

This work by EGI.eu is licensed under a
Creative Commons Attribution 4.0 International License

APEL Development Process and Software

Release Quality Verification Procedure

Author: Adrian Coveney

Version: FINAL

Document Link: https://documents.egi.eu/document/2739

http://creativecommons.org/licenses/by/4.0/
https://documents.egi.eu/document/2739

Title of the Document / Number if required

 2

DOCUMENT LOG

Issue Date Comment Author

v0.1 2016-01-21 Document creation A. Coveney / STFC

v0.2 2016-01-21 Incorporated revisions from S. Pullinger A. Coveney / STFC

v0.3 2016-02-01 Revised following internal review A. Coveney / STFC

FINAL 2016-02-23 Revised following external review A. Coveney / STFC

TERMINOLOGY

The EGI glossary of terms is available at: https://wiki.egi.eu/wiki/Glossary

https://wiki.egi.eu/wiki/Glossary

Title of the Document / Number if required

 3

Contents

1 Introduction ... 4

2 Software overview ... 5

2.1 Components .. 5

2.1.1 apel-parsers ... 5

2.1.2 apel-client .. 6

2.1.3 apel-server ... 6

2.1.4 apel-lib ... 6

2.1.5 apel-ssm .. 6

3 Software development workflow... 7

3.1 Forks .. 7

3.2 Pull Requests ... 7

3.3 Branches .. 7

3.3.1 Development branch ... 8

3.3.2 Master branch ... 8

3.4 Further testing ... 8

4 Service management ... 9

4.1 Production deployment ... 9

4.2 Data management ... 9

Title of the Document / Number if required

 4

1 Introduction

APEL is an accounting tool that collects accounting data from sites participating in the EGI and

WLCG infrastructures as well as from sites belonging to other Grid organisations that are

collaborating with EGI, including OSG, NorduGrid and INFN.

The accounting information is gathered from different sensors into a central accounting database

where it is processed to generate statistical summaries that are available through the EGI/WLCG

Accounting Portal.

Statistics are available for view in different detail by Users, VO Managers, Site Administrators and

anonymous users according to well-defined access rights.

This document describes the development process used by the APEL project including the semi-

automatic testing procedure used to assess the quality of software releases.

Title of the Document / Number if required

 5

2 Software overview

2.1 Components

The APEL project produces its own software, which is written in Python and uses MySQL as the

database backend. Source code is hosted on GitHub under the APEL organization1. The software

comprises the components detailed later in this document. Figure 1 shows these components and

how they interact. All of them are part of the same repository on GitHub2, except for the apel-ssm

component, which can be used without the other components so warrants its own repository3.

Figure 1 - APEL components and their interaction

2.1.1 apel-parsers

The parsers extract data from these batch systems:

 LSF 5.x to 9.x

 PBS/Torque

 Univa/Sun/Oracle Grid Engine

 SLURM

 HTCondor

and place it in the client database.

1
 https://github.com/apel

2
 https://github.com/apel/apel

3
 https://github.com/apel/ssm

https://github.com/apel
https://github.com/apel/apel
https://github.com/apel/ssm

Title of the Document / Number if required

 6

2.1.2 apel-client

The client processes the data and sends it to the central APEL server using SSM.

2.1.3 apel-server

The server processes data sent by the clients and sends it on to the EGI Accounting Portal using

SSM.

2.1.4 apel-lib

This contains all the library Python code for apel-parsers, apel-client and apel-server.

2.1.5 apel-ssm

This is a secure implementation of the STOMP messaging protocol. It consists of a library used by

the apel-client and command line scripts called by externally developed clients.

Title of the Document / Number if required

 7

3 Software development workflow

3.1 Forks

As Git is a distributed version control system, all the developers who work on the APEL project

have their own copy of the repositories, a fork, in their own GitHub accounts. The developers work

on local copies of these forks, fixing bugs or creating new features.

3.2 Pull Requests

When the changes a developer has been working on are ready to be merged back into the parent

repository a pull request is opened. The developer should include information about the changes,

such as their purpose and whether they address an outstanding issue, so that someone else can

understand the context of these changes. Where new features are added, they should be covered

by a corresponding unit test.

Opening the pull request initiates the execution of a number of checks. The main one is the

execution of the test suite using the hosted continuous integration service Travis CI4. Code test

coverage checking is performed by Coveralls5 and Python code quality checks by Landscape6.

These tools report the result of their checks directly in the pull request for the developers to see.

The continuous integration test must pass before the changes can be merged back into the parent

and it is highly recommended that the other checks also pass.

The changes are reviewed by at least one other member of the APEL team who did not submit the

pull request. This is so that at least two people have seen or worked on the changes that are to be

added. After this stage, the reviewer can either approve the changes, or suggest improvements.

If approved, then the changes are merged into the parent repository by the team member with

the release manager role. If not approved, then the developer can incorporate the suggestions

and add more changes to the pull request which leads to the automated checks being made again

and then the process can repeat from there until the reviewer is satisfied with the suitability of

the changes.

3.3 Branches

Both of the main APEL repositories have two branches used to manage the source code:

4
 https://travis-ci.org/

5
 https://coveralls.io/

6
 https://landscape.io/

https://travis-ci.org/
https://coveralls.io/
https://landscape.io/

Title of the Document / Number if required

 8

3.3.1 Development branch

The development branch (shortened to “dev” in the version control system) is where pull requests

are merged to and so contains the latest features as they are completed. Therefore the code in

this branch should always be deployable to test systems.

3.3.2 Master branch

The master branch is where the development branch is merged to when preparing the software

for a release. Therefore the code in this branch should always be releasable to production

systems.

3.4 Further testing

Extra testing can be performed using a test system if it is thought that the changes are not tested

comprehensively enough in the unit tests or if there are potential integration issues. The APEL

project has a test server where new versions of the software are installed so that external

developers can test against them before deploying to production.

Title of the Document / Number if required

 9

4 Service management

4.1 Production deployment

Once a new software release has passed the automated testing and any necessary additional

testing, it can be deployed to the production system. This involves stopping any services that are

being updated, using RPM to upgrade the packages, and then restarting the services.

If a problem is noticed, it is possible roll back the changes by stopping the services and using RPM

again to re-install the preceding package.

If the changes to the software require an update to the database schema, the database should

first be backed up to provide an easy way to return to the pre-upgrade state in case of problems.

4.2 Data management

A database backup of the central accounting repository is taken daily which is archived to tape.

Along with the database transaction logs, this allows the database to be recovered to any point in

time.

