary.ct.infn.it:3500/v2/repos?access_token=6Nb2
ti5QEXIoDBS5FQGWIz4poRFiBCMMYJbYXSGHWuulOuy0GTEuGx2VCEVvbpBK

• via HTTP headers:

ACCESS_TOKEN=6Nb2ti5QEXIoDBS5FQGWIz4poRFiBCMMYJbYXSGHWuulOuy0GTEuGx2VCEVvb
pBK

curl -X GET -H "Authorization: $ACCESS_TOKEN" \
http://glibrary.ct.infn.it:3500/v2/repos

Login

To obtain a session id, you need to pass a valid username and password to the following endpoint:

POST /v2/users/login HTTP/1.1

{
 "username":"admin",
 "password":"opensesame2015"
}

Alternatively you can use the email address instead of the username.

User creation

New users are created issuing requests to the following endpoint:

POST /v2/repos/users HTTP/1.1

The mandatory parameters are:

• username

• email

• password

 EGI-Engage

 22

Please notice that the created user, has no access to any repository yet. The admin user needs to
assign the created user to one or more repositories and/or collections, by properly setting the ACLs
(see below).

Authorization

Currently, gLibrary allows the setting of separate permissions to repositories, collections and items
for each user. The default permission set to a newly created user is NO ACCESS. It is admin's
responsibility to properly set the ACLs per each user. Currently an instance of gLibrary server has just
one super-admin (the admin user), but in future releases will allow to define more administrators
per repository.

ACLs

To set ACLs, the super admin can issue requests to two separate endpoints:

POST /v2/repos/<repo_name>/_acls http/1.1

and/or

POST /v2/repos/<repo_name>/<collection_name>/_acls http/1.1

The body of each requests has the following attributes:

attribute Description

username the username of the user to which we are adding permissions to

permissions valid options are "R" and "RW"

items_permissions (for collections only) valid options are "R" and "RW"

permissions refers to repository or collection permission, according to where the request is issued:

• Repository:

– "R" grants a user the capability of listing its content (i.e. list of collections)

– "RW" grants a user the capability of creating (or importing) new collections or deleting
them

• Collection:

– "R" grants a user the capabilities to list the collection's content (list of items)

– "RW" grants a user the capabilities of creating, updating, deleting the collection's items

items_permissions is valid only for collections' ACL and refers to:

• "R" grants a user the capability to download items' replicas

• "RW" grants a user the capability to create, update and upload replicas

Repositories

A gLibrary server can host one or more repositories. A repository should be created before creating
new collections or importing existing db tables or NoSQL collections as gLibrary collections.

 EGI-Engage

 23

A repository has a name, a path, that represents the access point in the API path, and optionally a
coll_db (TODO: rename as default_collection_db). If the default DB is defined at the
moment of creation, this will be the default backend DB for all the collections created or imported of
the given repository. However, this can be overridden per each collection, if new DB info is provided
when the collection is created

List of all the repositories hosted on the server
GET /v2/repos/ HTTP/1.1

Returns a list of all the repositories managed by the given gLibrary server. Each repository has the
following properties:

name Description

name Repository name

path Direct endpoint of the given repository

collection_db Default database where collection data should be stored. Can be overriden per
collection

host FQDN of the default collection DB

port port number of the default collection DB

username username of the default collection DB

password password of the default collection DB

database name of the database to use for the default collection DB

type type of the default collection db (mysql, postgresql, mongodb)

Example:

{
 "name": "infn",
 "path": "http://glibrary.ct.infn.it:5000/v2/infn",
 "coll_db": {
 "host": "giular.trigrid.it",
 "port": 3306,
 "username": "root",
 "password": "*************",
 "database": "test",
 "type": "mysql"
 }
}

Each repository can have a collection_db where collections data will be stored. If no
collection_db is specified, the repository will use the local non-relational mongoDB that
comes with gLibrary. Each repository's collection can override the collection_db.

Create a new repository
POST /v2/repos/ HTTP/1.1

 EGI-Engage

 24

Create a new repository. A default collection_db can be specified. It will store all the collections
in case no collection_db parameter is specified during collection creation. This property is
optional. If missing it will use the local MongoDB server.

Parameters

name type Description

name string Name of the repository (will be the API path)

collection_db object (Optional) Default database where collection data should be stored. Can
be overridden per collection

host string FQDN of the default collection DB

port number port number of the default collection DB

username string username of the default collection DB

password string password of the default collection DB

database string name of the database to use for the default collection DB

type string type of the default collection db (mysql, postgresql, mongodb)

default_storage object (Optional) specifies the default storage for replicas

baseURL string it's full path of Swift Container or Grid SURL for replica uploads

type string "swift" or "grid" storage

Note: name is a lowercase string. Numbers and underscores are allowed. No special characters are
permitted

Example:

POST /v2/repos/ HTTP/1.1
Content-Type: application/json

{
 "name": "infn",
 "collection_db": {
 "host": "glibrary.ct.infn.it",
 "port": 5432,
 "username": "infn_admin",
 "password": "******",
 "database": "infn_db",
 "type": "postgresql"
 },
 "default_storage": {
 "baseURL": "http://stack-server-01.ct.infn.it:8080/v2/AUTH_51b2f4e
508144fa5b0c28f02b1618bfd/gridcore",
 "type": "swift"
 }
}

Be sure to set Content-Type to application/json in the Request Headers.

 EGI-Engage

 25

Collections

Each repository contains one or more collections. Collections are abstractions over relational
database tables or non-relational database "collections", exposing their records over REST API and
JSON format. The available API allows the repository administrator to create new collection,
specifying a schema in the case of relational collection, or importing existing tables/NoSQL
collections. If not specified, collections will be created/imported from the default coll_db (TODO:
default_collection_db) of the containing repository. Otherwise, each collection can retrieve
data from local or remote database, overriding the default repository value, using the coll_db
(TODO: collection_db) property.

Create a new collection
POST /v2/repos/<repo_name>/ HTTP/1.1

Parameters

name type description

name string Name of collection

schema object (Optional for non-relational DB) define the schema of the new collection

collection_db string (Optional) Default database where collection data should be stored. Can
be overridden per collection

host string FQDN of the default collection DB

port number port number of the default collection DB

username string username of the default collection DB

password string password of the default collection DB

database string name of the database to use for the default collection DB

type string type of the default collection db (mysql, postgresql, mongodb)

Schema is a JSON object listing the name of the attributes and their types in case we want a non-
relational collection. Each property represents the name of an attribute and the value is another
object with the following keys:

name description

type type of the attribute's value. Example of allowed types are: string, number, 'boolean',
'date'

required whether a value for the property is required

default default value for the property

id whether the property is a unique identifier. Default is false

For a full list of the supported type, please refer to
https://docs.strongloop.com/display/public/LB/LoopBack+types and
https://docs.strongloop.com/display/public/LB/Model+definition+JSON+file#ModeldefinitionJSONfil
e-Generalpropertyproperties.

Example (creation of a new collection on a relational db):

https://docs.strongloop.com/display/public/LB/LoopBack+types
https://docs.strongloop.com/display/public/LB/Model+definition+JSON+file#ModeldefinitionJSONfile-Generalpropertyproperties
https://docs.strongloop.com/display/public/LB/Model+definition+JSON+file#ModeldefinitionJSONfile-Generalpropertyproperties

 EGI-Engage

 26

POST /v2/repos/infn/ HTTP/1.1
Content-Type: application/json

{
 "name": "articles",
 "schema": {
 "title": {"type": "string", "required": true},
 "year": "integer",
 "authors": "array"
 }
}

The previous request will create a collection named articles into the infn repository. The
collection data will be stored into the default coll_db specified for the infn repository (that
according to the previous example is a postgreSQL db named infn_db)

Import data from an existing relational database

If you want to create a collection that maps an existing db table, two additional properties are
available:

name description

import it should set to true

tablename name of the database table of the database to be imported

Example (creation of a new collection with data coming from an existing relational db):

POST /v2/repos/infn/ HTTP/1.1
Content-Type: application/json

{
 "name": "old_articles",
 "import": "true",
 "tablename": "pubs",
 "collection_db": {
 "host": "somehost.ct.infn.it",
 "port": 3306,
 "username": "dbadmin",
 "password": "******",
 "database": "test_daily",
 "type": "mysql"
 }}

The previous request will create the collection old_articles import data from an existing
database, named test_daily and providing access to its table named pubs.

List all the collections of a repository
GET /v2/repos/<repo_name>/ HTTP/1.1

 EGI-Engage

 27

This API will return a JSON array with all the collections of <repo_name>. Each collection will have a
schema attribute, describing the schema of the underlying DB table. If the schema attribute is null
it means the collection has been imported and it inherits the schema of the underlying DB table. An
additional API is available to retrieve the schema of a given collection (see next API).

Example

GET /v2/repos/sports HTTP/1.1

[
 {
 "id": "560a60987ddaee89366556d2",
 "name": "football",
 "path": "/sports/football",
 "location": "football",
 "coll_db": null,
 "import": "false",
 "schema": null
 },
 {
 "id": "560a60987ddaee89366556d3",
 "name": "windsurf",
 "path": "/sports/windsurf",
 "location": "windsurf",
 "coll_db": null,
 "import": "false",
 "schema": {
 "rider": {
 "type": "string",
 "required": true
 },
 "nationality": {
 "type": "string",
 "required": false
 },
 "teamid": {
 "type": "number",
 "required": false
 }
 }
 }
]

The sports repository has two collections football and windsurfs. The first one is stored on
the default coll_db repository DB and its schema-less, while the second one has a predefined
schema.

Retrieve the schema of a collection
GET /v2/repos/<repo_name>/<collection_name>/_schema HTTP/1.1

 EGI-Engage

 28

If the given collection_name is hosted in a relation database table, this API will return a JSON
object with the schema of the underlying table.

Example

GET /v2/repos/comics/dylandog/_schema HTTP/1.1

{
 "id": {
 "required": true,
 "length": null,
 "precision": 10,
 "scale": 0,
 "id": 1,
 "mysql": {
 "columnName": "id",
 "dataType": "int",
 "dataLength": null,
 "dataPrecision": 10,
 "dataScale": 0,
 "nullable": "N"
 }
 },
 "fragebogenId": {
 "required": true,
 "length": null,
 "precision": 10,
 "scale": 0,
 "mysql": {
 "columnName": "fragebogen_id",
 "dataType": "int",
 "dataLength": null,
 "dataPrecision": 10,
 "dataScale": 0,
 "nullable": "N"
 }
 },
 "nummer": {
 "required": true,
 "length": 256,
 "precision": null,
 "scale": null,
 "mysql": {
 "columnName": "nummer",
 "dataType": "varchar",
 "dataLength": 256,
 "dataPrecision": null,
 "dataScale": null,
 "nullable": "N"

 EGI-Engage

 29

 }
 }
}

Delete a collection
DELETE /v2/repos/<repo_name>/<collection_name> HTTP/1.1

This API will delete the given collection_name from repo_name. Actual data on the backend
table should not be deleted. It's a sort of unlinking, so that the db table/nosql collection will not be
accessible anymore from the gLibrary REST API.

Items (previously entries)

Items represent the content of a given collection. If a collection is hosted in a relational database,
each item is a table record, while if it's non-relational it's the document/object of the NoSQL
collection. Items can be listed and queried via the filtering system, created/added, updated and
deleted, using the REST API provided by gLibrary.

Item creation
POST /v2/repos/<repo_name>/<collection_name> HTTP/1.1

This API add a new item into the given collection_name. Item content have to be provided as a
JSON object. In case of the relational collection it should conform to the collection schema. In the
case of attributes that have no corresponding column table, their values will be ignored silently. If
the API will be successful a new record or document will be added to the underlying table or NoSQL
collection.

Example

POST /v2/repos/infn/articles HTTP/1.1

{
 "title": "e-Infrastructures for Cultural Heritage Applications",
 "year": 2010,
 "authors": ["A. Calanducci", "G. Foti", "R. Barbera"]
}

Item listing
GET /v2/repos/<repo_name>/<collection_name>/ HTTP/1.1

Retrieve the items inside the collection_name as a JSON array of objects. Each object is a record
of the underlying table (in case of relational DB) or document (in case of NoSQL collection). By
default the first 50 items are returned. See below the description of filtering system in the query
section to change this behavior.

Example

GET /v2/repos/gridcore/tracciati HTTP/1.1

 EGI-Engage

 30

Item detail
GET /v2/repos/<repo_name>/<collection_name>/<item_id> HTTP/1.1

Retrieve the detail of an item with a given_id. It will return a JSON object with the attributes
mapping the schema of the given collection_name.

Example

GET /v2/repos/infn/articles/22

Item deletion
DELETE /v2/repos/<repo_name>/<collection_name>/<item_id> HTTP/1.1

Delete the given item_id of the the collection collection_name. Delete will be successful only if
the given item has no replica. You can force the deletion of item with replicas setting:

{
 "force": true
}

in the request body.

Item update
PUT /v2/repos/<repo_name>/<collection_name>/<item_id> HTTP/1.1

Update one of more attributes of the given item_id. The request body has to contain a JSON object
with the attribute-value pair to be updated with the new values.

Queries with filters
GET /v2/repos/<repo_name>/<collection_name>?filter[<filterType>]=<spec>&fi
lter[...]=<spec>... HTTP/1.1

where filterType is one of the following:

• where

• include

• order

• limit

• skip

• fields

and spec is the specification of the used filter.

Additional info on the full query syntax can be found here49

49

 https://docs.strongloop.com/display/public/LB/Querying+data#Queryingdata-RESTsyntax

https://docs.strongloop.com/display/public/LB/Querying+data#Queryingdata-RESTsyntax

 EGI-Engage

 31

Replicas

Each item can have one or more attachments, generally the same file stored in different locations,
such as Cloud storage servers (Swift based) or Grid Storage Elements (DPM based). So we call them
also replicas.

Replica creation
POST /v2/repos/<repo_name>/<collection_name>/<item_id>/_replicas/ HTTP/1.1

name description

uri (optional) provides the full storage path of where the replica will be saved

type (optional) specifies the type of storage backend. Currently "swift" or "grid"

filename The filename of the given replica

The first two parameters (uri and type) are optionals if a default_storage attribute has been
set for the given repository. If not, they need to be specified, otherwise the request to the API will
fail.

Please note that this API will just create a replica entry for the item, but no actual file will be
uploaded from the client. Once the replica has been created you need to use the Upload API to
transfer the actual file payload.

Retrieve all the replicas of the given item_id
GET /v2/repos/<repo_name>/<collection_name>/<item_id>/_replicas/ HTTP/1.1

Download a given replica
GET /v2/repos/<repo_name>/<collection_name>/<item_id>/_replicas/<rep_id> HTTP/1.1

Upload a replica

Upload the file payload to the destination storage. This requires two subsequent API request.

First, ask for the destination endpoint for the upload with:

PUT /v2/repos/<repo_name>/<collection_name>/<item_id>/_replicas/<rep_id> H
TTP/1.1

This will return a temporaryURL valid a few seconds (example):

{
 "uploadURI": "http://stack-server-01.ct.infn.it:8080/v2/AUTH_51b2f4e5081
44fa5b0c28f02b1618bfd/gridcore/ananas.jpg?temp_url_sig=6cd7dbdc2f9e429a1b8
9689dc4e77f1d2aadbfc8&temp_url_expires=1449481594"
}

Then use the URL returned by the previous API to upload the actual file, using the PUT verb again
(example):

 EGI-Engage

 32

PUT http://stack-server-01.ct.infn.it:8080/v2/AUTH_51b2f4e508144fa5b0c28f0
2b1618bfd/gridcore/ananas.jpg?temp_url_sig=6cd7dbdc2f9e429a1b89689dc4e77f1
d2aadbfc8&temp_url_expires=1449481594 HTTP/1.1

It will return a 201 status code, if the upload will complete successfully

Delete a replica
DELETE /v2/repos/<repo_name>/<collection_name>/<item_id>/_replicas/<rep_id
> HTTP/1.1

Relations

One to many relations can be created between collections of the same repository, properly setting a
foreign key.

To set the relation among two collections, issue the following request to the collection in the "one"
side of the one-to-many relation:

POST /v2/repos/<repo_name>/<collection_name>/_relation HTTP/1.1

The body of the request needs to provide two attributes:

name description

relatedCollection the "many" side of the one-to-many relation

fk the foreign key of relatedCollection that match the id of <collection_name>

In practice, you should set the fk in such a way collection_name.id ==
relatedCollection.fk

Retrieve related items
GET /v2/repos/<repo_name>/<collection_name>/<item_id>/<related_collection>

Retrieve all the items from related_collection of the given item_id.

Contributors

Antonio Calanducci (antonio.calanducci@ct.infn.it)

Antonio Di Mariano (antonio.dimariano@gmail.com)

mailto:antonio.calanducci@ct.infn.it
mailto:antonio.dimariano@gmail.com

