	
	EGI-Engage

[image: image1.png]

EGI-Engage
First release of the Operational tools
D3.4
	Date
	25 January 2016

	Activity
	JRA1 E-Infrastructure Commons
 JRA 1.4 Operations Tools

	Lead Partner
	CNRS

	Document Status
	DRAFT

	Document Link
	https://documents.egi.eu/document/XXX

Abstract
COPYRIGHT NOTICE
[image: image2.png]

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EGI-Engage project is co-funded by the European Union Horizon 2020 programme under grant number 654142.
DELIVERY SLIP
	
	Name
	Partner/Activity
	Date

	From:
	L’Orphelin Cyril
	CNRS
	12/01/2016

	Moderated by:
	
	
	

	Reviewed by
	
	
	

	Approved by:
	
	
	

DOCUMENT LOG
	Issue
	Date
	Comment
	Author/Partner

	v.1
	12/01/16
	Initial part for the Operations Portal
	Cyril L’Orphelin

	v1.2
	18/01/16
	Add of GOC DB Part
	David Meredith

	v1.3
	22/01/16
	Add of ARGO Part
	Christos Kanellopoulos

	v1.4
	25/01/16
	Add of Security Monitoring Part
	Daniel Kouril

TERMINOLOGY
A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/
Contents
51.
Executive summary

72.
Operations Portal

72.1.
Introduction

92.2.
Service architecture

112.3.
Release notes

112.3.1.
Requirements covered : Operations Portal

122.3.2.
Requirements covered : Vapor

132.4.
Feedback on satisfaction

152.5.
Future plans

152.5.1.
Operations Portal

152.5.2.
Vapor

163.
ARGO

163.1.
Introduction

173.2.
Service architecture

193.3.
Release Notes

193.3.1.
Requirements covered in the release

203.3.2.
ChangeLog

223.4.
Feedback on Satisfaction

223.5.
Future Plan

243.6.
Appendix - ARGO Development Process

294.
GOC DB

294.1.
Introduction

304.2.
Service architecture

304.3.
Release notes

304.3.1.
Requirements covered in the release

314.4.
Feedback on satisfaction

314.5.
Future plans

335.
Security Monitoring : Secant

335.1.
Introduction

355.2.
Service Architecture

355.2.1.
High-Level Service Architecture

355.2.2.
Integration and dependencies

365.3.
Release notes

365.3.1.
Requirements covered in the release

365.4.
Feedback on satisfaction

365.5.
Future Plan

1.
Executive summary
This milestone records the release of the Operational Tools:
· Operations Portal and the Vapor application
· ARGO and Messaging System
· GOC DB
· The security monitoring.
The operations tools have to be continued improved to adapt them to technology evolution and to satisfy new requirements emerging from service providers and user communities.
The different developments have been organized in order to satisfy initial requirements.
· Implement a modular architecture to manage AAI allowing to create easy-to-develop plugins for each AAI supported by EGI in the near future;
· Display publicly all the non-confidential information;
· Make them able to serve any research infrastructure;
· Evolve and improve their support for cloud resources;
· Define interfaces to exchange information with analogue tools belonging to other e-Infrastructures or RIs.
· Expose internal data through a REST API interface.
2.
Operations Portal
2.1.
Introduction
	Tool name
	Operations Portal

	Tool url
	http://operations-portal.egi.eu

	Tool wiki page
	https://wiki.egi.eu/wiki/Operations_Portal

	Description
	The Operations Portal provides VO management functions and other capabilities which support the daily operations of EGI. It is a central portal for the operations community that offers a bundle of different capabilities, such as the broadcast tool, VO management facilities, a security dashboard and an operations dashboard that is used to display information about failing monitoring probes and to open tickets to the Resource Centres affected. The dashboard also supports the central grid oversight activities. It is fully interfaced with the EGI Helpdesk and the monitoring system through messaging. It is a critical component as it is used by all EGI Operations Centres to provide support to the respective Resource Centres. The Operations Portal provides tools supporting the daily running of operations of the entire infrastructure: grid oversight, security operations, VO management, broadcast ,VO metrics .
 VAPOR: the Vo Administration and operations PORtal, is a generic tool to assist community managers and support teams in performing their daily activities. The application provides resources status indicators, statistical reports, data management tools .

	Customer of the tool
	EGI; NGI; RI; Resource Provider; Research Communities

	User of the service
	Site admins; Operations Managers; VO Manager; Vo users;

	User Documentation
	OPS PORTAL: https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of_the_dashboard
VAPOR : http://operations-portal.egi.eu/vapor_dev/globalHelp

	Technical Documentation
	https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of_the_dashboard

	Product team
	IN2P3/CNRS

	License
	Apache2

	Source code
	https://gitlab.in2p3.fr/groups/opsportal

2.2.
Service architecture
The Operations Portal has been built as an integration platform, allowing for strong interaction among existing tools with similar scope but also filling up gaps wherever functionality has been lacking.
The information on display is retrieved from several distributed static and dynamic sources – databases, Grid Information System, Web Services, etc. – and gathered within the portal.
The architecture of the portal is composed of three modules:
· A database – to store information related to the users or the VO
· A web module – graphical user interface – which is currently integrated into the Symfony framework
· A Data Aggregation and Unification Service named Lavoisier
Lavoisier is the component used to store, consolidate and “feed” data into the web application.
The global information from the primary and heterogeneous data sources (e.g. BDII, GOC DB, NAGIOS, GGUS, ARGO...) is retrieved with the use of the different plug-ins in Lavoisier. The information is structured and organized within configuration files in Lavoisier. Finally, all of this information is available to the Web application, without the need for any further computations, which increases the efficiency of the Web Interfaces. This architecture permits the web application to use the caches, even if a primary source is unavailable; hence we trigger access only to the information we need on the web page: The information is structured and therefore the primary data sources do need not be accessed hundreds of times but rather just a subset of the data that is already stored. Finally, we refresh the data sources only as needed and only when an action has been triggered. Last but not least, it is very easy to add a new data source in this model.
As depicted in the picture we have currently only 2 critical dependencies GGUS and RtIr (red arrows on the right of the picture) .
These dependencies are due to the communication via web services between the Operations Portal and GGUS/RTIR for the creation or the update of tickets. For the rest of data sources the cache mechanism of Lavoisier permits us to ensure the integrity of the application in case of failures of third parties providers.
[image: image3.jpg]External Web service

OPERATIONS
DASHBOARD
DASHBOARD
SECURITY
DASHBOARD
BROADCAST
REPOSITORY

Web application
OPERATIONS PORTAL

Local Web service
LAVOISIER

§32dN0S viva

Primary data sources

For the VAPOR application we use the same architecture with a dedicated instance of Lavoisier. Information is aggregated from several top BDII objects and from the GOCDB and also local scripts.
2.3.
Release notes
In this section I will describe separately the development done within the historical Operations Portal and the new application called Vapor.
2.3.1.
Requirements covered: Operations Portal
During this period we have try to improve existing features and we have also have adapted some of them for new/emerging needs.
Release 3.2
· The possibility to create from the security dashboard a ticket into EGI RTIR.
· Metrics for the security dashboard
· Changes into the overview of the security dashboard.
· Modification on the update of the age of the alarms
· Improvement on the metrics related to users.
Release Note : http://operations-portal.egi.eu/home/tasksList/release_id/12
Release 3.2.1
A new module related to metrics has been added:
· used for EGI reports
· based on 6 months period
· about users distribution over disciplines, CA , VO, and incoming VOs
· with the possibility to export in different formats
· with a detailed history
Url : http://operations-portal.in2p3.fr/metrics/metricsReports
Release Note : http://operations-portal.egi.eu/home/tasksList/release_id/12
Release 3.2.2
A section dedicated to VO acknowledgment statement has been added in the VO ID Card
Release Note : http://operations-portal.egi.eu/home/tasksList/release_id/18
Release 3.3
1. Security dashboard
· Notifications about security issues
· Url : https://operations-portal.egi.eu/csiDashboard/notificationsIssues
· Capture WN instead of host: the Worker node is displayed (when available) instead of the host name into the list of issues
· Metrics: we have put in place reports for the Nagios issues
· Url: https://operations-portal.egi.eu/csiDashboard/report
· sites under certification process: we have extended the list of sites to display potential issues on candidate sites
2. VO ID cards
· New section in the VO ID Card for Portal/Web Service Robot
· Url : https://operations-portal.egi.eu/vo/rbCert
· Add filter input in the Vo update page
3. Dashboard
· Non-production alarms in ROD dashboard: if an alarm is raised on a service which is not production in GOCDB it won't be visible in the Operator page
· The template of the tickets has been improved.
Release Note : http://operations-portal.egi.eu/home/tasksList/release_id/19
2.3.2.
Requirements covered: Vapor
Upgrade of Vapor configuration
The application has been developed during EGI-inspire and was deployed partially at I3S in Nice . So a part of the work was to migrate it and deploy at CCIN2P3.
During this phase we have also upgrade the configuration of Lavoisier to be compliant with last version.
Update of the Glue Schema
Then we have ‘translated’ the queries from Glue1.3 to Glue2.
We have also review the architecture in order to improve performances and to extend a part of the application to all VOs (currently restricted to a subset of VOs: biomed, compchem, enmr.eu, vlemed, shiwa-workflow.eu, see, sagrid, vo.france-grilles.fr).
Capture Cloud Resources
We have extended the capture of the resources to the cloud resources.
The cloud resources are now visible into the resource browser even if we have identified that the information was limited for such type of resources.
New Module: GLUE2 resource browser
The aim of this tool is to give an overview of the EGI resources.
The information is based on Glue2 publication into Top-Bdii.
The main features are:
· Distribution of the resources over NGI, Sites and VO.
· Information about Computing, Storage and other services (VOMS , LFC , BDII)
· Information about Access/Mapping Policy
· Information about statuses of the services and the potential downtimes
· Different format to export information: CSV, XML, Json
· Information about cloud services
· Information about badly published resources
Release Notes : http://operations-portal.egi.eu/vapor_dev/releases
2.4.
Feedback on satisfaction
The releases have been scheduled regularly in order to avoid to deliver a huge amount of code in one time . The aim is also to schedule “thematic” releases to test it with the corresponding users (e.g for a VO oriented release the tests will be done by VO experts, for a dashboard oriented release tests will be performed by operators ..).
For each release a set of users have been identified to check the features and improvements on the Operations Portal. These different test phases have been coordinated with the OTAG team .
Some releases have been postponed by lack of feedback or by lack of testers.
	Release ID
	Release Date
	Status
	BugFix
	Testing
	Prototype

	3.2
	26.05
	Postponed due to a lack of details into the feedback
	25-26.05
	18.05-22.05
	15.05

	3.2
	07.07
	Released
	23-26.06
	16-22.06
	15.06

	3.2.1
	26.08
	Postponed to September due to a lack of testing users
	24-26.08
	19-24.08
	

	3.2.1
	29.09
	Released
	
	
	

	3.2.2
	05.11
	Released
	03-05.11
	27-29.10
	

	3.3
	28.12
	Released
	27-28.12
	20-26.12
	

For the VAPOR application a prototype is available since December 2015 and we are currently collecting feedback to provide a release in production before the end of February.
Prototype Url : http://operations-portal.egi.eu/vapor_dev

2.5.
Future plans
2.5.1.
Operations Portal
Software quality
· Migration of the whole code under gitlab
· Integration of the release process with gitflow
· Automation of deployment
· Migration from symfony 1.5 to symfony 3:
· with a refactorisation of the code
· with the multiplication of unit tests
Features
· Complete rewriting of the Downtime Notification System
· Integration of Perun authentication system
· Support for federated logins using SAML
2.5.2.
Vapor
Software quality
· Usage of SonarQube : open source software used to measure the code quality and improve the continuous integration.
Features
· Replace Gstat Main Features
· Extend APIs
· Integrate cloud monitoring - to be discussed with Cloud Working Group
· Support for federated logins using SAML
3.
ARGO
3.1.
Introduction
	Tool name
	ARGO

	Tool url
	http://argo.egi.eu

	Tool wiki page
	Link to EGI wiki with description of the product
For JRA1 from https://wiki.egi.eu/wiki/Tools

	Description
	ARGO is a flexible and scalable framework for monitoring status, availability and reliability

	Customer of the tool
	EGI; NGI; RI; Resource Provider; Research Communities

	User of the service
	Site admins; Operations Managers; large research group

	User Documentation
	http://argoeu.github.io; http://argo.egi.eu

	Technical Documentation
	http://argoeu.github.io

	Product team
	GRNET, SRCE, CNRS

	License
	Apache License Version 2.0

	Source code
	https://github.com/ARGOeu/

3.2.
Service architecture
ARGO is a flexible and scalable framework for monitoring status, availability and reliability of services provided by infrastructures with medium to high complexity. It can generate multiple reports using customer defined profiles (e.g. for SLA management, operations etc) and has built-in multi-tenant support in the core framework.
ARGO Supports flexible deployment models and its modular design enables ARGO to integrate with external systems (such as CMDBs, Service Catalogs etc). During the report generation, ARGO can take into account custom factors such as the importance of a specific service endpoint, scheduled or unscheduled downtimes etc
[image: image4.png]

For the Availability & Reliability monitoring, ARGO relies on a modular architecture comprised of the following components:
The ARGO Monitoring Engine
For status monitoring, ARGO relies on Nagios. All probes developed for ARGO follow the Nagios conventions and can run on any stock Nagios box. ARGO provides an optional set of addons for the stock Nagios that provide features such as auto-configuration from external information sources, publishing results to external Message Brokers etc
Messaging
The Messaging service enables reliable asynchronous messaging for the EGI infrastructure. The current implementation of the Messaging service relies on a Message Broker Network of ActiveMQ services and uses the STOMP protocol for the publication and consumption of messages. The new version of the Messaging service is going to replace the STOMP interface with an HTTP interface which will make the implementation of new clients easier and the implementation more robust.
The ARGO Connectors
Through the use of custom connectors, ARGO can connect to multiple external Configuration Management Databases and Service Catalogs. Already there are connectors for the EGI and EUDAT e-Infrastructures.
The ARGO Consumer
The ARGO Consumer is ingesting monitoring results in real-time from external Message Brokers. The consumer is responsible for the initial pre-filtering of the monitoring results and encodes them using AVRO serialization format before passing to the Compute Engine.
The ARGO Compute Engine
A powerful and scalable analytics engine built on top of Hadoop and HDFS. The Compute Engine is responsible for the aggregation of the status results and the computation of availability and reliability of composite services using customer defined algorithms.
The ARGO Web API
The ARGO Web API provides the Serving Layer of ARGO. It is comprised of a high performance and scalable datastore and a multi-tenant REST HTTP API, which is used for retrieving the Status, Availability and Reliability reports and the actual raw metric results.
The ARGO Web UI
The default web UI is based on the Lavoisier Data Aggregation Framework.
3.3.
Release Notes
3.3.1.
Requirements covered in the release
As already mentioned ARGO is not a single software, but a suite of software components that each is managed independently. During PY1 there have been 15 releases of the ARGO components. During this period the following requirements have been covered:
ARGO Compute Engine & Web API
· Support for automatic re-computation triggers
· Support for multiple tenants
· Specification of the Data Ingestion API
· Specification and implementation of APIv2
· Delivery of computed status results through the API
ARGO Monitoring Engine
· probe framework
· fedcloud probes
· Implementation of central monitoring engine
· support documentation Guides
ARGO EGI Consumer and Connectors
· improved support for VOs
ARGO EGI Web UI
· ACL mechanism (support groups/roles)
· UI Enhancements
· Initial support for federated logins using SAML
ARGO POEM
· ACL mechanism (support groups/roles)
· Initial support for federated logins using SAML
· Design of probe publishing and management service
3.3.2.
ChangeLog
· 24/12/2015
- POEM [v0.11.0-4]
https://github.com/ARGOeu/poem/releases/tag/v0.11.0-4
· 30/11/2015
- EGI Web UI [v1.1.2-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.1.2-1
· 24/11/2015
- Compute Engine [v1.6.5-2]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.5-2
· 29/10/2015
- Compute Engine [v1.6.5-1]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.5-1
- Web API [v1.6.0-3]
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.0-3
- EGI Consumer [v1.4.1-1]
https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.4.1-1
- EGI Connectors [v1.4.4-6]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.4.4-6
- EGI Web UI [v1.1.0-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.1.0-1
· 11/09/2015
- EGI Connectors [v1.4.3-3]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.4.3-3
· 23/07/2015
- Compute Engine [v1.6.2-7]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.2-7
- EGI Connectors [v1.4.2-2]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.4.2-2
· 17/07/2015
- Compute Engine [v1.6.2-6]
- https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.2-6
· 01/07/2015
- EGI Web UI [v1.0.0-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.0.0-1
· 30/06/2015
- EGI Connectors [v1.4.2-1]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.4.2-1
· 11/06/2015
- EGI Web UI [v0.1.12-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v0.1.12-1
· 03/06/2015
- Compute Engine [v1.6.2-1]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.2-1
- Web API [v1.6.0-1]
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.0-1
- EGI Consumer [v1.4.0-15]
https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.4.0-15
- EGI Connectors [v1.4.1-5]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.4.1-5
· 31/03/2015
- Compute Engine [v1.6.1-1]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.1-1
- POEM [v0.10.7-2]
https://github.com/ARGOeu/poem/releases/tag/v0.10.7-2
- EGI Web UI [v0.1.8-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v0.1.8-1
· 04/03/2015
- Compute Engine [v1.6.0-6]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.0-6
- Web API [v1.5.1-4]
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.5.1-4)
- EGI Connectors [v1.3.1-16]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.3.1-16
- POEM [v0.10.6-3]
https://github.com/ARGOeu/poem/releases/tag/v0.10.6-3
- EGI Web UI [v0.1.5-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v0.1.5-1
· 06/02/2015
- Compute Engine [v1.6.0-2]
https://github.com/ARGOeu/argo-compute-engine/releases/tag/v1.6.0-2
- Web API [v1.5.1-2]
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.5.1-2
- EGI Consumer [v1.3.2-8]
https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.3.2-8
- EGI Connectors [v1.3.1-12]
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.3.2-8
- EGI Web UI [v0.1.0-1]
https://github.com/ARGOeu/argo-egi-web/releases/tag/v0.1.0-1
3.4.
Feedback on Satisfaction
The initial aim of ARGO was to replace the historical component SAM and especially the Web UI “My EGI” . This part has been completed and the new Web UI has been available in advance.
Different reviews have been coordinated with EGI Operations team to be sure that all needs were covered and all features were properly developed.
After these reviews some corrections have been done to satisfy plenty the operations team.
3.5.
Future Plan
ARGO Compute Engine
· API for data ingestion specification
· Separation of A/R and Metric stores
· API for data ingestion implementation
· Support for multiple monitoring engines running in active-active setup
· APIv2
· stability and performance improvements
ARGO Monitoring Engine
· Completion of the Centralised Monitoring Engine
· Fedcloud probes update
· stability and performance improvements
ARGO Web UI
· UI Enhancements
· Connect to the EGI IdP/SP Proxy
ARGO EGI Consumers and Connectors
· Use of CE ingestion api
· stability and performance improvements
ARGO POEM
· Support for probe management
· Connect to the EGI IdP/SP Proxy
· stability and performance improvements
ARGO Messaging
· APIv1 test implementation
· APIv1 final draft specification (ready for external party review)
· APIv1 final implementation
· APIv1 final specification
3.6.
Appendix - ARGO Development Process
The following text is a copy of the “ARGO Development Process” document. The latest version of the document can be found here:
https://docs.google.com/document/d/1W0pT-zcBHG1E_hfftW67DH01LBZC7zMKLlIgJTlsFh8/edit#
Open development
We follow an open development process. All the repositories of ARGO are hosted on Github under the ARGOeu organization. Each component that can be standalone, is hosted in its own repository in the ARGOeu organization.
Each component should have a CONTRIBUTING guidelines document, describing how contributions can be made. There will be a general CONTRIBUTING guidelines document. Components that are maintained in their own repositories can should link to the general CONTRIBUTING guidelines document or have their own set of guidelines if required.
· https://github.com/ARGOeu
Forked repositories
Following the spirit of DVCS, each of us forks the repositories from Github to her/his own account. We can work on new or ongoing features on our own forks and when we feel it is ready or whenever we want feedback from the rest of the team, then we can open a pull request towards the respective ARGO repository.
Useful information:
· https://help.github.com/articles/fork-a-repo
· https://help.github.com/articles/syncing-a-fork

Pull requests & core team
All of the members of the core team should be able to merge pull requests in the ARGO repositories. The person who opens a pull request never merges it {her,him}self, but asks/expects another core team member to review it and merge it. The idea behind this that at least two people (the committer and the reviewer), will be involved for each new feature that we develop.
The person who opens a pull request should make sure that {s}he includes enough information so that the reviewer can understand the context and the intention of the changes proposed in the pull request. It is strongly encouraged that we open pull requests as soon as possible in the developer process in order trigger prompt feedback. Pull requests that are not ready to be merged should be marked as Work-In-Progress (WIP). having the pull request open, means that each commit is visible to the ARGO CI, which can then build the component, run all the unit tests and attempt to package the component and at the end provide status feedback within the pull request.
Useful information:
· https://help.github.com/articles/creating-a-pull-request
· https://help.github.com/articles/checking-out-pull-requests-locally
· https://help.github.com/articles/merging-a-pull-request
· https://quickleft.com/blog/pull-request-templates-make-code-review-easier
Pull request review process
When a feature is ready, the developer removes the WIP mark from the pull request. Removing the WIP mark effectively signals the rest of the team that the pull request can be peer reviewed. At least one team member (other than the committer) has to act as the reviewer of the pull request. During the peer review process, the reviewer has to check the feature implemented, the code quality, the unit test coverage as computed, the existence of proper documentation and whether the component can be packaged successfully. If all these checks pass, then the reviewer can accept the pull request in order to be merged in the devel branch.
Branches and builds
Each repository should have at least 2 long-term branches:
· the devel branch, which should always be deployable
· the master branch, which should always be releasable
Pull requests
Pull requests for new features should be opened initially against the devel branch. For every pull request that is opened, the ARGO CI will execute the following workflow

[image: image5]
Before a pull request can be merged in the devel branch, a member of the development team (other than the original committer) has to review the pull request and check the following according to the “Definition of Done”:
	#
	Check
	Status

	1
	Quality of Code
	

	2
	Passes acceptance criteria automatic Unit tests for non-UI
(80% or greater code coverage for business logic tier for new code)
	

	3
	CI build job is up-to-date and compiles, tests, and analyzes the existing & newly added code
	

	4
	DB migration script for DB Schema tasks
	

	5
	Sufficient documentation:
· APIs + Interfaces (public)
· Manuals (where applicable)
· Changelog / Release Notes
· Inline comments where 'complex' code
	

	6
	Ability to be properly packaged
	

Devel branches
When new code is merged on the devel branch of each component, the CI system (a) picks it up, (b) builds the codebase, (c) runs again the unit tests, (d) runs the sonarqube code analysis suite and publishes the results on the ARGO sonarqube instance, (e) builds the devel packages and publishes them on the ARGO devel RPM repository, (f) extracts, builds the documentation and publishes it on the devel website and (g) reports the status of the CI on Github. New RPMs published on the devel RPM repository are automatically installed on the devel testbed.

[image: image6]
The devel testbed is using actual production data and is being operationally monitoring by the same monitoring probes that are used to monitor also the production instance. Furthermore, at the end of each sprint, the product team performs the sprint review ceremony in which the important features are presented to the ARGO stakeholders and live tested on the devel testbed. After the successful completion of the sprint review, the new code base is merged on each component's master branch.
In case more than one developers are working on the same component or a developer is working in parallel in more than one features for the same component, the use of feature branches is advised.
Master Branches
When new code is merged in the master branch of each component, the CI system picks it up and execute the follow workflow: (a) builds the codebase, (b) runs the unit tests again, (c) builds the production packages, (d) publishes them on the ARGO production RPM repository and (e) extracts & builds the documentation and publishes it on the ARGO website.

[image: image7]
Useful information:
· http://martinfowler.com/bliki/FeatureBranch.html
4.
GOC DB
4.1.
Introduction
	Tool name

	GOCDB

	Tool url

	https://goc.egi.eu

	Tool wiki page

	https://wiki.egi.eu/wiki/GOCDB

	Description

	GOCDB is a central registry to record information about the topology of an e-Infrastructure. This includes entities such as resource centres, service endpoints and their downtimes, contact information and roles of users responsible for operations at different levels. The service enforces a number of business rules and defines different grouping mechanisms and object-tagging for the purposes of fine-grained resource filtering.

	Customer of the tool

	EGI Operations

	User of the service
	Site/service admins, NGI managers, Security

teams in EGI, EUDAT and WLCG.

	User Documentation

	https://wiki.egi.eu/wiki/GOCDB/Documentation_Index

	Technical Documentation
	https://wiki.egi.eu/wiki/GOCDB/Documentation_Index

	Product team
	Contact gocdb-admins@mailman.egi.eu

	License
	Apache2

	Source code
	https://github.com/GOCDB/gocdb

4.2.
Service architecture
A central information repository with a web portal interface for CRUD operations, and a REST style API for read-only data queries.

Gocdb is a definitive information source and has few dependencies on other operational tools. In future it will rely on the EGI Proxy IdP to authenticate users via FIM with a sufficient level of assurance (LoA) needed for operational users.
4.3.
Release notes
4.3.1.
Requirements covered in the release
The main requirements addressed by the v5.5 release are listed below. For details see: https://wiki.egi.eu/wiki/EGI-Engage:TASK_JRA1.4_Operations_Tools#GOCDB
· Role Action Logging to record all role request actions (deny, approve, revoke).
· Fine Grained Content Rendering including permit-all and protected pages.
· Downtime Declaration in Site-Local Timezone with automatic conversion to UTC.
· Multi-Tenant to host multiple projects in the same Gocdb instance with separate roles per project (roles in one project do not apply in a different
project). This was a large scale development and required significant re-write of the authorisation model.
· SAML/FIM Authentication to allow login using different Identity
Providers. Please note, issues related to data protection and the Elixir/GEANT CoCo delay the production release of FIM. This is an EGI wide issue - all Ops tools need to use the same eppn (most likely hashed given data protection concerns) in order to correlate accounts across services.
4.4.
Feedback on satisfaction

Before every production release, Gocdb development is frozen and a period of testing is announced that lasts for approximately one month using the Gocdb test instance (https://gocdb-test.esc.rl.ac.uk). This testing phase is widely disseminated using the relevant mail lists, and all operational tools and users are invited to perform tests against the test instance.
4.5.
Future plans
Future developments are summarized below and listed in the roadmap: https://wiki.egi.eu/wiki/EGI-Engage:TASK_JRA1.4_Operations_Tools#GOCDB

Short Term / Nearly completed at the time of writing (scheduled for v5.6 release, 02/2016):
· Reserved (Protected) Scope Tags.
Used to control the tagging of resources using cascading rules that limit which tags NGIs->Sites->Services->Downtimes can declare. This will allow WLCG/Elixir sites to apply tags only to their resources and prevent other sites from using the same tags. Allows controlled resource filtering in API and GUI.
· Bulk Addition/Upload of Multiple Custom Properties.
Allows
the data models of Sites, ServiceGroups, Services and Endpoints to be easily extended and customised. Also allows fine-grained resource selection via the API by filtering on supported properties.

· Downtime Calendar
To allow fine-grained filtering of downtimes.

Medium Term (scheduled for v5.7+, mid to end 2016):
· Writable REST API
To programmatically POST updates to sites and services. This has been requested by both WLCG and EUDAT operational communities. Will require Site's to manage their own access control
lists (ACLs) per site by recording the DNs of certs that are authorised to post updates to a particular site/service.
· Object Diff Auditing
To record every change to a resource. Originally and EUDAT request, but may be been de-prioritised.

Longer Term (end 2016/17)
The Gocdb Web interface needs to be re-implemented using a modern MVC GUI framework.

5.
Security Monitoring: Secant
5.1.
Introduction
	

Tool name

	Secant

	Tool url

	https://github.com/CESNET/secant

	Tool wiki page

	https://wiki.egi.eu/wiki/Tools

	Description

	Secant is a framework to detect
security vulnerabilities in images of virtual machines. It tries to detect the most common security issues that often lead to incidents and prevent them from appearing in the context of EGI cloud facilities.

	Customer of the tool
	Cloud providers, EGI operations, the EGI
CSIRT

	User of the service

	Administrators, operators, security staff

	User Documentation
	N/A

	Technical Documentation
	N/A

	Product team
	CESNET

	License
	Apache License

	Source code
	https://github.com/CESNET/secant

5.2.
Service Architecture
5.2.1.
High-Level Service Architecture
Secant runs as a service that periodically checks for new images available for the monitored IaaS cloud instance and performs their security assessment. When a new image becomes available in the system, it is taken by Secant and checked for security vulnerabilities. In order to perform the security checks, Secant instantiates a virtual image from the image and template that is being verified and performs two phases of security checks. During the first phase Secant launches a series of external scans that try to detect vulnerabilities exposed by the machine to the Internet. Following these tests, and if the machine supports that, Secant runs a series of internal probes on the virtual machine, which checks security properties of the installed software. Both internal and external probes are modular and new tests can be easily added when needed.
After the probes are executed, Secant processes the results and generated the assessment.
This is the very first release of Secant whose development started with the EGI EnGAGE project. The design and its implementation will be subject to changes and modification in the course of the subsequent evaluations.
5.2.2.
Integration and dependencies
There are two foreseen scenarios how Secant can be deployed, it can either work on the level of a cloud site to assess images used by the particular provider, or it can act as a tool supporting security assessment and endorsement on the level of EGI. In any cases Secant has to be integrated with a cloud management framework. The current implementation uses OpenNebula commands to manage virtual machines and their images.
5.3.
Release notes

5.3.1.
Requirements covered in the release

The design and first version of Secant was developed to cover requirements discussed in the EGI CSIRT, to reflect the main findings from security incidents that related to EGI.
5.4.
Feedback on satisfaction

Secant is being tested at CESNET and its MetaCloud site. In order to finish the testing phase we are waiting for a transition of the site to a new version of the OpenNebula framework.
5.5.
Future Plan
· After an evaluation phase we are going to examine how Secant and the security
assessment functionality can be integrated with AppDB to support the endorsement process.

· Based on evaluation of recent security incidents and threats, new security probes will be added.
Checkout pull request

Execute unit tests

Build Component

Build Ephemeral Packages

Report status to Github

Checkout Devel Branch

Execute unit tests

Build Component

Generate Devel Documentation

Build & Publish Devel Packages

Execute Code Analysis Tool

Report Status on Github

Deployment on Devel Testbed

Checkout Master Branch

Execute unit tests

Build Component

Generate and Publish Prod Documentation

Build & Publish Prod Packages

	[image: image8.png]

	32
	[image: image9.png]* * %

* X

* %

[image: image8.png][image: image9.png]