

This material by Parties of the EGI-Engage Consortium is licensed under a .
The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142

EGI-Engage

Data flow handler and basic R tools to integrate

and process data from Ecological Observatories

in EGI

D6.6

Date 20 February 2016
Activity WP6
Lead Partner CSIC

Document Status FINAL
Document Link https://documents.egi.eu/document/2666

Abstract

The LifeWatch EGI Competence Center is oriented to capture and address the requirements of

Biodiversity and Ecosystems research communities. In this deliverable we report on the

experience handling data flows from two Ecological Observatories, a marine vessel instrumented

with different sensors, and an instrumented profiling platform in a water reservoir. Also the use of

the tools that can be used to integrate and process those data is analysed, in particular the

experience on the deployment and use of R-based tools. The different services installed are

described, and also first feedback from users is provided.

https://documents.egi.eu/document/2666

 EGI-Engage

 2

COPYRIGHT NOTICE

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EGI-

Engage project is co-funded by the European Union Horizon 2020 programme under grant number

654142.

DELIVERY SLIP

 Name Partner/Activity Date

From: Jesus Marco CSIC/SA2 20 Feb 2016

Moderated by: Małgorzata Krakowian EGI.eu/NA1

Reviewed by A. Bonvin
D. Scardaci

BCBR-UU/PMB
INFN

25.02.2016
25.02.2016

Approved by: AMB and PMB 3.03.2016

DOCUMENT LOG

Issue Date Comment Author/Partner

v.1 04/05/2015 First draft F.Aguilar/CSIC
E.Fernández/EGI

v.2 17/02/2016 Integrated version F.Aguilar/CSIC
A.Palacios /CSIC
F.Hernández/VLIZ
A.Oulas, E. Panteri
/HCMR

v.3 20/02/2016 Revised version, ready for internal review J.Marco/CSIC

v.4 26/02/2016 Version including comments(GS, AB, FB,AJPL) J.Marco/CSIC

FINAL 27/02/2016 FINAL version after external review J.Marco/CSIC

TERMINOLOGY

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/

http://www.egi.eu/about/glossary/

 EGI-Engage

 3

Contents

1 Introduction .. 5

2 Handling Data Flows .. 7

Marine Data Stream .. 7

CdP Water Reservoir Data Flow .. 9

3 Processing Data: R based analysis ... 11

Introducing R .. 11

Support for R... 12

A previous experience using R in the EGI.eu framework ... 12

Analysis of R tools ... 14

RStudio Server .. 14

RShiny ... 15

Jupyter Notebook ... 16

4 Examples of current services using R in LifeWatch .. 18

Tools/services at IFCA ... 18

Tools/services at VLIZ ... 19

Tools/services at HCMR .. 20

5 Service architecture .. 26

High-Level Service architecture oriented to the Cloud framework ... 26

Challenges ... 28

AAI .. 29

Access to data ... 30

Repositories .. 30

6 Feedback on satisfaction ... 31

Experience at IFCA .. 31

Experience at VLIZ ... 32

Experience at HCMR ... 32

7 Future plans .. 33

Appendix: Testing R in HTC and HPC resources .. 34

 EGI-Engage

 4

Executive summary

The goal of the LifeWatch EGI Competence Center (LW-EGI-CC) is to capture and address the

requirements of Biodiversity and Ecosystems research communities. To achieve this goal, the LW-

EGI-CC has been working on the definition, development and deployment of the Cloud and GPGPU

based e-Infrastructure services that are required to support data management, data processing

and modelling for Ecological Observatories.

In this deliverable we report on the experience supporting the data flow from different Ecological

Observatories into EGI e-infrastructure, and then on the tools that can be used to integrate and

process those data, and in particular on the deployment and use of R.

Two different ecological observatories are already providing data into EGI FedCloud resources via

LW-EGI-CC:

-Flanders Marine Institute (VLIZ) has installed a number of biosensors on board of the Research

Vessel Simon Stevin, as part of the Flanders Marine LifeWatch Observatory, providing a data flow

that will reach about 50Tb of data per year, mainly video and images, collected by the vessel in

quasi real time and requiring a substantial computational power, to incorporate a framework

based in R for the final researcher.

-IFCA and a Spanish SME (Ecohydros SL) have been operating for the last five years an advanced

monitoring platform in a water reservoir to detect cyano-algae blooms that is providing a

continuous data flow and requires also the integration of external data into EGI FedCloud, used by

the SME researchers to contrast the modelling tools. R is used systematically to provide to the

online monitoring with the computation of relevant quantities like the vertical temperature profile

parameters evolution (epilimnion/hypoliminion parameters among many others).

A detailed analysis of the possibilities to implement and deploy services oriented to support the

use of R is also presented, starting from the previous experience in the Grid framework

(processing data from the LTER Observatory of Sierra Nevada in Spain), describing the

implementation in HPC systems, in clusters in other LifeWatch centers (HCMR, VLIZ, IFCA), and

also starting the discussion on how to compare the performance in order to improve it combining

the experience and different approaches of the different teams in the LW-EGI-CC.

As a demo-oriented deliverable, references to access these services are provided, and also a brief

report based on the users' experience that includes some proposals for evolution and

improvement.

Also a proposal for the architecture to implement R as a service in the EGI FedCloud infrastructure

is formally presented.

 EGI-Engage

 5

1 Introduction

Ecological Observatories are one of the key data providers for LifeWatch, and a clear objective of

the LifeWatch EGI Competence Center1 (LW-EGI-CC) is to integrate the tools required to support

data management, data processing and modelling for Ecological Observatories in the framework

provided by EGI.eu. To achieve this objective, several Case Studies directly related to on-going

LifeWatch initiatives that require the manipulation of data streams from different Ecological

Observatories have been considered and analysed.

Ecological Observatories data processes require today more and more "Big Data" techniques, from

support to real-time data streams to handling the post-processing of large volumes of diverse data

from multiple disciplines: meteorology, geophysics, hydrology, chemistry, social and of course life

sciences (biology, ecology, -omics). Moreover, in the last years new and powerful software

packages are starting to allow also the simulation of these complex multidisciplinary systems.

The LW-EGI-CC promotes the use of the EGI FedCloud as a common e-infrastructure to the

different related initiatives, as it has been adopted as a basic platform for distributed e-

infrastructure by the LifeWatch initiative, offering both the (substantial) resources required and

also the possibility to test and install Cloud solutions at SaaS, PaaS and IaaS level. The LifeWatch

Virtual Organization (LW-VO) is used to support this work, and as explained later, different roles

are supported using different authentication and authorization mechanisms. Different FedCloud

sites are supporting now the LW-VO, in particular the site at IFCA (Instituto de Fisica de Cantabria,

CSIC-University of Cantabria), and the new site at EBD (Estacion Biologica de Doñana, CSIC) offer

relevant computing and storage cloud enabled resources, at the different IaaS (Infrastructure as a

Service), PaaS (Platforma as a Service) and SaaS (Solution/Software as a Service) levels.

Within this LW-EGI-CC framework, and in order to analyze how to offer an adequate support to

the researchers' requirements exploiting this FedCloud framework, we have considered two

complete Case Studies that are introduced in what follows below.

The first one corresponds to the monitoring of a Water Reservoir, developed through a joint effort

of an Spanish environmental consultancy SME (Ecohydros SL) and IFCA under the umbrella of

LifeWatch Spain. Eutrophication, resulting in algae bloom, is an increasing serious problem in

many water reservoirs in Europe and in the whole world due to the increase of anthropogenic

pressure (human activities, including also farming) and climate change (warmer summers favour

algae bloom). The prediction of eutrophication and of the development of algae bloom requires

modelling the water reservoir from the hydrological perspective, predicting in detail the

temperature profile of the water and its composition, and also the modelling of all processes

related to algae growth from the biological point of view. The validation of this complex model

requires historical measurements from complex in-situ instrumentation.

1
 See https://wiki.egi.eu/wiki/CC-LifeWatch_Community

https://wiki.egi.eu/wiki/CC-LifeWatch_Community

 EGI-Engage

 6

The current setup includes a central platform that is installed in the middle of the water reservoir,

and instrumented with meteorological sensors (wind, temperature, solar radiation, rain, etc), and

water quality sensors (conductivity, temperature, dissolved oxygen, turbidity, pH, etc.). The water

quality sensor probe is placed in a cage connected to a wincher system allowing vertical profiling

(range 1-30 m. in depth) that is critical to monitor the evolution of the water stratification, clearly

reflected in the thermocline curves. More complex instrumentation, including radiometers,

spectrometers and absorbance sensors are also included to monitor the abundance of green and

blue-green algae, through the correlation with the luminescence of chlorophyll and phycocyanin.

All data gathered is stored in databases and can be accessed with different tools, including a

visualization dashboard with an option enabling users to download data easily. The original "raw"

data stored is then "processed" and some derived parameters are calculated using different

methods, including the use of R-based scripts. Currently more than 5 years of data have been

collected and analysed2. Another key ingredient for modeling this water reservoir is the simulation

model and the corresponding software suite. Currently the solution used is the open source suite

Delft3D3 that includes a module providing the simulation of the hydrodynamics of the water

reservoir (FLOW) and another module for the simulation of the water quality (DELWAQ).

A different Ecological Observatory considered is related to an ongoing experience by LifeWatch

Belgium on marine biodiversity research. This field of research is very dependent on specific data

types: species descriptions and identifications, their behaviour, occurrences, presence/absence,

biomass, abundance and many others similar. For a long time, the collection of this type of data

has been mainly a manual process: sampling, sample preparation, identifying species, counting,

weighing, typing the data in spreadsheets or databases etc. The use of biosensors and sensor

networks for in-situ observation seems to be one of the most promising approaches as this

method eliminates the need for taking physical sampling and avoids labour intensive sample

preparation processes; moreover, the dataflow can be automated and requires less workload from

the scientists. Following this promising approach, Flanders Marine Institute (VLIZ) has promoted

the installation of a number of biosensors on board of the Research Vessel Simon Stevin, as part of

the Flanders Marine LifeWatch Observatory. This project has a series of needs that require the use

of a powerful e-infrastructure able to handle a "Big Data"-like problem: about 50Tb of data per

year, mainly video and images will be collected by the vessel in quasi real time, and their analysis

requires a substantial computational power, that will be provided by the EGI-FedCloud e-

infrastructure. This project also needs to incorporate an analysis framework for the final

researcher that includes R-tools.

To summarize, both Case Studies offer interesting examples of the application of new "on-line"

instrumentation to ecological observatories, requiring the integration of data into the e-

infrastructure, and the corresponding post-processing, and in particular the use of R-based

analysis tools by the researchers.

2
 For a complete overview see: A. Monteoliva, PhD Thesis, Feb 2016 (in press)

3
 DELFT3D: see http://oss.deltares.nl/web/delft3d

http://oss.deltares.nl/web/delft3d

 EGI-Engage

 7

2 Handling Data Flows

In this section we describe how the "Data Flows" are managed in both case studies. This is an on-

going work, where very substantial progress has been achieved solving different practical

problems, like handling the very large collections of very small image files, or establishing a

reliable connection to a remote observation site.

Marine Data Stream
Figure 1 describes the global flow of data in the Case Study corresponding to the marine ecological

observatory. Data collected in the vessel is transmitted to VLIZ research center offices, ingested

using the corresponding standards, and transmitted to the FedCloud e-infrastructure for

replication, and it is made available for further processing.

Figure 1 – Data Flow in the Case Study of the marine observatory managed by VLIZ center

The substantial progress in the implementation of this data flow, thanks to different solutions, is

described in what follows:

Data synchronization

The synchronization of data from the marine station (VLIZ), and the research vessel to the EGI

servers (IFCA) are partly operational. Specifically:

-From Research Vessel to VLIZ archive disks: this is operational for all installed sensors.

-From VLIZ archive disks to MongoDB: this is operational for ZooScan data and VPR data,

developments for FlowCytometer data have started.

-From VLIZ MongoDB server to EGI MongoDB server: this is operational for ZooScan and VPR data.

 EGI-Engage

 8

Data accessibility

The MongoDB databases in VLIZ and IFCA are accessible from the Rshiny/ Rstudio based virtual lab

running at VLIZ: the LifeWatch data explorer. In a next phase the LifeWatch data explorer server

will be duplicated to IFCA for increased processing power.

Demonstration website accessing server at VLIZ: http://rshiny.lifewatch.be/ZooScan%20data/

Access to files through MongoDB

The virtual labs should also have access to the individual files generated by the different biosensor

instruments. The following diagram explains how this will be achieved. We need to reconstruct the

files and folders organisation because we want to use existing analysis software that requires file

based access to the data. The first part of this mechanism (files to mongodb) is operational. The

second part (the mongoDB to files API) will be dealt with in the next phase.

Figure 2 – MongoDB & Images Management

Access to data in SQL databases

This part is operational for station data, underway data, buoy data, bird tracking data and fish

tagging data, and for access to the data from LifeWatch data explorer.

http://rshiny.lifewatch.be/ZooScan%20data/

 EGI-Engage

 9

Demonstration here: http://rshiny.lifewatch.be/

Access from the IFCA virtual lab will be implemented in the next phase after we solve the data

synchronization and security problems.

Access to data through Geoserver webservices

Prototype to access Geoserver data through WFS calls from the Rshiny/Rstudio virtual lab was

built and feasibility demonstrated. Using Geoserver clusters could boost the speed of accessing

data. This is ongoing work within the Geoserver working group in LW-EGI CC.

CdP Water Reservoir Data Flow
The scheme followed to collect data from the CdP (Cuerda del Pozo) Water Reservoir is described

in Figure 3.

Figure 3 – CdP Data Flow Schema

Currently, the data flow has two main sources: "real-time" instrumentation (platform and buoys)

and "external" information that includes a wide range, from bathymetry maps to analytics on the

composition of the different bed layers. All these different data is required to build a complete

model for the water reservoir. The "real-time" data is directly stored as "RAW" in the databases,

and then corrected and filtered to be published as "PROCESSED" via a web portal4. The "external"

information is stored as files and also in spreadsheets and it also has to be corrected, filtered and

in some cases validated (internally or externally contrasted with other reference measurements).

4
 http://doriiie02.ifca.es/

http://doriiie02.ifca.es/

 EGI-Engage

 10

These "processing" steps are in some cases implemented directly on the databases or

spreadsheets, but as the data collections become larger (as an example, meteorological and solar

radiation measurements have been collected each 10 minutes, along 5 years) they require the use

of more powerful statistical tools like those based on R. In particular R scripts are executed

directly on databases (using the RMySQL package) and also on text-based files.

It is quite important to understand that part of these data is required as input to the quite

complex hydrodynamic and water quality models implemented in the Delft3D modeling suite, that

in turns provided the expected abiotic (water temperature and other relevant physical parameters

3D profiles across the whole water reservoir) and biotic (algae concentration, and corresponding

oxygen, N and P profiles) information. This modelling software produces large output files with

these predicted parameters that can be exported in different formats, including ".csv", that are

then analysed using R tools. The final stage is the comparison of the real data with this output, to

validate the model, and fine-tune the parameters required to make the corresponding predictions

using the new inputs being collected (for example at the start of a potential eutrophication period

for the water reservoir in August each summer). This is of direct interest for the main stakeholder

in the project, the water authority managing the water reservoir (Confederacion Hidrografica del

Duero, CHD).

 EGI-Engage

 11

3 Processing Data: R based analysis

Introducing R
R is a programming language and software environment5 for statistical computing and graphics

designed by Ross Ihaka and Robert Gentleman. The R language is widely used among statisticians

and data miners for developing statistical software and data analysis. R's popularity has increased

substantially in recent years since its start in 1993.

R is available as Free Software under the terms of the Free Software Foundation's GNU General

Public License in source code form. It compiles and runs on a wide variety of UNIX platforms and

similar systems (including FreeBSD and Linux), Windows and MacOS.

Many of R's standard functions are written in R itself, which makes it easy for users to follow the

algorithmic choices made. For computationally intensive tasks, C, C++, and FORTRAN code can be

linked and called at run time. Advanced users can write C, C++, Java, .NET or Python code to

manipulate R objects directly.

R is highly extensible through the use of user-submitted packages for specific functions or specific

areas of study. R has stronger object-oriented -programming facilities than most statistical

computing languages.

R provides a wide variety of statistical (linear and non-linear modelling, classical statistical tests,

time-series analysis, classification, clustering …) and graphical techniques. It includes:

 an effective data handling and storage facility,

 a suite of operators for calculations on arrays, in particular matrices,

 a large, coherent, integrated collection of intermediate tools for data analysis,

 graphical facilities for data analysis and display either on-screen or on hard copy, and

 a well-developed, simple and effective programming language which includes conditionals,

loops, user-defined recursive functions and input and output facilities.

R applications are used for theoretical computational statistics and the hard sciences such as

astronomy, chemistry and genomic to practical applications in business, drug development,

finance, health care, marketing, medicine and much more. Examples of applications are:

 Chemometrics and Computational Physics

5
 This section is directly adapted from https://www.r-project.org/about.html and it is included here for the

interest of readers not familiar with R.

https://www.r-project.org/about.html

 EGI-Engage

 12

 Clinical Trial Design, Monitoring, and Analysis

 Computational Econometrics

 Analysis of Ecological and Environmental Data

 Design of Experiments & Analysis of Experimental Data

 Statistical Genetics

 Medical Image Analysis

R is enriched with a number of community packages that can be easily extended and deployed,

enabling users to include more functionalities like parallelization, interaction with other

languages, support to different data formats analysis, etc.

Support for R
In 2007, the company Revolution Analytics was founded to provide commercial support for

Revolution R, its own distribution of R, which also includes other components developed by the

company including Parallel R, the R Productivity Environment IDE, etc. In 2015, Microsoft

Corporation completed the acquisition of Revolution Analytics.

In October 2011, Oracle announced the Big Data Appliance, which integrates R, Apache Hadoop,

Oracle Linux, and a NoSQL database.

IBM offers support for in-Hadoop execution of R, and provides a programming model for massively

parallel in-database analytics in R.

Other major commercial software systems supporting connections to or integration with R are

JMP, MATLAB, Spotfire or Tableau.

A previous experience using R in the EGI.eu framework
R allows users to handle different data formats, included “geo” formats like NetCDF and others,

and this possibility is widely exploited by the ecological and biodiversity community. Within the

LifeWatch initiative and under previous related projects, R usage has been tested in different

platforms both HTC (High Throughput Computing) using European Grid Initiative (EGI) resources

and HPC (High Performance Computing) resources, using a top500 supercomputer (Altamira).

 EGI-Engage

 13

As a relevant example we would like here to comment on a pilot project aimed to prospect

techniques in temporal series to classify vegetation cover in a given region automatically. The

NDVI (Normalized Difference Vegetation Index) is an index that allows estimating quantity, quality

and vegetation growing through remote sensing, in particular satellite images. The project used

images provided by the MODIS sensor in NASA's TERRA satellite, where each pixel corresponds to

an area of 250 x 250 m. The study covered an area extending from the French Pyrenees to the

South of Spain (3 images in total).

Figure 4 – Satellite images processed in the example

After selecting the images of interest, pattern recognition techniques can be applied to analyze

the vegetation cover as this information is useful to researchers to develop distribution models,

anomalies, fire detection, etc. In this particular example, the analysis used a Geographical

Information System (GIS), GRASS, and a library for reading and writing geospatial data, GDAL. Both

solutions required specific packages for interacting using R: rgdal and rgrass. The processed

MODIS images (HDF format) were stored in a PosgreSQL database that was used calculate specific

snow and NDVI indicators. Finally the workflow used ontology to describe new relationships

among ecological concepts.

Combining both statistical and GIS tools is a very common and relevant need in biodiversity and

ecological research communities, and as said, R is a complete and powerful solution that provides

all needed tools to handle data, analyse it, process it and show the output in many different forms

like charts, graphs or maps.

This complex and interesting analysis that explored the use of EGI resources for this work was

published in 2015 in the International Journal of Applied Earth Observation and Geoinformation

37, 142–151, A.J.Perez-Luque et al.: "An ontological system based on MODIS images to assess

ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests".

 EGI-Engage

 14

Analysis of R tools
In this section we explore different R tools and analyse the possibility of integrating them as

services to be offered in the LW-EGI-CC framework, using FedCloud resources. This is not an

exhaustive survey, rather we focus on a few that could be offered directly to the researchers, at

different levels, to complete their data analysis work.

RStudio Server

RStudio6 is an IDE (Integrated Development Environment) specially oriented to develop R

programs and use the potential of this language for performing statistics and data analysis.

RStudio is available in two different editions: one for the desktop environment and another one

oriented to be used via a web interface: RStudio Server. We consider that the Server option is

more interesting for the Fedcloud framework.

RStudio includes four different and customizable components that make it easier to work with

data (see the figure below): a console where the user can insert the different commands, an editor

to set up scripts directly, a data objects management box, and finally another box for different

tasks, like showing graphical results. RStudio also includes different tools for debugging,

workspace management, package installation, etc.

Figure 4 – RStudio IDE

6
 See https://www.rstudio.com/

https://www.rstudio.com/

 EGI-Engage

 15

RStudio server is available under two different versions (and licenses): Open Source and

Enterprise. In the Open Source version, the main functionalities are included as well as the

execution of R in local resources (local to the server). The Enterprise version includes additional

interesting functionalities like load balancing across nodes, user and group management, metrics

and monitoring, etc. However, some of these features can be found under different R packages

like for example Rserve7, which is able to connect to different nodes to process R scripts.

RShiny

RShiny8 is a framework supporting the development of R-based applications through a graphical

user interface. Oriented to the final user, Rshiny includes many relevant R features, including the

access to different packages without the need to develop R code.

Figure 6 shows an example of the use of Rshiny with map oriented packages.

Figure 5 – Rshiny example

7
 See http://www.rforge.net/Rserve/

8
 See http://shiny.rstudio.com/

http://www.rforge.net/Rserve/
http://shiny.rstudio.com/

 EGI-Engage

 16

Rshiny is completely dynamic, and the user can interact with the different elements in the screen,

such as drop-down lists, text boxes, spinners and even the script itself can be changed

dynamically. The framework works over a web server and offers a web interface that is accessed

by the final users via a browser. A second example showing how a very simple but relevant data

analysis can be implemented is displayed below.

Figure 6 – Another example using RShiny: k-means clustering on bidimensional data

Jupyter Notebook

An interesting alternative to the RStudio framework, the Jupyter Notebook9 is an interactive web

application where the user can create and share scripts/programs written in many different

languages, access and process data, and visualize the corresponding output.

Jupyter is based in the iPython Notebook10, a web application developed by the Python

community following the look and feel of Mathematica notebooks, integrating rich data

representations and even figures with publication quality, in the web browser. Jupyter extends

this approach to support many other languages, including R.

Jupyter installation requires activation of a kernel for each language/library to be used, the

IRkernel in the case of R, and also the corresponding connection.

Figure 8 shows an screenshot of a Jupyter notebook being executed in a server using the R flavor.

9
 See http://jupyter.org/

10
 See http://ipython.org/notebook.html

http://jupyter.org/
http://ipython.org/notebook.html

 EGI-Engage

 17

Figure 7 – Screenshot of a Jupyter notebook

The application is interactive, and each notebook is divided into cells where the user can provide

the corresponding input (In[] section of the cells) including R statements, as well as markdown

input. When the user process the different input cells (one by one or the entire notebook) the

outcome appears in the corresponding cells (Out[] section of the cells).

One of the key practical questions is how to provide the access to the final user to these

interactive applications, and preserving also the rights to access the data to be processed and the

corresponding output, as well as the notebook content. The natural solution is to provide an AAI

mechanism in front of them, and link it with the corresponding Jupyter server, typically running in

a given VM in the Cloud. A solution being explored is based on the Jupyter hub project11: a server

that gives multiple users access to Jupyter notebooks, running an independent Jupyter notebook

server for each user.

Another important question is how to benchmark the resources in the e-infrastructure regarding

the use of R. Preliminary work is presented in the Appendix.

11

 See https://github.com/jupyter/jupyterhub

https://github.com/jupyter/jupyterhub

 EGI-Engage

 18

4 Examples of current services using R in LifeWatch

In this section we describe some of the services using R currently deployed in the LifeWatch

community, to motivate the idea of a common architecture to be implemented in FedCloud. Such

a common architecture is presented in section 5. The services in this section are described using

relevant elements of the EGI ‘Service Design and Transition Package’12. This will simplify the task of

including these services – if appropriate – in the EGI Service Portfolio.

Tools/services at IFCA
Tool name TheRmocline

Tool url https://github.com/ferag/theRmocline

Tool wiki page https://github.com/ferag/theRmocline/wiki

Description This script calculates the parameters needed to define the theoretical
thermocline using a set of data that describes a vertical profile of the
water temperature. Parameters are defined in the wiki page.

To calculate some parameters, the Script need n R function for
optimization that solves the equation for a given formula, in this case
a function. The input needed is one or more sets of water column
profiles of water temperature.

Customer of the tool LifeWatch team

User of the service This tool has different stakeholders. On one hand, the script can be
used by biologists or environmental scientists to study the evolution
of the thermocline along time, comparing charts, checking the slopes
etc. On the other hand, these parameters are used to validate profiles
generated by models like those implemented in DELFT-3D.

User Documentation See above

Technical Documentation See above

Product team IFCA, Advanced Computing and e-Science group

License MIT license

Source code https://github.com/ferag/theRmocline

Tool name Other Scripts: NoDataAlert, LevelPlot

Tool url https://github.com/ferag/Rscripts

Tool wiki page https://github.com/ferag/Rscripts/wiki

Description NoDataAlert scripts queries a database to determine if there was any
problem at the time of inserting data. This helps scientists to find out
different basic problems in data collection.

LevelPlot creates a special type of chart of water column profiles with
different parameters that can be used for exploring the status of the

12

 https://documents.egi.eu/document/2550

https://github.com/ferag/theRmocline
https://github.com/ferag/theRmocline/wiki
https://github.com/ferag/theRmocline
https://github.com/ferag/Rscripts
https://github.com/ferag/Rscripts/wiki
https://documents.egi.eu/document/2550

 EGI-Engage

 19

water column along a given data collection period.

Customer of the tool LifeWatch team

User of the service This set of scripts is used by the automatic processing chain on RAW
collected data towards the PROCESSED data.

User Documentation See above

Technical Documentation See above

Product team IFCA, Advanced Computing and e-Science group

License MIT license

Source code https://github.com/ferag/Rscripts

Tools/services at VLIZ
Tool name Lifewatch data explorer

Tool url http://rshiny.lifewatch.be/ and http://rstudio.lifewatch.be/

Tool wiki page See above

Description This interactive tool gives access to all data collected in the scope of
the Flemish LW project.
It is based on RShiny server, leaflet, ggplot, plotly, dynagraph,
datatables.
Some data in moratorium period is protected by password access.
The system can query MSSQL, PostgresQL, Geoserver (WFS) and
MongoDB servers.
In a first step the serve is queried using basic selections: time period,
sampling frequency, project, tag codes etc. This generates an R data
frame.
In a second step the user can calculate additional columns like tidal
level, moon illumination, solar cycle, year, month etc.
In a third step the user can select columns to filter on.
The user can then download the data, or visualise it in map or time
series, scatter plots, box plots etc.
Several options for adjusting the output interactively are offered.
If the number data points is too high, the system will either dimish the
resolution, or fall back to less interactive plots.

Customer of the tool Scientific public and project partners.

User of the service The Rshiny tool is open to the scientific public; we intend to use it as
the main interface for all data collected in the project.
We have foreseen a password protected access to data under
moratorium for the scientists that participate in the project.

The Rstudio server is for now restricted to the scientists that
participate to the project. The data access API used for the Rshiny
tool allows them to access the data directly, giving more possibilities
for analysis. They can also upload additional data to analyse.

User Documentation In progress

Technical Documentation In progess

https://github.com/ferag/Rscripts
http://rshiny.lifewatch.be/
http://rstudio.lifewatch.be/

 EGI-Engage

 20

Product team VLIZ

License In progress

Source code In progress

Tools/services at HCMR
Tool name Rvlab

Tool url https://rvlab.portal.lifewatchgreece.eu/

Tool wiki page See above

Description R Statistical Processing vLab

Towards the alpha version of the RvLab
The activities that have been carried out towards implementing the
first (alpha) version of the RvLab can be broken down into the
following sub-tasks:
1. Determination of the desirable set of functions that the vLab will
support.
2. Analysis of the requirements that these functions introduce to the
underlying infrastructure, in terms of computational effort, storage
capacity etc. In parallel, an analysis of the features that characterize
the datasets to be used as input to these functions has also been
made.
3. Analysis of the available tools and methodologies that can be used,
in order to meet the requirements identified in the previous step, for
each function.
4. Development of a generic methodology to be followed for the
optimization of the functions.
5. Application and adaptation of the methodology developed in the
previous step to specific functions and generation of different variants.
6. Configuration and parameterization of the underlying infrastructure
(cluster, database etc), to support the execution of the RvLab
operations.
7. Development of an intuitive User Interface to enhance the
interaction of the user with the RvLab and present the outcome of the
statistical analysis operations.
8. Integration of the UI with the underlying infrastructure, as well as
with the general LifeWatch infrastructure that is under development.
Below we present more detailed information about the progress
achieved within each step.
1. RvLab Statistical Analysis Functions
RvLab has concentrated its focus on the majority of the functions
supported by the vegan CRAN package, which provides methodologies
for the analysis of ecological communities. It has tools for analyzing
ecological diversity, and for the multivariate analysis of communities
(NMDS, pCCA, pRDA etc.), such as diversity analysis, species
abundance models, analysis of species richness, ordination, support
functions for ordination (dissimilarity indices, extended dissimilarities,

https://rvlab.portal.lifewatchgreece.eu/

 EGI-Engage

 21

Procrustes analysis, ordination diagnostics, permutation tests),
dissimilarity analyses (ANOVA using dissimilarities, ANOSIM, MRPP,
BIOENV, Mantel and partial Mantel tests) and others.
Moreover, RvLab has extended its support to the optimization of
primitive operations that are commonly used by the aforementioned
vegan functions.
RvLab aims to improve vegan functions for diversity analysis,
ordination and analysis of dissimilarities, through parallelization and
optimization. In order to fulfill this task Rvlab developers have
employed modifications on the functions listed below:
-taxa2dist: finds indices of taxonomic diversity and distinctness, which
are averaged taxonomic distances among species or individuals in the
community.
-taxondive: finds indices of taxonomic diversity and distinctness, which
are averaged taxonomic distances among species or individuals in the
community.
-metaMDS: performs Nonmetric Multidimensional Scaling (NMDS),
and tries to find a stable solution using several random starts. In
addition, itstandardizes the scaling in the result, so that the
configurationsare easier to interpret, and adds species scores to the
site ordination.
-vegdist: computes dissimilarity indices that are useful for or popular
with community ecologists.
-anosim: Analysis of similarities (ANOSIM) provides a way to test
statistically whether there is significant difference between two or
more groups of sampling units.
-adonis: analysis of ecological community data (samples X species
matrices) or genetic analysis of ecological community data (samples X
species matrices) or genetic data where we might have a limited
number of samples of individuals and thousands or millions of columns
of gene expression data.
-mantel: finds the Mantel statistic as a matrix correlation between
two dissimilarity matrices.
-radfi: construct rank - abundance or dominance / diversity or
Whittaker plots and fit brokenstick, pre-emption, log-Normal, Zipf and
Zipf-Mandelbrot models of species abundance.
-bioenv: finds the best subset of environmental variables, so that the
Euclidean distances of scaled environmental variable have the
maximum (rank) correlation with community dissimilarities.
-hclust: Hierarchical cluster analysis on a set of dissimilarities and
methods for analyzing it.
-simper: Discriminating species between two groups using Bray-Curtis
dissimilarities.
-princomp: performs a principal components analysis.

2. Requirements Analysis and profiling

 EGI-Engage

 22

An extensive requirements analysis and profiling has been carried out
on the functions of the vegan package, in order to determine their
demands in terms of computational effort, memory usage during
execution (primary or secondary) and encoding methodology. The
primary objective has been to identify opportunities for optimization
of their performance, as well as for offering alternative behaviors
(e.g., combination of functions). It is important to note that not all
functions can be optimized for parallel execution over the LifeWatch
cluster, due to restrictions related to their language of encoding.

An analysis that has been conducted, before implement our
methodology, aimed to inspect the aforementioned functions from
various perspectives (reason of computational effort, storage usage,
function's frequency and internal and external interconnection etc). R's
profiling tools, such as profr, proftools, grid, Rgrapviz packages, has
supported this analysis.

After reviewing the results, we identified candidate functions and
alternatives for optimization, as follows:
 - taxa2dist: this function is intensive both in terms of computation
and in terms of data usage. We parallelized certain of its internal
functions, resulting in significant gains in performance. We further
offered the ability for alternative data storage, in order for operations
that cannot be executed on main memory to use the Postgresql
database.
- taxondive: similarly to taxa2dist, optimization using parallel versions
of the underlying operations has been carried out.
- Taxa2dist + taxondive: our analysis in collaboration with the
Lifewatch researchers revealed that these two functions are typically
executed in sequence. Since they both share similar manipulation of
the underlying data, an integrated version of these functions has been
implemented, significantly improving their performance
 -vegdist: despite its popularity in vegan operations, no improvement
can be carried out, as the encoding of this function is in C
 -anosim: The parallel version of anosim that has been developed
showed that the efficiency of parallelization can optimally exploit the
capacity of the LifeWatch cluster.
-mantel: Similarly to anosim, the parallel version of mantel has
achieved significant performance gains.

Similar analysis is also being conducted for the other functions of the
vegan package.

3. Tools for Optimization of Execution

The analysis conducted in the previous step revealed ample

 EGI-Engage

 23

possibilities for improving the performance of certain computationally
intensive vegan functions. It also pointed out the need to exploit
alternative means of storage, since in certain cases the bi-products
during computation are so demanding in memory resources that no
ordinary computer can support.

With respect to parallelization, Rvlab developers investigated the
features of popular packages, such as snow, multicore and parallel.
Due to the complexity of tasks required in vegan, as well as in other
packages for the Lifewatch project, this type of approach for parallel
computing was found to be rather restrictive. Hence, Rvlab employs a
low-level approach and implements custom parallel solutions which
allowed for greater flexibility during optimization protocols. Towards
this goal, packages that provide interfaces to MPI for R were utilized.
Examples of these include Rmpi, which permits import low level MPI
functions into R, abstracting the complexities of writing C or Fortran
code. The more recent pbdR package also offers such a wrapper
though the pbdMPI library, which is intended for Single Program
Multiple Data (SPMD) programming with Big Data.

After considering the benefits offered, Rvlab adopts pbdMPI as the
primary package for parallelization within LifewatchGreece and is also
coupled with other solutions for parallelization or optimization of
code, where necessary.

Regarding the handling of memory, a similar approach was adopted
and popular packages were investigated. Working with large datasets
in R can be cumbersome because of the need to keep objects in
physical memory. The need to keep whole objects in memory creates
challenges to those who might want to work interactively with large
datasets. Several packages attempted to overcome problems with
accessing big volumes of data, like R.huge, ff, filehash, yet their
performance were not satisfactory for large-scale projects.

The bigmem and pbdDMAT packages were also assessed, but were not
flexible in handling complex constructs, because of the fact that they
relied on their own constructs to handle big data.

Given the conclusions reached from the aforementioned analysis of
tools and packages, the methodologies described next was designed.
This aimed at combining the facilities offered by an external database,
namely PostgreSQL, and the use of R packages, such as dplyr and
RPostgreSQL to connect the R scripts with the database, in order to
store and retrieve the necessary data.

4. Generic Methodology

 EGI-Engage

 24

The main contribution of the activities conducted so far was the
development of a generic methodology that combines experience
obtained with the aforementioned packages. The challenge was to
combine in a harmonious manner the solutions on the parallelization
level with those on the database storage, and not just to integrate
them monolithically. Moreover, the methodology aimed at being
flexible enough to be adapted to the different requirements of each
function.

5. Adaptation of the methodology

The general methodology described above is meant to work as a
general rule of thumb for demanding tasks, but is not applied as is in
all cases. Efforts in the last period have focused on how best to adapt
it for the requirements of each particular function individually. For
instance, while taxa2dist can take advantage of both parallelization
and secondary storage facilities, anosim only demands the former.

Furthermore, we also combine diverse functions that are commonly
used together, in order to end up with a workflow of analysis that is
optimized for the infrastructure on which RvLab is installed. An
example is the sequential execution of the taxa2dist and taxondive
functions.

A set of different variants of vegan functions have been produced,
which is to be expanded with more operations in the months to come.
The assessment of their performance is another task running in this
period, which will become more intense in the last phases of the
project.

6. RvLab interface

R's environment offers a convenient way to construct RvLab interface
through an online web application that allows for a user friendly
graphical interface for efficiency and ease execution of Rvlab
functions. The online application was implemented by combining a
series of web development languages like HTML and PHP thus making
a web interface that is directly linked to the PC cluster at HCMR. The
alpha version of the Rvlab is available here
http://rvlab.portal.lifewatchgreece.eu/ . RvLab is available to users
after login to the system. On the main page users can find links to a
comprehensive and self-explainable tutorial on how to operate the
basic functions of the Rvlab and also how to navigate around the web
application.

http://rvlab.portal.lifewatchgreece.eu/

 EGI-Engage

 25

Customer of the tool Currently RvLab is available for individual researchers with human to
computer interaction, or computer to computer interaction. Services
are also accessed by mobile/tablet application. In the near future we
would like to connect with several research providers such as
environmental data providers and we want to be able to serve
LifeWatch infrastructure or any other infrastructures involved with EGI

User of the service Scientific Community, Researchers, Academicians, Students

User Documentation https://rvlab.portal.lifewatchgreece.eu/files/RvLab_manual.pdf
(Available, after login)

Technical Documentation https://rvlab.portal.lifewatchgreece.eu/help/technical_documentation
(Available, after login)

Product team HCMR, FORTH

License MIT license

Source code Available upon resquest

https://rvlab.portal.lifewatchgreece.eu/files/RvLab_manual.pdf
https://rvlab.portal.lifewatchgreece.eu/help/technical_documentation

 EGI-Engage

 26

5 Service architecture

In this section we make an attempt to define a common architecture to offer R execution services.

The architecture is based on EGI HTC/HPC resources to provide a scalable execution platform for

large communities and large use cases. The service architecture provides an overview of the key

(logical) service components and their dependencies to help better understand the structure and

logical as well as technical setup of the service.

High-Level Service architecture oriented to the Cloud framework
The following schema shows the proposed architecture defined to include R services within EGI

Federated Cloud and link them with external resources if needed:

Figure 8 – Service Architecture oriented to the EGI Cloud

The proposed architecture includes three different roles for interacting with the system: VO

Manager, App developer and Final User. The Virtual Organization Manager is the person who

takes care of the different managerial tasks from the research community side, in this case, of the

management of the Lifewatch Virtual Organization (vo.lifewatch.eu). This person authorizes new

 EGI-Engage

 27

users in the organization, that will be allowed to access to the services offered by the

infrastructure, and he/she is also the responsible of deploying and administrating general and long

term services, like the LifeWatch project management system, GIS servers or R services. The

second role, App developer, groups all the IT members who are in charge of developing and

eventually deploying new services in the LifeWatch environment such as Virtual Machines or

Containers with pre-defined web services, applications based on tools like R shiny, workflows,

scripts for Jupyter, etc. The last role, Final User, corresponds to researchers (including biologists

but also other with different technical profiles) that consume the resources provided by the

infrastructure accessing to the web services: R Shiny final apps, RStudio server, Jupyter notebooks,

and also other related tools like GIS or predefined python workflows, etc. The Final User role could

also include citizen scientists with access to certain services.

Regarding the AAI (Authorization and Authentication Infrastructures) component, we need a

standardized solution to allow different type of final users to access to the infrastructure. Within

EGI infrastructure, some solutions are being developed and LifeWatch requirements have been

communicated through the specific AARC project13, where EGI is one of the partners. For

researchers, one of the possible solutions is accessing through ORCID credentials, linked to their

host institutions. For citizen scientist, an OpenID or similar solution could work. Once the user is

logged in, he/she would be able to access to the web services, using local storage or remote cloud

storage, and access to collaboration data, including open data, via federated resources, as being

explored in the Data Commons solutions14. R services are very oriented to data analysis, so that an

optimal access to data is key, and it should be closer enough to the computing. That is why users

need a storage space accessible by the R services that can be owned by them or by the group that

they belong to.

A key component of the architecture is the User Web Portal where the services are published.

These services are deployed at sites that provide resources to EGI FedCloud supporting LifeWatch

VO. Different types of R services (one or more in each portal) can be published: RStudio server,

Rshiny or Jupyter, all of them previously described in section 3. This web portal is implemented in

a Virtual Machine (or Container) that can also run over EGI FedCloud infrastructure.

The services could also be extended to access external HTC/HPC resources (accessed either

through ‘grid’ or ‘cloud’ interfaces), using specific packages, as explained later. Permanent and

general use web portals are deployed by the VO Manager, while temporal services can be

deployed by app developers or by final users with LifeWatch VO credentials.

App developers will mainly handle two types of resources: Virtual Machines and Containers

predefined to be launched OR Applications based on other services, like Rshiny. Virtual Machines

or containers are a set of packaged services ready to be launched in the EGI FedCloud

13

 Authentication and Authorisation for Research Collaboration, AARC, see https://aarc-project.eu/
14

 https://wiki.egi.eu/wiki/EGI-Engage:WP4#TASK_JRA2.1_Federated_Open_Data

https://aarc-project.eu/
https://wiki.egi.eu/wiki/EGI-Engage:WP4#TASK_JRA2.1_Federated_Open_Data

 EGI-Engage

 28

infrastructure and that can be managed via a repository like EGI AppDB15. The development of

applications based on services like R shiny, what is very focused on providing R access using web

interfaces, can also require a git repository that could be deployed directly in connection with the

corresponding web portals.

Finally, certain R services could require not only local resources but also external HPC resources. In

such cases R must be installed in the external resource with specific libraries enabling remote R

computing, as explained later.

Challenges
There are some elements of the architecture that need to be integrated with others to be

completely functional: AAI, access to external resources, access to storage and access to

repositories.

Figure 9 – Service Architecture: Dependencies

15

 At the time of writing AppDB already supports VMs, but does not (yet) supports containers. Containers
can be manually deployed into VMs, for example as described at
https://wiki.egi.eu/wiki/Federated_Cloud_user_support#Docker_containers.

https://wiki.egi.eu/wiki/Federated_Cloud_user_support#Docker_containers

 EGI-Engage

 29

AAI

For AAI, as previously indicated, EGI is working on providing a general solution for certain type of

users, like a SSO (single sign-on) solution for accessing services. This development is ongoing in

the the JRA1.1 task of the EGI-Engage project16. This work aims at a pilot system that would

1. Simplify the process of connecting EGI services (e.g. AppDB, Operations Portal, GOCDB, etc.)

with AAI architectures operated by external infrastructures, such as LifeWatch.

AND

2. Harmonise the integration of EGI services across multiple, externally operated RI AAIs. (e.g.

AppDB would be connected to the LifeWatch AAI, the DARIAH AAI, the ELIXIR AAI in a

harmonised way).

The design of this new EGI AAI pilot system has finished in 2015 in close collaboration with the

AARC H2020 project. In the heart of the pilot system there is an ‘IdP/SP Proxy’ component, which

is based on SAML technology. The IdP/SP Proxy will be responsible for mapping an external user

identity to an ‘EGI identifier’ which will be used for the same user across all the EGI services. The

IdP/SP Proxy will be able to import attributes from external attribute authorities (e.g. from

LifeWatch IdPs) and assign these to the internal EGI user identifier. Based on the imported

attributes the EGI services can authorise users across the whole EGI network in a coherent way.

Another relavant development in EGI is the recently established ‘Long-tail of science platform’17,

and particularly its user registration and authorization system. In this platform a ‘User Registration

Portal’ serves for users to request access to the infrastructure. After a user request is approved,

the allocated capacity can be accessed trough any of the scientific gateways (VREs) that are

connected to the platform. The gateways use robot certificates with a special extension to

separate users, and to allow complete tracking of user activities at the lower levels of the

infrastructure.

The R community is pretty active on developing new packages that enrich the features of a basic R

installation. As indicated before, the Rserve package enables consuming resources from an

external R installation, i.e. using external computational capacities. To do so, R must be installed in

both resources (client and server) as well as Rserve packages: the client needs to query the server

and the server must be able to get that request, compute it and return a result. This system can be

used to consume external HPC resources. There are other interesting solutions like the option

provided in RStudio Server Pro, which is able to manage load balancing using different computing

nodes, but unfortunately this is not available as an open source solution yet.

16

 https://wiki.egi.eu/wiki/EGI-Engage:WP3#TASK_JRA1.1_Authentication_and_Authorisation_Infrastructure
17

 https://wiki.egi.eu/wiki/Long-tail_of_science

https://wiki.egi.eu/wiki/EGI-Engage:WP3#TASK_JRA1.1_Authentication_and_Authorisation_Infrastructure
https://wiki.egi.eu/wiki/Long-tail_of_science

 EGI-Engage

 30

Access to data

Regarding the critical access to data storage, we could use a distributed storage solution, like

LUSTRE or GPFS, deploying a global file system. In such case, every R server needs to be able to

access to that global file system, and it needs to be flexible enough to accept new clients, or

mount the corresponding volume with the well-known security problems. As indicated before,

within this EGI-Engage project and under the development of Data Common, EGI is testing a

general solution for distributed storage based on OneData (https://onedata.org/). This solution is

a very good option to be used within the LifeWatch framework.

Repositories

Finally, the last dependencies to be considered are related to repositories. Virtual Machines or

Containers can be stored in AppDB by EGI, so the link between the repository and the

infrastructure is direct. However, a customized deploying system needs to be developed to work

with application repositories, like GitHub. This deployment can be addressed at the time of setting

up the VM/container or later on, after launching it.

https://onedata.org/

 EGI-Engage

 31

6 Feedback on satisfaction

In this section we report briefly on the positive, although yet limited, experience with the use of

the R tools described before. Part of the work presented here has been done under different

initiatives closely related to LifeWatch.

Experience at IFCA
The option explored to run the R scripts by the final user (D.G. working for Ecohydros SL) was the

use of Jupyter notebooks. As indicated before, notebooks are organized in different cells, so users

can work in different parts separately and wrote the script in different parts and then check one

by one if there is any error. This option was considered quite useful by D.G.

As an example, when executing the theRmocline.R script, all necessary parameters are first

checked and then the fit of the simulated thermocline versus the actual data is done (see below).

Figure 10 – Execution of an R script in a Jupyter notebook

The script has two versions: one reading data from CSV files and another one using directly the

database, via the RMySQL package. If this script is used only to fit a single thermocline, there is not

much difference versus using a workstation at the office. However, as many files corresponding to

the output of different models were to be compared with the data taken each day along the

hydrological year (around 300 vertical profiles), the computation time was significantly reduced.

The main advantage to work with Jupyter notebooks and R instead of using Excel (the usual

solution in the company for data analysis) is the option to automate the process of uploading

many different files and calculating all the fit parameters in one round. Another important

 EGI-Engage

 32

advantage is that the script exports the results from the study and the charts and automatically

saves them in pdf format, completing the whole process.

Experience at VLIZ
The Lifewatch data explorer tool has been already tested by several project partners, and their

feedback has largely been implemented. A training workshop will be organized in the next couple

of months.

The system suffers from performance issues when dealing with very large datasets, and some

measures have been taken to compensate for this. The main problem is on the client side (the

browser), so we moved more of the processing load to the server where R is able to handle higher

demands. How the servers ‘scale’ when more users get involved is uncertain for now. Mirroring,

clustering, load balancing the servers is possible, but not a priority at this stage.

Experience at HCMR
Rvlab has been tested in numerous workshops and training courses including the EMBOS

workshop in Crete, 201418, the Lifewatch data analysis workshop (biodiversity data preparation

and analysis using the Lifewatch virtual labs and web services) in VLIZ, 201519 as well as other

meetings and conferences.

18

 https://www.lifewatchgreece.eu/?q=content/embos-synthesis-meeting-0
19

 http://lifewatch.be/en/lifewatch-data-analysis-workshop

https://www.lifewatchgreece.eu/?q=content/embos-synthesis-meeting-0
http://lifewatch.be/en/lifewatch-data-analysis-workshop

 EGI-Engage

 33

7 Future plans

The described services are currently deployed both in local resources (that can be linked to EGI

FedCloud environment) and in external sites that support Lifewatch Virtual Organization. In the

last months a new site integrated with EGI FedCloud has been deployed in “Estación Biológica de

Doñana”, placed at Seville, Spain. This site will serve as the main site providing resources to the

Lifewatch Virtual Organization, including both central services and user-oriented services, like

Geographical Information Systems, Databases, Data Catalogues or computing-analysis services

based in different technologies like R. That is why in the near future the distributed services that

are very important for Lifewatch users will be installed at EBD site, including those explained in

the previous sections.

The features provided and the infrastructure deployed at Seville, will increase the interest on

joining the LifeWatch Virtual Organization. For instance, Seville site has deployed a large NFS

system that can store data from users and connect to the computing part based on Cloud in a

faster way. Also, this NFS system can be integrated with the OneData Solution that is being tested

by EGI as a distributed storage solution.

In parallel, in the framework of the LifeWatch EGI-CC, several working groups have been

established in the past meeting at Bari EGI Conf 2015, and one of them lead by HCMR and with the

collaboration of VLIZ and IFCA teams, will address the support to R solutions. This work is now

being tracked using the OpenProject web tool, that has been selected by LifeWatch as the basic

support tool for its distributed e-infrastructure project, and in this way we expect to collect in the

next months the requirements of more Case Studies, analyze them and create the corresponding

backlog focused on R services.

Also the work on the integration of an EGI AAI solution has already started, in connection to the

AARC initiative.

Finally, and as clearly indicated in the example of VLIZ marine observatory, a global framework for

the development and use of the different tools and services is already implemented: the

LifeWatch Marine Virtual Research Environment (LW Marine VRE20). The LifeWatch EGI-CC will

support this development as well as the ongoing similar effort on other areas (Non-marine VRE).

20

 http://marine.lifewatch.eu/

http://marine.lifewatch.eu/

 EGI-Engage

 34

Appendix: Testing R in HTC and HPC resources

R can be installed in many different infrastructures, including HPC systems, HTC clusters and Cloud

services. Depending on the use case or the problem to solve, choosing the right infrastructure can

be significant in terms of execution time. For instance, HPC systems could be the best option for

parallelized scripts that have to be executed, using a package implementing that parallelization

like Rmpi. Furthermore, the difference in the processors used by the "physical" machines can also

reflect in the execution time, so this short landscape includes also the experience comparing also

Intel-Xeon and IBM-Power processors.

R in an HPC system: Altamira supercomputer

Altamira is one of the nodes of Spanish Supercomputing Network, RES. Currently; Altamira

comprises 158 main compute nodes, 5 additional GPU compute nodes and several service servers.

All main compute nodes have two Intel Sandybridge E5-2670 processors, each one with 8 cores

operating at 2.6 GHz, 64 GB of RAM memory (i.e. 4 GB/core) and 500 GB local disk. The system

also includes five nodes with GPUs and eleven Power PC servers.

R is used in Altamira for different purposes: economics, statistics analysis, meteo applications,

biomedicine, environmental analysis, etc. R packages sometimes are limited to be used with a

certain R version and cannot be used with another, but Altamira uses a modular system for

software that allows the users to select and load the R version that they need to run a package.

Furthermore, R allows users to select a customized workspace not only for input and output files

but also for package installation, so users in Altamira do not need to be administrators to

download and use new packages.

The actual command to load R before using it is given below:

 [userX@login1]$ module load R

 load R/2.15.1 (PATH,MANPATH)

R Parallelization

Different tests have been performed in Altamira in order to know the performance of the installed

R packages that can benefit of parallelization using a different number of cores. In particular, a

matrix multiplication test has been executed using 1, 2, 4, 8 and 16 cores. The results are shown in

the figure below: a reasonable speedup is found relevant for processes taking a relevant execution

time.

 EGI-Engage

 35

Figure 11 – Matrix Multiplication using R parallel options in a node in Altamira

Installation of R in other HPC systems

Altamira system also includes a cluster with IBM POWER7 blades with a capacity for up to 700

processes to execute intensive CPU applications. POWER7 processors are well suited for

computing intensive applications, and R was installed in these systems, and we share here the

details as a path to installation on other non-Intel processors based systems.

Before installing R, the system must have a compiler available for the powerpc architecture

installed: ppc64. If not, GCC must be installed as the basic compiler that integrates other compilers

like gfortran and g++. Besides, GCC is optimized by IBM in a package, IBM Advance Toolchain for

Power Linux. The Toolchain version installed is 8.0 which gives support for big endian (ppc64) and

little endian (ppc64le) POWER7 and POWER8. So, installation requires the following steps:

1. Configuring the repositories adding the line to /etc/apt/sources.list:

deb ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at/ubuntu trusty/ at8.0

 2. After configuring the repository, update apt:

$ sudo apt-get update && sudo apt-get upgrade

 EGI-Engage

 36

3. Finally, install the package Advance Toolchain:

$ sudo apt-get install advance-toolchain-at8.0-runtime \ advance-toolchain-at8.0-devel \

advance-toolchain-at8.0-perf \ advance-toolchain-at8.0-mcore-libs

4. After complete installation, the tool is ready to use. For example, gcc with the command:

$ /opt/at8.0/bin/gcc

The next step is to install the appropriate version of R from source, R-3.1 3, and compile it. We

chose that version because it is supported by the features of the system and for installing the

needed libraries and packages required by the R services explained in next sections.

After installation, users can run R interactively typing the R command in the terminal.

Comparing performance: R Benchmarking

R-Benchmark 25 is a set of benchmarks developed by the R community that allows testing

different complex operations within the R environment in order to check the performance.

The benchmark code is available in http://www.revolutionanalytics.com/revolution-revor-

enterprise-benchmark-details .

Using this benchmark we have compared the performance of different "typical" systems, using a

default R installation21, as described before. The list of systems includes:

-LAPTOP (using an i5 processor)

-WORKSTATION (using a Xeon E3 processor)

-ALTAMIRA node (using a Xeon E5 processor)

-PS701 (using a Power7 processors)

-CLOUD (running a VM on top of a Xeon E5 processor)

In the next table we present the benchmark results (in seconds, less is better) for the systems

tested. There is no use of parallelization, so the expected key parameters are the processor

architecture and its frequency. Along this line, the results obtained are coherent, but it is

interesting to observe the difference between Power and Intel-Xeon processors.

The inclusion of a complete parallel test could help to improve the comparison, and this is the

subject of our last comparison.

21

 Notice that further work is required to compare different R implementations, as an example see:
http://www.r-bloggers.com/r-r-with-atlas-r-with-openblas-and-revolution-r-open-which-is-fastest/

http://www.revolutionanalytics.com/revolution-revor-enterprise-benchmark-details
http://www.revolutionanalytics.com/revolution-revor-enterprise-benchmark-details
http://www.r-bloggers.com/r-r-with-atlas-r-with-openblas-and-revolution-r-open-which-is-fastest/

 EGI-Engage

 37

LAPTOP

CPU CORES R RESULT

Intel core i5-2450M

CPU i386 @2.5GHz

2 cores

(4 virtual cores)
3.0.2 42.0 s.

WORKSTATION

CPU CORES R version RESULT

Intel Xeon CPU

x86_64 @2.40GHz

4 cores

(8 virtual cores)
3.1.3 34.3 s.

ALTAMIRA node

CPU CORES R RESULT

Intel Xeon E5-2670

@2.60GHz
16 cores 2.15.1 35.1 s.

PS701 blade

CPU CORES R version RESULT

POWERPC64

@3.0GHz

8 cores

(32 virtual cores)
2.15.1 26.4 s.

CLOUD (Virtual Machine)

CPU CORES R RESULT

Intel Xeon E5-2670

@2.60GHz
16 cores 3.0.2 37.4 s.

Table 1 – Comparison of the R benchmark on different systems

The next table shows the results running different benchmark parts that show significant

differences pointing to the need to carefully select the right system for large R workloads.

 PS701 WORKSTATION LAPTOP CLOUD

Matrix Multiply 49.4 132.5 156.1 121.3

Cholesky Factorization 35.4 81.2 87.8 66.4

Table 2 – Comparison of two components of the R benchmark for different systems (s.)

 EGI-Engage

 38

Comparing now in more detail the parallel and non-parallel versions of these benchmark

components for the Power and Intel systems, the differences can be further contrasted.

 PS701 Power7 WORKSTATION Xeon E5

Benchmark

component
Parallel Not Parallel Parallel Not Parallel

Matrix Multiply 11.7 49.4 33.1 132.5

Cholesky

Factorization
8.4 35.4 19.9 81.2

Table 3 – Comparison of the parallel and non parallel versions for two components of the R benchmark (s.)

Using R services in an HPC system

Following the previous discussion regarding the good performance of Power based systems for R

computing, and in order to provide an interactively and web based interface, a Jupyter Notebook

Server have been deployed in the Power7 cluster. As already indicated, Jupyter Notebook is an

interactive computational environment, in which you can combine code execution, rich text,

mathematics, plots and rich media, etc.

There are two main components:

1. The Jupyter Notebook web application, for interactive authoring of literate computations,

in which explanatory text, mathematics, computations and rich media output may be

combined. Input and output are stored in persistent cells that may be edited in-place.

2. Plain text documents, called notebooks, for recording and distributing the results of the

rich computations.

Inside the Jupyter Notebook the R interface can be run. For security and accessing reasons, an

authentication based on certificates is being deployed and tested and it will allow only certain

users or Virtual Organizations to log in (like LifeWatch VO).

 To install and configure Jupyter notebook, these steps have been followed:

1. Jupyter requires python >=3.3 or python 2.7, so first, install Python and other dependencies:

 $ sudo apt-get install python3-dev build-essential python3-qt4

 The version 3 for python is required to install R kernel in Jupyter notebook.

2. Install a virtual environment where Jupyter notebook server will be deployed. Virtual

environment creates a python environment with its own directories and packages that is

isolated for the rest of the environments in the system. Jupyter is an environment oriented for

a single-user work, so the installation will be made after opening a session for that user. Then,

 EGI-Engage

 39

install the virtualenv tool via pip3 and create the virtual environment that will be allocated

inside the folder named jupyterenv. The last point is activating it to install and configure

jupyter.

 $ pip3 install virtualenv

 $ virtualenv /usr/bin/python3 jupyterenv

 $ source jupyterenv/bin/activate

3. In that point, jupyter will be deployed inside the virtual environment for running a R kernel. A

kernel in Jupyter is a program used by the users for writing code in a specific language. For

that, we only have to install jupyter via pip3, run the notebook server and check if it is running

in the default port, 8888, in localhost.

 $ pip3 install jupyter

 $ jupyter-notebook

4. Jupyter is very useful if more users can access to the server to create and share their own

notebooks. For this case, Apache2, via Proxy, is used to connect the localhost:8888, where is

running the server, to a public IP for the remote access. As we explained in the introduction of

this section, only certain users can access to the services, therefore, the appropriate

parameters, such as SSLEngine and the certificates, will be defined in the configuration before

restarting Apache.

5. Once the user closes the session, Jupyter turns down. To keep it running, Jupyter server should

be run as a service, using Systemd utility as system administrator. As root user, create a new

file /usr/lib/systemd/system/jupyter-notebook.service and copy the following contents into

it:

[Unit]

Description=Jupyter notebook

[Service]

Type=simple

PIDFile=/var/run/jupyter-notebook.pid

ExecStart=/usr/bin/jupyter-notebook --no-browser --profile=myserver

WorkingDirectory=/home/user/notebooks

[Install]

WantedBy=multi-user.target

 EGI-Engage

 40

The line, ExecStart=/usr/bin/jupyter notebook --profile=myserver specifies the command to

start the IPython notebook server as we do previously. For security, the working directory

should be a folder within the home directory of the user.

As the root user, reload all the systemd unit files, enable the jupyter-notebook service so that

it starts on boot, and then start the service:

 $ systemctl daemon-reload

 $ systemctl enable jupyter-notebook

 $ systemctl start jupyter-notebook

 Check if the ipython-notebook is running:

 $ systemctl status jupyter-notebook

● jupyter-notebook.service - Jupyter notebook

 Loaded:loaded(/usr/lib/systemd/system/jupyter-notebook.service; enabled)

 Active: active (running) since Wed 2016-02-03 13:09:02 CEST; 1 day 2h

6. The last point is to install the R kernel and make R available for Jupyter server. After opening a

R session, install the needed packages from the public repostory of IRkernel In Github and the

kernel spec for the current user running jupyter. Restart the jupyter service to commit the last

changes.

>install.packages(c('rzmq','repr','Irkernel','Irdisplay'),repos=c('http://irkernel.github.io/', getOption('repos')))

> Irkernel::installspec()

 Open a browser and access the IP where Jupyter is running: https://power701.ifca.es . Before the

dashboard appears and in order to access the service, introduce your certificate to authenticate

your account in the server. Once you view the current files in the dashboard, create a new

notebook for R as shown in the figure below.

Figure 12 – Screen shot of Jupyter running in ps701 HPC system

https://power701.ifca.es/

