

This material by Parties of the EGI-Engage Consortium is licensed under a Creative Commons
Attribution 4.0 International License.
The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142 http://go.egi.eu/eng

EGI-Engage

Analysis on Techniques to Manage Big Data on

the EGI Accounting System

D3.6

Date 13 June 2016
Activity WP3
Lead Partner STFC
Document Status FINAL
Document Link https://documents.egi.eu/document/2667

Abstract

This deliverable presents an analysis on techniques to manage big data on the EGI accounting

system. The EGI accounting system receives accounting data from sites providing compute, cloud

and storage services to EGI. The data is aggregated and the totals across a number of aggregation

parameters are sent to an accounting portal for visualisation. The central processing stage for the

CPU accounting data takes many hours to complete and operates in a single processor thread.

Recent advances in big data tools provide an opportunity to address these limitations: improving

the performance and resilience of the central repository. Additionally the Accounting Repository

should evolve to support new types of data and new communities that will make use of the EGI

infrastructure over the coming years. In this document we review the available technologies,

discuss how they can be applied to the accounting service and propose a methodology for testing

and comparing them.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://go.egi.eu/eng
https://documents.egi.eu/document/2667

 EGI-Engage

 2

COPYRIGHT NOTICE

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EGI-

Engage project is co-funded by the European Union Horizon 2020 programme under grant number

654142.

DELIVERY SLIP

 Name Partner/Activity Date

From: S. Pullinger, A. Coveney STFC/JRA1 2016-02-10

Moderated by: Małgorzata Krakowian NA1/EGI.eu

Reviewed by E. Yen
G. Sipos
C. Kanellopoulos

TW ASGC/SA2
EGI.eu/SA2
GRNET/JRA1

2016-02-22
2016-02-12
2016-02-16

Approved by: AMB and PMB 2016-03-04

DOCUMENT LOG

Issue Date Comment Author/Partner

v1 2016-01-22 First version of document S. Pullinger / STFC
A. Coveney / STFC

v2 2016-02-08 Revisions following internal review A. Coveney / STFC
S. Pullinger / STFC

v3 2016-02-25 Revisions following external review A. Coveney / STFC

FINAL 2016-03-03 Final version after external and PMB review A. Coveney / STFC
S. Pullinger / STFC

 2016-06-13 Final version with missing terms added to
Terminology section

Diego
Scardaci/INFN

TERMINOLOGY

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/

Acronym/Keyword Meaning

CFS
Cassandra File System. An HDFS compatible filesystem built to replace the
traditional Hadoop NameNode, secondary NameNode and DataNode
daemons.

DataNode A DataNode stores data in a Hadoop File System.

ETL
Extract, Transform and Load. A process in data warehousing responsible for
pulling data out of the source systems and placing it into a data warehouse

GFS
Google File System. A proprietary distributed file system developed by
Google for its own use.

http://www.egi.eu/about/glossary/

 EGI-Engage

 3

HDFS
Hadoop File System. A distributed file system designed to run on
commodity hardware

Lustre
Lustre is a type of parallel distributed file system, generally used for large-
scale cluster computing.

MapReduce
MapReduce is a programming model and an associated implementation for
processing and generating large data sets with a parallel, distributed
algorithm on a cluster.

NameNode
The NameNode is the centrepiece of an HDFS file system. It keeps the
directory tree of all files in the file system, and tracks where across the
cluster the file data is kept. It does not store the data of these files itself.

PVFS Parallel Virtual File System. An open source parallel file system.

 EGI-Engage

 4

Contents

1 Introduction ... 8

1.1 Current APEL architecture ... 8

1.2 Motivations for changing the APEL technical architecture .. 9

2 Technologies to manage big data .. 11

2.1 MySQL optimisations ... 11

2.1.1 Parallelised processing .. 11

2.1.2 Percona Server .. 11

2.2 InfluxDB ... 11

2.3 Apache Hadoop ... 11

2.3.1 Hadoop Distributed File System... 12

2.3.2 MapReduce.. 13

2.3.3 Enabling Real-Time MySQL to HDFS Integration .. 13

2.3.4 Writing a Hadoop MapReduce program .. 14

2.3.5 Tools built on the HDFS ... 14

2.4 Datastores ... 15

2.4.1 Hive ... 15

2.4.2 HBase ... 15

2.4.3 Cassandra .. 15

2.5 Data Transfer Tools ... 15

2.5.1 Apache Flume .. 15

2.5.2 Apache Sqoop .. 15

2.6 Data flow/stream processing tools .. 16

2.6.1 Apache Accumulo .. 16

2.6.2 Apache Camel .. 16

2.6.3 Apache Samza .. 16

2.6.4 Cascading ... 16

2.6.5 Apache Storm .. 17

2.6.6 Apache Spark ... 17

2.6.7 Apache Pig ... 17

 EGI-Engage

 5

2.7 Elasticsearch .. 17

3 Evaluation of technologies ... 18

3.1 MySQL optimisations ... 18

3.1.1 Parallelised processing .. 18

3.1.2 Percona Server .. 18

3.2 InfluxDB ... 19

3.3 Datastores ... 19

3.3.1 Hive ... 19

3.3.2 HBase ... 19

3.3.3 Cassandra .. 20

3.4 Data Transfer Tools ... 20

3.4.1 Apache Flume .. 20

3.4.2 Apache Sqoop .. 20

3.5 Data flow/stream processing tools .. 21

3.5.1 Cascading ... 21

3.5.2 Apache Storm .. 21

3.5.3 Apache Spark ... 21

3.5.4 Apache Pig ... 21

3.6 ElasticSearch.. 22

3.7 Summary ... 22

4 Testing the technologies .. 23

4.1 Metrics to test the different technologies ... 23

4.2 Resources available ... 24

4.3 Possible configurations .. 25

4.3.1 Current APEL configuration ... 26

4.3.2 Parallel batch processing ... 27

4.3.3 Replacement APEL backend ... 27

4.3.4 Replace APEL tools with Hadoop/HDFS tools ... 27

4.3.5 Combined MySQL and Hadoop .. 27

4.3.6 Parallel stream processing ... 28

4.4 Testing Schedule.. 28

 EGI-Engage

 6

Appendix I. Summary of big data tools ... 29

Database-like Tools ... 29

Non Database-like Tools .. 30

 EGI-Engage

 7

Executive summary

This deliverable presents an analysis on techniques to manage big data on the EGI accounting

system. The EGI accounting system receives accounting data from sites providing compute, cloud

and storage services to EGI. The data is aggregated and the totals across a number of aggregation

parameters are sent to an accounting portal for visualisation. The central processing stage for the

CPU accounting data takes many hours to complete and operates in a single processor thread.

Recent advances in big data tools provide an opportunity to address these limitations: improving

the performance and resilience of the central repository. Additionally the Accounting Repository

should evolve to support new types of data and new communities that will make use of the EGI

infrastructure over the coming years.

There are a number of technologies that could be used to manage big data in the Accounting

Repository. Two options would involve optimising the use of the database backend that it

currently uses, either by using a performance oriented version of MySQL, or by parallelising the

processing stage. Beyond this, there are a large number of tools that make use of Apache Hadoop

and the Hadoop Distributed File System. This would require more radical changes to the way the

Accounting Repository operates, but could bring much increased performance and future

proofing.

A number of metrics should be used to evaluate the technologies within the context of the EGI

accounting system. These include the time it takes to summarise and transfer the data, the

amount of storage space required, the infrastructure it requires to operate, the ease of use and

installation, and whether it has interfaces similar to those already in use and if can be controlled

using similar languages.

There are a number of resources available to the APEL project within STFC that can help enable

the testing and evaluation of the different big data technologies. The first is a self-service cloud,

which provides an internal IaaS cloud resource for STFC users. The second is a small Hadoop

cluster of ten nodes that has been used for evaluating cloud storage and compute, and for some

development work.

Most of the technologies introduced in this report meet the minimum requirements needed for

integrating into the Accounting Repository. It is intended to test six different configurations that

make use of these technologies using the resources available and evaluating them against the

relevant metrics.

 EGI-Engage

 8

1 Introduction

The EGI Accounting Service receives accounting data from sites providing compute, cloud and

storage services to the EGI Federation. Sites send the data to an external message bus. The data is

downloaded at a central repository and stored in a MySQL database. The data is aggregated and

the totals across a number of aggregation parameters are sent to an accounting portal for

visualisation.

The central processing stage for the CPU accounting data takes many hours to complete and

operates in a single processor thread. Although the data is backed up regularly, the data is not

distributed across multiple hosts to provide greater resilience and processing power. Recent

advances in Big Data tools provide an opportunity to address these limitations: improving the

performance and resilience of the central repository.

Additionally the Accounting Repository should evolve to support new types of data and new

communities that will make use of the EGI infrastructure over the coming years such as the

Research Infrastructures currently involved in the EGI-Engage Competence Centres1.

In this document, we review the available technologies, discuss how they can be applied to the

accounting service and propose a methodology for testing and comparing them. A future

addendum will address the results of these tests and comparisons.

The outline of this document is as follows: first we provide a short introduction to the EGI

accounting service and the limitations of its current implementation. Then there is an overview of

a variety of big data tools that may be useful in addressing these limitations. In the next section,

metrics that can be used to evaluate the different tools are discussed. A review of the different

tools and how suitable they might be follows. Lastly, the resources available for testing are shown

and a proposal is made for different configurations of the accounting repository that should be

tested.

1.1 Current APEL architecture

Figure 1 shows how the APEL client, central Accounting Repository (APEL server) and EGI

Accounting Portals interact. The flow of accounting data goes through the following stages:

1. APEL clients can run an APEL parser to extract data from a batch system and place it in their

client database, or they can use third-party tools to extract batch or cloud data. This data is then

unloaded into a message format suitable for transmission.

1
 https://wiki.egi.eu/wiki/EGI_Distributed_Competence_Centre

https://wiki.egi.eu/wiki/EGI_Distributed_Competence_Centre

 EGI-Engage

 9

2. APEL clients run a sending Secure Stomp Messenger2 (SSM) to send these messages containing

records via the EGI Message Brokers the central APEL server. The messages can contain either

Job Records or Summary records. This is configurable in the APEL client.

3. The central APEL server runs an instance of the SSM, which receives these messages and a

“loader” processes the records in the messages and loads them into a MySQL database.

4. A “summariser” process runs to create summaries of any Job Records received and load them in

a “SuperSummaries” table along with any Summary records. This summariser runs as a cron job

approximately once a day.

5. A database “unloader” process unloads the summary records into the message format to be

sent on by the sending SSM via the EGI Message Brokers to the EGI Accounting Portal.

Figure 1 - APEL components and their interactions. Components in red are provided by the APEL project.

The database for the central Accounting Repository currently contains around 750 million records

and is over 500 gigabytes in size. The repository receives approximately three million records

every day and these can be single batch job records, or aggregated summary records.

1.2 Motivations for changing the APEL technical architecture

As mentioned earlier in this section, the accounting system pulls sites’ data from a message broker

and stores it in a central repository. The data is aggregated over a number of fields to create

2
 https://github.com/apel/ssm

https://github.com/apel/ssm

 EGI-Engage

 10

summaries. These summary totals are then sent on to the accounting portal for display to the

users.

The summarising process runs as a query against a large MySQL database of around 500 gigabytes.

The process runs in a single thread and takes 8 to 10 hours to complete during which time no data

is loaded into the database. It is therefore only practical to run this once per day.

One motivator for investigating alternative tools is to reduce this latency in the system so that

summaries arrive at the portal with a shorter delay. Another motivator is the possibility to use

multiple cores for the processing thus making better use of the hardware.

Finally, the accounting team have several new types of accounting in development (storage, data-

sets and GPGPUs) which, should they all go into production, would increase the volume of data

sent to the central accounting repository. Combined with this is the expected increase in volume

of accounting data as more researchers make use of the high performance computing resources as

a result of the engagement work that EGI-Engage is doing, particularly with the Competence

Centres (CCs) and the related research infrastructures (ELIXIR; EPOS, DARIAH, EISCAT-3D, BBMRI,

Lifewatch). Therefore, the accounting service will expect to receive greater and greater volumes

of data for processing and needs to be prepared to handle larger amounts of data.

 EGI-Engage

 11

2 Technologies to manage big data

2.1 MySQL optimisations

2.1.1 Parallelised processing

A technology that could be applied to the Accounting Repository with little infrastructure change

is parallelisation. Changes to the APEL software could be made to support running the

summarising process across a number of parallel threads using separate connections to the

existing MySQL database backend.

2.1.2 Percona Server

Percona Server3 is a fork of the MySQL relational database management system created by

Percona. It aims to retain close compatibility to the official MySQL releases, while focusing on the

performance of operations.

It is a drop-in replacement for MySQL, designed to work with applications that would be too

demanding for MySQL itself to support. Percona freely includes a number of scalability,

availability, security, and backup features that are usually only available in MySQL's commercial

Enterprise Edition.

2.2 InfluxDB

InfluxDB4 is an open source distributed time series database with no external dependencies. Its

traditional use case is recording metrics, events, and performing analytics, such as continuous

sensor data, with readings in the order of 10 a second. It is most efficient when handling an

insert/append workload, with very few updates5 and aims to answer aggregation queries in real-

time6.

2.3 Apache Hadoop

The Apache Hadoop software library is a framework that allows for the distributed processing of

large data sets across clusters of computers. It is designed to scale up from single servers to

thousands of machines, each offering local computation and storage7. The two main parts of

3
 https://www.percona.com/software/mysql-database/percona-server

4
 https://influxdata.com/time-series-platform/influxdb/

5
 https://docs.influxdata.com/influxdb/v0.9/concepts/storage_engine/

6
 https://github.com/influxdata/influxdb

7
 https://hadoop.apache.org/

https://www.percona.com/software/mysql-database/percona-server
https://influxdata.com/time-series-platform/influxdb/
https://docs.influxdata.com/influxdb/v0.9/concepts/storage_engine/
https://github.com/influxdata/influxdb
https://hadoop.apache.org/

 EGI-Engage

 12

Apache Hadoop are the Hadoop Distributed File System (HDFS) for storage and the MapReduce

programming model.

The HDFS splits files into large blocks and distributes them across nodes in a cluster. To process

data, MapReduce transfers packaged code to nodes in order to process the data on that node,

taking advantage of data locality8.

Hadoop can be downloaded from their website9.

2.3.1 Hadoop Distributed File System

Many of the tools covered in this report build upon the HDFS. Therefore the technical benefits and

limitations of the HDFS must be understood.

The HDFS is a Java-based file system that provides scalable and reliable data storage. It was

designed to span large clusters of commodity servers and has demonstrated production scalability

of up to 200 PB10. The entire size of the APEL database is approximately 0.5 TB, so this should be

more than sufficient even allowing for replication and possible expansion of the data once loaded

into the HDFS.

The HDFS stores metadata and application data separately. As in other distributed file systems,

like PVFS11, Lustre12, and Google File System, the HDFS stores metadata on a dedicated server,

called the NameNode. Application data are stored on other servers called DataNodes13. All servers

are fully connected and communicate with each other.

Data on DataNodes are broken down into smaller blocks. These blocks are then distributed and

replicated throughout the cluster by using TCP-based protocols. Unlike Lustre and PVFS, the

DataNodes in the HDFS do not rely on data protection mechanisms such as RAID to make the data

contained durable. Instead, the HDFS relies on the file content being replicated on multiple

DataNodes for reliability. The default replication setting is to store two additional copies of each

block to increase fault tolerance, but this can be changed globally or per file14. This replication has

the added advantage that there are more opportunities for locating computation near the needed

data15.

Version 2.7.1 of the HDFS introduced transparent, end-to-end encryption. Once configured, data

read from and written to special HDFS directories is transparently encrypted and decrypted

without requiring changes to user application code. This encryption is also end-to-end, which

8
 http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/

9
 https://hadoop.apache.org/releases.html

10
 http://hortonworks.com/hadoop/hdfs/

11
 http://www.pvfs.org/

12
 http://www.lustre.org

13
 http://www.aosabook.org/en/hdfs.html

14
 https://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/

15
 http://www.aosabook.org/en/hdfs.html

http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/
https://hadoop.apache.org/releases.html
http://hortonworks.com/hadoop/hdfs/
http://www.pvfs.org/
http://www.lustre.org/
http://www.aosabook.org/en/hdfs.html
https://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/
http://www.aosabook.org/en/hdfs.html

 EGI-Engage

 13

means the data can only be encrypted and decrypted by the client. The HDFS never stores or has

access to unencrypted data or unencrypted data encryption keys. This satisfies two typical

requirements for encryption: at-rest encryption (meaning data on persistent media, such as a disk)

as well as in-transit encryption (e.g. when data is travelling over the network16).

2.3.2 MapReduce

The MapReduce programming model is composed of Map and Reduce procedures. A Map method

performs filtering and sorting; then a Reduce method performs a summary operation. An example

MapReduce program could contain a Map method for sorting students by first name into queues,

one queue for each name; then a Reduce method for counting the number of students in each

queue, yielding name frequencies.

The MapReduce System manages all communications and data transfers between the various

parts of the system, and providing for redundancy and fault tolerance.

2.3.3 Enabling Real-Time MySQL to HDFS Integration

Hadoop Applier reads from the MySQL binary log and inserts data into the HDFS in real time,

applying the events as they happen on the MySQL server17.

The Hadoop Applier uses an API provided by libhdfs, a C library to manipulate files in the HDFS

which comes precompiled with Hadoop distributions. Databases are mapped as separate

directories, with their tables mapped as sub-directories. A tool, such as Scoop18, may be needed to

transfer the existing APEL data19.

MySQL Applier can be downloaded from the MySQL website; however it comes with a warning

that it is “not fit for production” and is “provided solely for testing purposes”20.

16

 https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
17

 http://innovating-technology.blogspot.co.uk/2013/04/mysql-hadoop-applier-part-1.html
18

 http://sqoop.apache.org/
19

 https://www.percona.com/blog/2013/07/11/mysql-and-hadoop/
20

 http://labs.mysql.com/

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://innovating-technology.blogspot.co.uk/2013/04/mysql-hadoop-applier-part-1.html
http://sqoop.apache.org/
https://www.percona.com/blog/2013/07/11/mysql-and-hadoop/
http://labs.mysql.com/

 EGI-Engage

 14

Figure 2 - MySQL to HDFS Integration
21

2.3.4 Writing a Hadoop MapReduce program

Hadoop MapReduce programs are typically written in Java. However, Apache have released a JAR

file that takes non Java programs as inputs and uses them as the Map and Reduce methods. These

programs need to take their input from STDIN and put their output to STDOUT. Using this,

MapReduce operations using the HDFS can be written in Python22 or any language capable of

reading from STDIN and writing to STDOUT.

2.3.5 Tools built on the HDFS

As well as the MySQL Applier and the ability to write MapReduce programs in any language, the

Apache Foundation provide many tools that build on the HDFS, providing additional functionality.

Many of these tools aim to conceal the complexity of the MapReduce model, by being “database-

like” and providing a “SQL-like” interface to the stored data. A number of these tools are

described in the following sections.

21

 https://dev.mysql.com/tech-resources/articles/mysql-hadoop-applier.html
22

 http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

https://dev.mysql.com/tech-resources/articles/mysql-hadoop-applier.html
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

 EGI-Engage

 15

2.4 Datastores

2.4.1 Hive

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data

summarisation, query, and analysis23 of the data stored in the HDFS via an SQL-like interface24. It

has been designed to perform full-table scans across petabyte-scale data sets.

2.4.2 HBase

Apache HBase is the Hadoop database, a distributed, scalable, big data store providing random,

real-time read/write access to data. Apache HBase is an open-source, distributed, versioned, non-

relational database modelled after Google's Bigtable25. Just as Bigtable uses the distributed data

storage provided by the Google File System, Apache HBase provides Bigtable-like capabilities on

top of Hadoop and HDFS.

2.4.3 Cassandra

Apache Cassandra is a NoSQL database providing linear scalability and fault-tolerance on

commodity hardware. Cassandra supports replicating across multiple datacentres, providing lower

latency for users and the peace of mind of knowing that you can survive regional outages.

2.5 Data Transfer Tools

2.5.1 Apache Flume

Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating,

and moving large amounts of streaming data into the HDFS. It has a simple and flexible

architecture based on streaming data flows; and is robust and fault tolerant with tuneable

reliability mechanisms for failover and recovery26. It uses a simple extensible data model that

allows for online analytic application27.

2.5.2 Apache Sqoop

Apache Sqoop is a tool designed for efficiently transferring bulk data between Hadoop and

structured data stores such as relational databases. Relational databases are examples of

structured data sources with well defined-schema for the data they store. Cassandra, Hbase are

examples of semi-structured data sources and HDFS is an example of unstructured data source

that Sqoop can support.

23

 Venner, Jason (2009). Pro Hadoop. Apress. ISBN 978-1-4302-1942-2
24

 http://hortonworks.com/hadoop-tutorial/how-to-process-data-with-apache-hive/
25

 http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
26

 https://kzhendev.wordpress.com/2014/04/06/apache-flume-get-logs-out-of-rabbitmq-and-into-hdfs/
27

 https://flume.apache.org/

https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Hadoop
http://hortonworks.com/hadoop-tutorial/how-to-process-data-with-apache-hive/
http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf
https://kzhendev.wordpress.com/2014/04/06/apache-flume-get-logs-out-of-rabbitmq-and-into-hdfs/
https://flume.apache.org/

 EGI-Engage

 16

2.6 Data flow/stream processing tools

2.6.1 Apache Accumulo

Accumulo is a sparse, distributed, sorted, multi-dimensional map28 based on Google's BigTable29

design and is built on top of Apache Hadoop, Zookeeper30, and Thrift31. It is designed to scale to

trillions of records and tens of petabytes. Apache Accumulo features a few novel improvements on

the BigTable design in the form of cell-based access control and a server-side programming

mechanism that can modify key/value pairs at various points in the data management process.

2.6.2 Apache Camel

Apache Camel uses URIs to work directly with any kind of transport or messaging model, such as

HTTP, as well as pluggable components and data format options. Apache Camel is a small library

with minimal dependencies for easy embedding in any Java application32.

2.6.3 Apache Samza

Samza is a distributed stream processing framework. It uses Apache Kafka33 for messaging, and

Apache Hadoop to provide fault tolerance, processor isolation, security, and resource

management34. The processing that Samza enables is often called stream processing. The expected

time to get output from a stream process is usually much lower than batch processing, frequently

in the sub-second range35.

2.6.4 Cascading

Cascading is a software abstraction layer for Apache Hadoop. Cascading is used to create and

execute complex data processing workflows on a Hadoop cluster using any JVM-based language,

hiding the underlying complexity of MapReduce jobs. Cascading also comes with an extension

called Lingual. Lingual simplifies application development and integration by providing an ANSI

SQL interface for Apache Hadoop. This interface can connect existing SQL codes with Hadoop and

accelerate application development with Hadoop36.

28

 https://www.youtube.com/watch?v=nk4yhqHjxOU
29

 http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
30

 http://zookeeper.apache.org/
31

 http://thrift.apache.org/
32

 http://camel.apache.org/
33

 http://kafka.apache.org/
34

 http://samza.apache.org/
35

 http://samza.incubator.apache.org/learn/documentation/0.7.0/container/state-management.html
36

 http://www.cascading.org/projects/lingual/

https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/JVM
https://www.youtube.com/watch?v=nk4yhqHjxOU
http://static.googleusercontent.com/media/research.google.com/en/archive/bigtable-osdi06.pdf
http://zookeeper.apache.org/
http://thrift.apache.org/
http://camel.apache.org/
http://kafka.apache.org/
http://samza.apache.org/
http://samza.incubator.apache.org/learn/documentation/0.7.0/container/state-management.html
http://www.cascading.org/projects/lingual/

 EGI-Engage

 17

2.6.5 Apache Storm

Storm reliably processes unbounded streams of data, doing for real-time processing what Hadoop

did for batch processing. Storm can be used with many programming languages. It is scalable,

fault-tolerant, guarantees data processing, and claims to be easy to set up and operate. Storm

uses Thrift, an interface definition language and binary communication protocol37 that is used to

define and create services for numerous languages. Apache Avro also does a similar job, but does

not require running a code-generation program when a schema changes38.

2.6.6 Apache Spark

Spark is built on the concept of distributed datasets, which contain arbitrary Java or Python

objects. You create a dataset from external data, and then apply parallel operations to it. There

are two types of operations: transformations, which define a new dataset based on previous ones,

and actions, which kick off a job to execute on a cluster39.

2.6.7 Apache Pig

Apache Pig40 is a high-level platform for creating MapReduce programs used with Hadoop. The

language for this platform is called Pig Latin. Pig Latin abstracts the programming from the Java

MapReduce idiom into a notation which makes MapReduce programming high level, similar to

that of SQL for RDBMS systems. Pig Latin can be extended using User Defined Functions which the

user can write in Java, Python, JavaScript, Ruby, or Groovy and then call directly from a Pig Latin

program.

2.7 Elasticsearch

Elasticsearch for Apache Hadoop (ES-Hadoop) is a two-way connector that provides real-time

search on top of Hadoop. While the Hadoop ecosystem offers a multitude of analytics capabilities,

it is less appropriate for fast search. ES-Hadoop allows for combining Hadoop's big data analytics

and the real-time search of Elasticsearch41.

37

 http://jnb.ociweb.com/jnb/jnbJun2009.html
38

 https://avro.apache.org/
39

 http://spark.apache.org/examples.html
40

 http://pig.apache.org/
41

 https://www.elastic.co/products/hadoop

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Hadoop
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/RDBMS
https://en.wikipedia.org/wiki/Ruby_(programming_language)
http://jnb.ociweb.com/jnb/jnbJun2009.html
https://avro.apache.org/
http://spark.apache.org/examples.html
http://pig.apache.org/
https://www.elastic.co/products/hadoop

 EGI-Engage

 18

3 Evaluation of technologies

For one of the Big Data tools listed above to be considered a viable avenue of investigation it must

meet certain criteria. First, as APEL is built in Python, the Big Data tool should ideally have a

Python API. Secondly, the chosen tool should have a SQL-like query interface for debugging

purposes. Thirdly, the order the data processed in must be the same as the data received, as APEL

requires this to produce correct summaries.

The requirement for a Python API excludes Camel and Samza. The requirement for an SQL-like

interface excludes Accumulo.

A table summarising the tools covered in this section can be found in Appendix I.

3.1 MySQL optimisations

3.1.1 Parallelised processing

Parallelising the processing of the summaries would use the existing software and interfaces, so

no new languages would need to be used, but there would need to be modifications to the APEL

software.

3.1.2 Percona Server

Percona Server is written in C and C++. Migrating from MySQL to Percona requires replacing the

MySQL binaries with Percona replacements. This allows Python software to interact with Percona

Server using the same libraries as it interacts with MySQL (MySQL-Python), however an additional

Percona library is needed be installed as well42. It does not require a transfer of data as other tools

do (e.g. transfer to the HDFS). Percona server is also able to manage a much larger number of

concurrent threads compared to the standard version of MySQL.

Percona XtraDB Cluster43 can also provide multi-master replication, allowing writing to any node in

a Percona cluster44.

Python API SQL-like interface In-order processing

Yes Yes Yes

42

 http://stackoverflow.com/questions/21481985/mysql-python-install-with-percona
43

 https://www.percona.com/software/mysql-database/percona-xtradb-cluster
44

 https://www.percona.com/doc/percona-xtradb-cluster/5.6/features/multimaster-replication.html

http://stackoverflow.com/questions/21481985/mysql-python-install-with-percona
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/doc/percona-xtradb-cluster/5.6/features/multimaster-replication.html

 EGI-Engage

 19

3.2 InfluxDB

InfluxDB is written in Go and has a built-in HTTP API. A Python client has been developed by the

same developers as InfluxDB itself45. It also supports an SQL-like query language46.

Accounting data arrives at the Accounting Repository in batches and is loaded in batches, so it may

be necessary to import this data into InfluxDB, rather than insert it. A one off bulk import would

be required to store historical data. Clustering is supported out of the box, so data can be

replicated over multiple nodes. However there are no map-reduce-style operations to take

advantage of the clustering47.

InfluxDB supports continuous queries, meaning aggregations could be updated on the fly.

Python API SQL-like interface In-order processing

Yes Yes Yes

3.3 Datastores

3.3.1 Hive

Hive is written in Java and has a client API for many languages including Python. An SQL-like

(HiveQL) interface for querying data in the HDFS. Such queries have traditionally had high latency,

and even small queries could take some time to run because they were transformed into map-

reduce jobs and submitted to the cluster to be run in batch mode. Newer versions of Hive have

improved this performance by using the Tez execution framework, by using the Optimized Row

Columnar (ORC) file format or by enabling cost-based query optimisation48. From the top down,

Hive looks much like any other relational database.

Python API SQL-like interface In-order processing

Yes Yes Yes

3.3.2 HBase

HBase has a Python API and, unlike Hive, allows write operations into existing tables and the HDFS.

Its query language is not SQL-like and appears relatively simple. However, an extension, Apache

Phoenix49, provides an SQL layer allowing HBase to be a replacement for a MySQL database. HBase

is designed to handle large volumes of data (over a few hundred gigabytes) and large number of

45

 https://github.com/influxdata/influxdb-python
46

 https://docs.influxdata.com/influxdb/v0.8/api/query_language/
47

 http://www.shift8creative.com/posts/influxdb/
48

 http://hortonworks.com/hadoop-tutorial/real-time-data-ingestion-hbase-hive-using-storm-bolt/
49

 https://phoenix.apache.org/

https://github.com/influxdata/influxdb-python
https://docs.influxdata.com/influxdb/v0.8/api/query_language/
http://www.shift8creative.com/posts/influxdb/
http://hortonworks.com/hadoop-tutorial/real-time-data-ingestion-hbase-hive-using-storm-bolt/
https://phoenix.apache.org/

 EGI-Engage

 20

concurrent clients. As HBase is column oriented, aggregation operations might be quicker than

row based databases.

Python API SQL-like interface In-order processing

Yes Yes, with Phoenix Yes

3.3.3 Cassandra

Cassandra's data model offers the convenience of column indexes with the performance of log-

structured updates, strong support for denormalisation and materialised views, and powerful

built-in caching50. It has a Python API51 and an SQL -like query language, which supports inserts

and updates. Newer versions support aggregation operations52, but this may have to be on

columns which are part of the primary key.

Cassandra uses its own version of the HDFS, the Cassandra File System (CFS). In contrast to the

master-slave architecture of HDFS, the architecture of the CFS is peer-to-peer and so does not

have a master node. This simplifies the operational overhead of Hadoop by removing the single

points of failure in the HDFS. A user is able to create a cluster that seamlessly stores real-time data

in Cassandra, performs analytic operations on that same data, and also handles enterprise search

operations53.

Python API SQL-like interface In-order processing

Yes Yes Yes

3.4 Data Transfer Tools

3.4.1 Apache Flume

Flume is not a method of querying the data already in the HDFS but rather a method of getting

new data into the HDFS. As such, it has not SQL-like query language and would have to be

combined with another tool, such as Hive or HBase. It does not provided any ordering guarantees,

it only guarantees a single message will be processed exactly once.

3.4.2 Apache Sqoop

Sqoop allows for transfers from relational databases such as MySQL to Hadoop data stores such as

HDFS and Hive and vice versa. The tool could be useful for one-off transfers to create a corpus of

test data but also for integration in a system where data exists in a database and Hadoop tool in

parallel – allowing for both tools to be used to their best advantage.

50

 http://cassandra.apache.org/
51

 https://github.com/datastax/python-driver
52

 https://issues.apache.org/jira/browse/CASSANDRA-4914
53

 https://www.datastax.com/wp-content/uploads/2012/09/WP-DataStax-HDFSvsCFS.pdf

http://cassandra.apache.org/
https://github.com/datastax/python-driver
https://issues.apache.org/jira/browse/CASSANDRA-4914
https://www.datastax.com/wp-content/uploads/2012/09/WP-DataStax-HDFSvsCFS.pdf

 EGI-Engage

 21

3.5 Data flow/stream processing tools

3.5.1 Cascading

Cascading has both a Python API and a SQL interface via Lingual54. It can query existing data and

insert data into the HDFS. One benefit of Cascading is the ability to use Lingual to insert query data

using actual SQL, thus requiring less change to the APEL software.

Python API SQL-like interface In-order processing

Yes Yes Yes

3.5.2 Apache Storm

Storm has many use cases: real time analytics, online machine learning, continuous computation,

distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples

processed per second per node. Storm integrates with the queueing and database technologies

you already use. A Storm topology consumes streams of data and processes those streams in

arbitrarily complex ways, repartitioning the streams between each stage of the computation

however needed. It has a Python wrapper55 and serves as a means to get data into the HDFS and

process it and route.

Python API SQL-like interface In-order processing

Yes No Yes

3.5.3 Apache Spark

Spark has both a Python API56, including examples for non-streaming spark, and a SQL-like for

trouble shooting. Spark can also interact either directly with the HDFS, or with other Apache tools,

such as Hive57. It can be used to write data to the HDFS58.

Python API SQL-like interface In-order processing

Yes Yes Yes

3.5.4 Apache Pig

Pig Latin is a query language for the HDFS that is SQL-like though it diverges from the language

more than other SQL-like interfaces listed here. It supports loading directories of data from the

54

 http://www.cascading.org/projects/lingual/
55

 http://github.com/twitter/pycascading/wiki
56

 http://spark.apache.org/examples.html
57

 http://spark.apache.org/sql/
58

 https://spark.apache.org/docs/1.1.1/api/java/org/apache/spark/rdd/RDD.html

http://www.cascading.org/projects/lingual/
http://github.com/twitter/pycascading/wiki
http://spark.apache.org/examples.html
http://spark.apache.org/sql/
https://spark.apache.org/docs/1.1.1/api/java/org/apache/spark/rdd/RDD.html

 EGI-Engage

 22

HDFS and working with it to get it into the form for querying. Hive is considered friendlier and

more familiar to users who are used to using SQL for querying data59.

Python API SQL-like interface In-order processing

No Yes, with caveats Yes

3.6 ElasticSearch

ElasticSearch is a searching method that can be placed on top of the HDFS. It has a Python

interface but not a SQL-like query language. ElasticSearch itself cannot input new data into the

HDFS, but it does can become aware of new data when it is inserted into the HDFS via other

methods, such as cURL.

Python API SQL-like interface In-order processing

Yes No Yes

3.7 Summary

Most of the technologies introduced in this report meet the minimum requirements needed for

integrating into the Accounting Repository. As mentioned above, the requirement of a Python API

excludes Camel and Samza. Of the remaining tools, most seem applicable to the Accounting

Repository. However, two of the technologies, InfluxDB and ElasticSearch, are more specialised

and have less in common with the other ones, so they are not planned be tested at this stage due

to the limited available effort.

59

 http://hortonworks.com/hadoop-tutorial/how-to-process-data-with-apache-hive/

http://hortonworks.com/hadoop-tutorial/how-to-process-data-with-apache-hive/

 EGI-Engage

 23

4 Testing the technologies

4.1 Metrics to test the different technologies

In the context of the accounting system, there are a number of metrics that should be measured

for candidate technologies.

An important part of the accounting system is the processing that it does to the data that it

receives before the data is sent on to the accounting portal for visualisation. This aggregation or

“summarising” currently takes a long time, in the order of hours, and means that is impractical to

perform the summarising more than once a day. Ideally, this process would be much quicker,

allowing data to be sent to the portal on a much more regular basis or even streamed

continuously if the technology allows it. This means that the time it takes to process the data is an

important metric, measured as the time it takes to perform the summarising process. This can

then be compared to the duration of the current summarising process.

As some of the proposed configurations discussed further on would keep the existing database

and then use one of the technologies under consideration only for processing, the time it takes to

transfer the data through the interface of a candidate technology would be relevant as it may

become a regular event. Some technologies may allow for incremental transfers once the initial

transfer is done and this would reduce the impact of the transfer time, but it should still be

measured in case the transfer of data between the existing database and the interface of the

technology needs to be factored into the processing time.

The MySQL database at the heart of the accounting repository currently takes up about half a

terabyte of storage space. When this is converted to another format, such as HDFS, this may

increase the storage requirements for the repository. This would be due to the change in data

format as well as replication in the case of a solution that uses a cluster.

Different technologies may need different resources, be they infrastructure (such as VMs or

physical hosts), licences or effort, and this should be noted along with the cost of these resources

for comparison between the technologies.

An important part of deploying a new technology is supporting it. This has an impact on the level

of effort required to use a technology and in some cases, it may not be possible to use the

technology without some minimum expertise being available. With this in mind, there are a few

areas that should be evaluated when testing a candidate technology. The first is if there is enough

knowledge about the chosen technology within the APEL team and also the EGI collaboration. The

second is how easy it is to install and configure the technology; if there is clear and comprehensive

documentation available, this can help. Lastly is how easy it is to use the technology; an important

aspect of that is if there is an easy way to query the data once it is imported into the tool. A

familiar interface, such as a SQL-like query language, would aid this. Additionally, if the new

 EGI-Engage

 24

technology has a Python API or SQL API, it will require less effort to integrate it into the existing

APEL software.

Table 1 summarises the metrics discussed above for evaluating the different technologies.

Table 1 - Metrics to evaluate the technologies

Metric Short description

Time to summarise data
(batch) or latency (streaming)

The time taken to create a complete set of summaries – for
batch-like technologies where all of the summaries are
calculated at once; or the time taken from a new record arriving
in the system to the corresponding summary being updated –
for streaming-like technologies where the summaries are
updated continuously.

Time to transfer data out
of/in to data store

For technologies which require data to be transferred out of
the data store for processing, the length of time taken for the
data to be transferred out and the results to be returned to the
data store.

Storage space The storage space required to store the test data corpus.

Number of hosts The number of hosts required for a particular technology e.g.
an HDFS installation requires at least 2 hosts for failover.

Ease of installation A subjective measure reflecting the quality of the
documentation and the amount of configuration required.

Ease of use A subjective measure of how easy the technology is to use
reflecting the expertise of the APEL accounting team.

SQL interface Whether the technology has as an SQL interface or something
similar allowing for easier integration with existing accounting
software and workflows.

Python API Whether the technology has a Python API allowing the
technology to be interfaced to the existing APEL accounting
software written in Python.

4.2 Resources available

There are a number of resources available to the APEL project within STFC that can help enable

the testing and evaluation of the different big data technologies.

The first is a self-service cloud, which provides an internal IaaS cloud resource for STFC users. The

cloud is based on OpenNebula for the virtualisation and CEPH for the storage. For the hardware,

there are:

 EGI-Engage

 25

 28x Dell R420 for the hypervisors

 30x Dell R520 for the storage nodes

This gives a total of 3.5TB of memory, 896 processing cores and a storage capacity of

approximately 750TB. A variety of OS images is available, mainly consisting of different versions of

Scientific Linux and Ubuntu, although other images can be requested if there is a use-case for

them. This cloud allows developers to quickly requisition resources for testing and

experimentation.

The second is a small Hadoop cluster of ten nodes that has been used for evaluating cloud storage

and compute, and for some development work.

Lastly, the existing accounting data is an excellent resource for creating test data from. To create a

corpus of test data, a tool like Apache Sqoop60 can be used to extract the data from the current

relational database management system, MySQL, into the Hadoop Distributed File System,

transform the data in Hadoop MapReduce, and then export the data back into MySQL.

4.3 Possible configurations

Figure 3 shows the broad categories of technologies and their topology in the APEL system. A

message broker operates externally receiving data from sites. The APEL server pulls this data and

stores it in a database. Periodically, the data is processed to create summaries. The summaries are

then exported from the database and sent on via the same message broker to the EGI Accounting

Portal for display to users. The database receives ad-hoc queries for the purpose of investigating

problems with sites’ data.

60

 http://sqoop.apache.org/

http://sqoop.apache.org/

 EGI-Engage

 26

Figure 3 - APEL technology topology

4.3.1 Current APEL configuration

The current APEL configuration consists of:

 Ingest: APEL SSM receiver and APEL DB Loader

The APEL SSM software pulls messages from the message bus and writes them to the file

system. The APEL DB Loader reads the files and loads them into the database.

 Data Store: MySQL

 Export: APEL DB Unloader and APEL SSM Sender

The APEL DB Unloader and SSM Sender operate like the loader and receiver in reverse.

 Ad-hoc queries: MySQL Client

 Aggregator: APEL Summariser

The APEL Summariser runs a single-threaded query against the MySQL database to produce the

summaries. The query takes 8 to 10 hours to complete.

Data

Store

Ingest Export

Message

Broker

Aggregator
Ad-hoc

queries

 EGI-Engage

 27

4.3.2 Parallel batch processing

Parallelising the processing of the summaries would use the existing software and interfaces, but

with modifications to the APEL software. This would entail re-writing the APEL software to spread

the summarising process across multiple database connections.

4.3.3 Replacement APEL backend

The APEL software currently has a MySQL backend. This could be replaced by an alternative SQL-

like interface such as Percona Server, Hive+HiveQL or HBase+Phoenix. This would small changes to

the APEL software initially, but may require configuration and some changes to the software to

make best use of it.

4.3.4 Replace APEL tools with Hadoop/HDFS tools

In this configuration, the separate APEL tools are replaced with Hadoop/HDFS tools which perform

the same function. The example below shows the configuration for Hive but the same could be

achieved using Flume, HBase and Phoenix.

 Ingest: Apache Flume

Flume can pull data from a message bus and write directly to Hive.

 Data Store: Apache Hive

 Export: Scripted HiveQL query

Flume does not extract data from Hive. However, it is possible to extract data from Hive to

csv using HiveQL. A small script could convert this to the correct format for the APEL SSM

software to send to the accounting portal.

 Ad-hoc queries: Apache Hive Beeline

Beeline is the interactive shell for the Hive Server.

 Aggregator: pre-iledcompiled Hive query

4.3.5 Combined MySQL and Hadoop

 Ingest: APEL SSM receiver and APEL DB loader

 Data Store: MySQL

 Export: APEL DB unloader and SSM sender

 Ad-hoc queries: MySQL

 Aggregator: Sqoop could be used to export the data from MySQL to HDFS for later

processing by a number of Hadoop Map/Reduce or other technologies built on it. Sqoop

could also be used to return the summaries to MySQL. This provides the advantage of multi-

core processing without the difficulty of making larger changes to the existing service

architecture. The disadvantage of this approach is the overhead of data transfers – though

incremental updates could reduce this. Further there could be potential for the 2 copies of

the data to go out of sync.

 EGI-Engage

 28

4.3.6 Parallel stream processing

The stream processing frameworks provide the opportunity to split the data store and aggregator

functions apart so that the aggregation is performed continuously. In this configuration Apache

Flume is used to duplicate the data pulled from the message broker: with one copy going to a data

store – such as MySQL or Hive – for ad-hoc queries and backup; and the other copy going to a

stream processing framework – such as Samza, Spark or Storm – to provide near real-time

generation of summaries.

4.4 Testing Schedule

Configuration Start of testing period End of testing period

Parallel batch processing March 2015 April 2015

Replace APEL tools with Hadoop/HDFS tools May 2015 June 2015

Replacement APEL Backend July 2015 August 2015

Combined MySQL and Hadoop September 2015 October 2015

Parallel stream processing November 2015 December 2015

This material by Parties of the EGI-Engage Consortium is licensed under a Creative Commons
Attribution 4.0 International License.
The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142 http://go.egi.eu/eng

Appendix I. Summary of big data tools

Database-like Tools

Tool
Tool

language
API

language
SQL-like

interface?
Data entry
into HDFS?

Searching into
HDFS?

Batch or
streaming?

Notes

Percona Server C/C++ Python Yes N/A N/A Both Drop-in replacement for MySQL.

InfluxDB Go
HTTP,
Python

Yes N/A N/A Both Batch imports less efficient.

Hive Java
Java, Python,
PHP

Yes Yes Yes Batch
Hive only has “INSERT...VALUES” in
version 0.14.

HBase Java Java, Python
No, see
notes

Yes Yes Batch
SQL like query language can be
added on top of HBase61.

Cassandra Java Java, Python Yes Yes, see notes Yes, see notes Batch
Cassandra replaces the HDFS with
its own file system62.

61

 https://phoenix.apache.org
62

 https://www.datastax.com/wp-content/uploads/2012/09/WP-DataStax-HDFSvsCFS.pdf

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://go.egi.eu/eng
https://phoenix.apache.org/
https://www.datastax.com/wp-content/uploads/2012/09/WP-DataStax-HDFSvsCFS.pdf

 EGI-Engage

 30

Non Database-like Tools

Tool
Tool

language
API

language
SQL-like

interface?
Data entry
into HDFS?

Searching
into HDFS?

Ordering
preserved?

Batch or
streaming?

Notes

Parallelised
processing

Python Python Yes N/A N/A N/A N/A Does not affect loading of data.

Samza Java, Scala Java No63 No Yes
Yes, per
stream64

Streaming
Stateful stream processing, could
possibly compute aggregate on
the fly

Spark
Java, Scala,
Python, R

Java, Scala,
Python, R65

Yes Yes Yes
Yes, per
stream

Streaming
Spark/Hadoop cluster already set
up

Camel Java
Mostly
Java66, see
notes

Yes67 Yes68 Yes No69 Both
Expressions and Predicates can be
written in Python

ElasticSearch Java Java, Python No
No, see
notes

Yes N/A Batch
Data can be inserted using the
Linux tool cURL.

63

 https://samza.apache.org/learn/documentation/0.7.0/container/state-management.html
64

 http://samza.apache.org/learn/documentation/0.7.0/comparisons/spark-streaming.html
65

 http://spark.apache.org/docs/latest/api.html
66

 http://camel.apache.org/scripting-languages.html
67

 http://camel.apache.org/sql-component.html
68

 http://camel.apache.org/hdfs.html
69

 http://camel.apache.org/parallel-processing-and-ordering.html

https://samza.apache.org/learn/documentation/0.7.0/container/state-management.html
http://samza.apache.org/learn/documentation/0.7.0/comparisons/spark-streaming.html
http://spark.apache.org/docs/latest/api.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/hdfs.html
http://camel.apache.org/parallel-processing-and-ordering.html

 EGI-Engage

 31

Accumulo Java Java, Python No Yes Yes N/A Batch

Flume Java
Java, Python,
Scala

No Yes No No70 Streaming
Not a method of querying the
data, but a method of putting it
into queries methods.

Cascading Java
Java, Python,
SQL, others71

Yes Yes Yes N/A Batch SQL API, Lingual72

Storm
Clojure,
Java

Java, Python No Yes No
Yes, but
per stream
only73

Streaming

Pig Pig Latin
Java, Python,
JS, Ruby,
Groovy

No (Pig
Latin)

No Yes N/A Batch No append to existing files.

70

 https://github.com/cloudera/flume/wiki/FAQ
71

 http://www.cascading.org/extensions/
72

 http://www.cascading.org/projects/lingual/
73

 https://samza.apache.org/learn/documentation/0.10/comparisons/storm.html

https://github.com/cloudera/flume/wiki/FAQ
http://www.cascading.org/extensions/
http://www.cascading.org/projects/lingual/
https://samza.apache.org/learn/documentation/0.10/comparisons/storm.html

