

This material by Parties of the EGI-Engage Consortium is licensed under a Creative Commons
Attribution 4.0 International License.
The EGI-Engage project is co-funded by the European Union (EU) Horizon 2020 program
under Grant number 654142 http://go.egi.eu/eng

EGI-Engage

Second release of the accounting and

operational tools

D3.10

Date 09 March 2017
Activity WP3
Lead Partner CSIC, CNRS, STFC
Document Status FINAL
Document Link https://documents.egi.eu/document/3018

Abstract

This deliverable describes the second release of the EGI Accounting and Operational Tools during

EGI-Engage project, including the developments made during the second year of the project for

the Operations Portal, ARGO, Messaging, GOCDB, Security Monitoring, Accounting Repository and

Portal. The evolution of these tools has been driven by the need to support new technologies (e.g.

cloud) and to satisfy new requirements emerging from service providers and user communities, in

particular from the Research Infrastructures contributing to EGI-Engage via the EGI Competence

Centres (CCs) and the Resource Providers (RPs) who contribute infrastructure services to the

federation. The development roadmap has been reviewed and updated according to a

requirement gathering process, which has been accomplished in collaboration with the other EGI

Engage WPs in charge of the communication with users and key stakeholders.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://go.egi.eu/eng
https://documents.egi.eu/document/3018

 EGI-Engage

 2

COPYRIGHT NOTICE

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EGI-

Engage project is co-funded by the European Union Horizon 2020 programme under grant number

654142.

DELIVERY SLIP

 Name Partner/Activity Date

From: Cyril Lorphelin
Christos Kanellopoulos
David Meredith
Daniel Kouril
Adrian Coveney
Ivan Diaz Alvarez
Diego Scardaci

CNRS/WP3
GRNET/WP3
STFC/WP3
CESNET/WP3
STFC/WP3
CSIC/WP3
EGI F.-INFN/WP3

13/02/2017

Moderated by: Małgorzata Krakowian EGI Foundation/WP1

Reviewed by Yannick Legre
Alessandro Paolini

EGI Foundation/WP1
EGI Foundation/WP5

02/03/2017
17/02/2017

Approved by: AMB and PMB 6/03/2017

DOCUMENT LOG

Issue Date Comment Author/Partner

v.1 13/02/2017 Full draft ready for internal review Cyril Lorphelin/CNRS
Christos Kanellopoulos/GRNET
David Meredith/STFC
Daniel Kouril/CESNET
Adrian Coveney/STFC
Ivan Diaz Alvarez/CSIC
Diego Scardaci/EGI F. - INFN

v.2 15/02/2017 Full draft ready for external review Diego Scardaci/EGI F. - INFN

FINAL 6/03/2017 Final version

TERMINOLOGY

A complete project glossary and acronyms are provided at the following pages:

 https://wiki.egi.eu/wiki/Glossary

 https://wiki.egi.eu/wiki/Acronyms

https://wiki.egi.eu/wiki/Glossary
https://wiki.egi.eu/wiki/Acronyms

 EGI-Engage

 3

Contents

1 Operations Portal... 7

1.1 Introduction .. 7

1.2 Service architecture ... 8

1.2.1 High-Level Service architecture ... 8

1.2.2 Integration and dependencies ... 10

1.3 Release notes .. 10

1.3.1 Operations Portal 4.0 ... 10

1.3.2 Operations Portal 4.1 ... 11

1.3.3 VAPOR 2.0 ... 11

1.3.4 VAPOR 2.1 ... 12

1.3.5 VAPOR 2.2 ... 12

1.4 Feedback on satisfaction ... 12

1.5 Plan for Exploitation and Dissemination .. 13

1.6 Future plans .. 14

2 ARGO ... 16

2.1 Introduction .. 16

2.2 Service architecture ... 16

2.2.1 High-Level Service architecture ... 16

2.2.2 Integration and dependencies ... 18

2.3 Release notes .. 19

2.3.1 Requirements covered in the release .. 19

2.4 Feedback on satisfaction ... 21

2.5 Plan for Exploitation and Dissemination .. 22

2.6 Future plans .. 23

3 Messaging service .. 25

3.1 Introduction .. 25

3.2 Service architecture ... 25

3.2.1 High-Level Service architecture ... 25

3.2.2 Integration and dependencies ... 27

 EGI-Engage

 4

3.3 Release notes .. 27

3.3.1 Requirements covered in the release .. 27

3.3.2 Changelog .. 28

3.4 Feedback on satisfaction ... 28

3.5 Plan for Exploitation and Dissemination .. 28

3.6 Future plans .. 29

4 GOCDB ... 30

4.1 Introduction .. 30

4.2 Service architecture ... 31

4.2.1 High-Level Service architecture ... 31

4.2.2 Integration and dependencies ... 31

4.3 Release notes .. 31

4.3.1 Requirements covered in the release .. 31

4.4 Feedback on satisfaction ... 32

4.5 Plan for Exploitation and Dissemination .. 32

4.6 Future plans .. 34

5 Security Monitoring ... 35

5.1 Introduction .. 35

5.2 Service architecture ... 35

5.2.1 High-Level Service architecture ... 35

5.2.2 Integration and dependencies ... 36

5.3 Release notes .. 36

5.3.1 Requirements covered in the release .. 36

5.4 Feedback on satisfaction ... 36

5.5 Plan for Exploitation and Dissemination .. 36

5.6 Future plans .. 37

6 Accounting Repository ... 38

6.1 Introduction .. 38

6.2 Service architecture ... 39

6.2.1 High-Level Service architecture ... 39

6.2.2 Integration and dependencies ... 40

 EGI-Engage

 5

6.3 Release notes .. 40

6.3.1 Requirements covered in the release .. 40

6.4 Feedback on satisfaction ... 40

6.5 Plan for Exploitation and Dissemination .. 41

6.6 Future plans .. 42

7 Accounting Portal .. 43

7.1 Introduction .. 43

7.2 Service architecture ... 43

7.2.1 High-Level Service architecture ... 43

7.2.2 Integration and dependencies ... 45

7.3 Release notes .. 46

7.3.1 Requirements covered in the release .. 46

7.4 Feedback on satisfaction ... 46

7.5 Plan for Exploitation and Dissemination .. 46

7.6 Future plans .. 47

Appendix I. ARGO Development Process .. 49

Appendix II. GOCDB development process .. 55

 EGI-Engage

 6

Executive summary

This deliverable describes the second release of the EGI Accounting and Operational Tools during

EGI-Engage project, including the developments made during the second year of the project for

the Operations Portal, ARGO, Messaging, GOCDB, Security Monitoring, Accounting Repository and

Portal. The evolution of these tools has been driven by the need to support new technologies (e.g.

cloud) and to satisfy new requirements emerging from service providers and user communities, in

particular from the Research Infrastructures contributing to EGI-Engage via the EGI Competence

Centres (CCs) and the Resource Providers (RPs) who contribute infrastructure services to the

federation. The development roadmap has been reviewed and updated according to a

requirement gathering process, which has been accomplished in collaboration with the other EGI

Engage WPs in charge of the communication with users and key stakeholders.

The Operations Portal team upgraded the different technologies adopted by the portal to ensure a

better maintainability and an enhancement of the performances. A continuous integration process

has been established to improve the release quality and reduce the time to production. Further

information has been added to the VO ID card and a complete replacement of GSTAT is now

available through the VAPOR module.

The deployment of a central ARGO monitoring engine, able to serve a large infrastructure with a

high availability setup, is now possible. Such deployment requires less maintenance effort and

enables faster and streamlined deployment of new tests or updating of existing ones. This leads to

improvements in the performance, robustness and reliability of the ARGO Monitoring Service.

A new version of the Messaging Service has been released. It provides an HTTP API that enables

users/systems to implement a message-oriented service using the Publish/Subscribe Model over

plain HTTP. This new interface makes the implementation of new clients easier and the

implementation more robust. The ARGO monitoring system, the Operations Portal and the

accounting system will migrate to the new Messaging Service by the end of the project.

During the second year, the GOCDB team focused its effort on developing a new write API that

provides a script-accessible mechanism to manage custom properties. This allows clients to

automate their property editing workflows, which aims to reduce the admin overhead of manually

managing custom properties. Furthermore, the GOCDB has been integrated with the new EGI

CheckIn service to manage users’ authentication and authorisation.

Finally, the accounting team deployed in production a new cloud usage record that collect

additional attributes about the VM instantiated in the EGI Federated Cloud and the new portal,

which replaced the old one, with a completed revised look & feel, a contextualised online help and

several new features available.

 EGI-Engage

 7

1 Operations Portal

1.1 Introduction

Tool name Operations Portal

Tool url http://operations-portal.egi.eu

Tool wiki page https://wiki.egi.eu/wiki/Operations_Portal

Description The Operations Portal provides VO management functions and other

capabilities, which support the EGI daily operations. It is a central

portal for the operations community that offers a bundle of different

capabilities, such as the broadcast tool, VO management facilities, a

security dashboard and an operations dashboard that is used to

display information about failing monitoring probes and to open

tickets to the affected Resource Centres. The dashboard also

supports the central grid oversight activities. It is fully interfaced with

the EGI Helpdesk and the monitoring system through messaging. It is

a critical component as it is used by all EGI Operations Centres to

provide support to the respective Resource Centres. The Operations

Portal provides tools supporting the daily running of operations of

the entire infrastructure: grid oversight, security operations, VO

management, broadcast , VO metrics.

VAPOR: the Vo Administration and operations PORtal, is a generic

tool to assist community managers and support teams in performing

their daily activities. The application provides resources status

indicators, statistical reports, data management tools. It gathers the

resources information from the BDII and displays them in a ordered

way, replacing the features previously offered by GSTAT. The amount

of resources and the resources themselves are shown in different

views that group information per Operations Centres, Countries and

VOs.

Value proposition New features offered by the Operations Portals allow its customers

to better monitor and browse the infrastructure and, then, adapting

their workflows according to the exact status of the computing and

storage resources (e.g. moving some computation from one provider

to another since the latter is working better).

http://operations-portal.egi.eu/
https://wiki.egi.eu/wiki/Operations_Portal

 EGI-Engage

 8

Customer of the tool EGI; NGI; RI; Resource Provider; Research Communities

User of the service Site admins; Operations Managers; VO Manager; VO users;

User Documentation https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of

_the_dashboard

http://operations-portal.egi.eu/vapor/globalHelp

Technical Documentation https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of

_the_dashboard

Product team IN2P3/CNRS

License Apache 2.0

Source code https://gitlab.in2p3.fr/groups/opsportal

1.2 Service architecture

1.2.1 High-Level Service architecture

The Operations Portal has been designed as an integration platform, allowing for strong

interaction among existing tools with similar scope but also filling up gaps wherever functionality

has been lacking. The displayed information is retrieved from several distributed static and

dynamic sources – databases, Grid Information System, Web Services, etc. – and gathered within

the portal.

The architecture of the portal is composed of three modules:

● A database – to store information related to the users or the VO;

● A web module – graphical user interface – which is currently integrated into the Symfony

framework;

● A Data Aggregation and Unification Service named Lavoisier.

Lavoisier is the component used to store, consolidate and “feed” data into the web application.

The global information from the primary and heterogeneous data sources (e.g. BDII, GOCDB,

NAGIOS, GGUS, ARGO, etc.) is retrieved by means of the use of the different plug-ins. The

collected information is structured and organized within configuration files in Lavoisier and,

finally, made available to the web application without the need for any further computations. This

modular architecture is conceived to add easily new data source in this model and use the cached

information if a primary source is unavailable. The data sources are refreshed only as needed and

https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of_the_dashboard
https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of_the_dashboard
http://operations-portal.egi.eu/vapor/globalHelp
https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of_the_dashboard
https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of_the_dashboard
https://gitlab.in2p3.fr/groups/opsportal

 EGI-Engage

 9

only when an action has been triggered. In addition, it is very easy to add a new data source in this

model, as depicted in Fig. 1 and Fig. 2. Nevertheless, two critical dependencies are remaining:

GGUS1 and RTIR2 (red arrows on the left on next figure).

These dependencies are due to the communication via web services between the Operations

Portal and GGUS/RTIR for the creation or the update of tickets.

In case of disruptions of the GGUS or RT services, a part of the features of the Operations Portal

will be affected: the creation and the update of tickets into the dashboards. For the rest of data

sources, the cache mechanism of Lavoisier permits us to ensure the integrity of the application in

case of failures of third parties providers.

Figure 1. Operations Portal architecture

For the VAPOR application, we use the same architecture with a dedicated instance of

Lavoisier. Information is aggregated from several top BDII objects and from a monitoring

1
 www.ggus.eu

2
 https://wiki.egi.eu/wiki/EGI_CSIRT:Main_Page

http://go.egi.eu/eng
http://go.egi.eu/eng

 EGI-Engage

 10

tool based on Jsaga (JobMonitor) and local scripts in python and shell developed

specifically to ease the VO support.

VAPOR is fully integrated in the Operations Portal and is presented to the users as an

additional feature available.

Figure 2. VAPOR architecture

1.2.2 Integration and dependencies

Operations Portal dependencies have been already described in the previous section. They

are not changed in this release.

1.3 Release notes

1.3.1 Operations Portal 4.0

This version is a major evolution of the background technologies of the portal.

The aim was to upgrade the different technologies used around the portal and ensure a better

maintainability and an improvement of the performances. Here are the main changes for this

version:

a) Frameworks & JS Libraries

● Migration to Symfony 3;

● Upgrade of bootstrap library;

● Adoption of the Datatables Js libraries to optimize the presentation of the tables

 EGI-Engage

 11

(VO Management, Metrics);

● Use of Google Chart (VO Management, Metrics).

b) Ergonomics

● Addition of links to ARGO and VAPOR applications;

● Changes into global menu presentation (and optimization depending on screen

size).

c) Module and project modifications

● Reorganisation of the project infrastructure;

● Removal of obsolete files and features;

● Merge of the VO Management Tool and VO ID cards (all-in-one page);

● Removal of Availabilities/reliabilities module (replaced by ARGO).

d) Downtime Module (new module)

The historical downtime subscription system has been removed and replaced within a dedicated

module offering the following features:

● A subscription page (emails , rss , ical);

● Timelines charts and tables;

● Search tool;

● Data exportable in different formats (CSV, JSON).

e) Continuous Integration

 A procedure about good practices for the development procedure is in place:

https://forge.in2p3.fr/projects/opsportaluser/wiki/Development_Procedure

● An integration platform has been set-up with PHPUnit , GitlabCI , docker and

SonarQBE:

https://forge.in2p3.fr/projects/opsportaluser/wiki/Continuous_Integration

1.3.2 Operations Portal 4.1

This version was focused on:

● Several improvements on the VO ID cards;

● Improvement of the documentation of the main features;

● The fixes of different bugs due to the important changes of the previous version.

1.3.3 VAPOR 2.0

The initial prototype (described in D3.43) has been put in production after a test phase of one

month.

3
 https://documents.egi.eu/document/2660

https://forge.in2p3.fr/projects/opsportaluser/wiki/Development_Procedure
https://forge.in2p3.fr/projects/opsportaluser/wiki/Continuous_Integration
https://forge.in2p3.fr/projects/opsportaluser/wiki/Continuous_Integration
https://documents.egi.eu/document/2660

 EGI-Engage

 12

1.3.4 VAPOR 2.1

The main features of this release were:

● Integration of GSTAT features;

○ a map of the resources:

http://operations-portal.egi.eu/vapor/resources/GL2Map

○ a table of the resources:

http://operations-portal.egi.eu/vapor/resources/GL2ResSummary

○ a Top BDII browser:

http://operations-portal.egi.eu/vapor/resources/GL2ResBdiiBrowser

● New menu;

● Bug fixing;

● Integration of feedback given by users;

● Ergonomics improvements.

1.3.5 VAPOR 2.2

This release is currently in the test phase and will be delivered in February 2017.

For this release, the Operations Portal team has worked closely with the EGI Operations to

consolidate the different queries to the Top BDII and the different extracted figures. The results

are the following:

● A summary of the CPU and storage capacities by countries, sites or Operations Centres;

● A geographical map with the distribution of sites with a VO filter;

● Some additions in the faulty publications: bad HEPSPEC, mismatches between the

different benchmarks, negative values for jobs.

This release has been also focused on the documentation of the different features and the access

to the API.

1.4 Feedback on satisfaction

Prioritization and testing has been done by dedicated Operations Portal Advisory and Testing

Board (OPAnTG)4 coordinated by EGI Operations team. Furthermore, the Operations Portal team

has worked on the automation of tests. Unit and acceptance tests are now done through Docker

piloted by GitLab Continuous Integration server.

If tests are failing, new features are not propagated to the test infrastructure. This allows

performing a first bug filter before manually tests are executed. Complementary to these tests,

the team also adopted a SonarQBE instance to inspect the quality of code.

4
 https://wiki.egi.eu/wiki/OTAG#Operations_Portal_Advisory_and_Testing_Board

http://operations-portal.egi.eu/vapor/resources/GL2Map
http://operations-portal.egi.eu/vapor/resources/GL2ResSummary
http://operations-portal.egi.eu/vapor/resources/GL2ResSummary
http://operations-portal.egi.eu/vapor/resources/GL2ResBdiiBrowser
http://operations-portal.egi.eu/vapor/resources/GL2ResBdiiBrowser
https://wiki.egi.eu/wiki/OTAG#Operations_Portal_Advisory_and_Testing_Board

 EGI-Engage

 13

The architecture of the Operations Portal automatic test suite is described below.

As a result, a minor number of bugs have been identified by the testing team in the most recent

releases.

Figure 3. Operations Portal - Automatic test suite.

1.5 Plan for Exploitation and Dissemination

Name of the
result

Operation Portal

DEFINITION

Category of
result

Software & service innovation

Description of
the result

Software enhancement: integrate the VO Administration and operations PORtal
(VAPOR) into the Operations Portal and enhance the monitor infrastructure
resources including the most relevant features currently offered by GSTAT.

 EGI-Engage

 14

EXPLOITATION

Target group(s) Users, NGIs, Resource centres, RIs

Needs Monitor / browse / Evaluate the resources for VO, sites, Operations Centres

How the target
groups will use
the result?

 Exploit the new features in the daily operations of the EGI
infrastructure

 Exploit the advanced metrics to better promote the EGI
infrastructure

Benefits  Ease the daily administration of the resources

 Have an overview of the resources and their status
 Be more efficient in the daily job submission

How will you
protect the
results?

Apache 2 License

Actions for
exploitation

The result is accessible through the web site and the code is hosted on a gitlab.

URL to project
result

http://operations-portal/vapor

https://gitlab.in2p3.fr/opsportal/

Success criteria The deployment in production and the use by end users.

DISSEMINATION

Key messages Browse and evaluate your resources

Channels EGI Broadcast tool, EGI Meetings

Actions for
dissemination

EGI conferences, publications, participation to workshops organised by potential
users.

Cost

Evaluation The number of requests and the feedback given by users

1.6 Future plans

The effort for EGI-Engage is now limited to the management of the project. Consequently, the

development will be limited for the last phase of the project. Nevertheless, the following activities

will be completed by the end of the project:

● VAPOR

○ V2.2 release in production;

○ Implementation of improvements asked by users.

● Operations Portal

http://operations-portal/vapor
https://gitlab.in2p3.fr/opsportal/

 EGI-Engage

 15

○ Integration of complementary metrics for the VO: accounting data and AppDB

changes;

○ Improvements on the Vo ID Card;

○ Support of the new EGI AAI based on the CheckIn service (IdP/SP Proxy).

 EGI-Engage

 16

2 ARGO

2.1 Introduction

Tool name ARGO

Tool url http://argo.egi.eu

Tool wiki page https://wiki.egi.eu/wiki/ARGO

Description ARGO is a flexible and scalable framework for monitoring status,
availability and reliability

Value proposition Improved portal design that allows new and easier way to access
and visualise data for the final users. Third parties can now gather
monitoring data from the system through a complete API. A central
deployment of the ARGO monitoring engine can serve a large
infrastructure reducing the maintenance costs.

Customer of the tool EGI; NGI; RI; Resource Provider; Research Communities

User of the service Site admins; Operations Managers; large research group

User Documentation http://argoeu.github.io; http://argo.egi.eu

Technical Documentation http://argoeu.github.io

Product team GRNET, SRCE, CNRS

License Apache License Version 2.0

Source code https://github.com/ARGOeu/

2.2 Service architecture

2.2.1 High-Level Service architecture

ARGO is a flexible and scalable framework for monitoring status, availability and reliability of

services provided by infrastructures with medium to high complexity. It can generate multiple

reports using customer defined profiles (e.g. for SLA management, operations, etc.) and has built-

in multi-tenant support in the core framework.

ARGO supports flexible deployment models and its modular design enables ARGO to be integrated

with external systems (such as CMDBs, Service Catalogues, etc.). During the report generation,

ARGO can take into account custom factors such as the importance of a specific service endpoint,

scheduled or unscheduled downtimes, etc.

http://argo.egi.eu/
https://wiki.egi.eu/wiki/ARGO
http://argoeu.github.io/
http://argo.egi.eu/
http://argoeu.github.io/
https://github.com/ARGOeu/

 EGI-Engage

 17

Figure 4. Argo architecture

For the Availability & Reliability monitoring, ARGO relies on a modular architecture comprised of

the following components:

2.2.1.1 The ARGO Monitoring Engine

For status monitoring, ARGO relies on Nagios. All probes developed for ARGO follow the Nagios

conventions and can run on any stock Nagios box. ARGO provides an optional set of add-ons for

the stock Nagios that provide features such as auto-configuration from external information

sources, publishing results to external Message Brokers, etc.

In this last year, a central ARGO monitoring engine with a high availability setup was deployed .

NGI instances were decommissioned or kept for NGI’s internal purposes. In addition, monitoring

instances for middleware versions (midmon) and EGI Fedcloud services (cloudmon) were

decommissioned and all probes were integrated into central ARGO monitoring engine. A/R

calculations are performed solely by using results from the central ARGO monitoring engine.

2.2.1.2 The ARGO Connectors

Through the use of custom connectors, ARGO can connect to multiple external Configuration

Management Databases and Service Catalogues. Connectors for the EGI and EUDAT e-

Infrastructures are already available.

 EGI-Engage

 18

2.2.1.3 The ARGO Consumer

The ARGO Consumer is ingesting monitoring results in real-time from external Message Brokers.

The consumer is responsible for the initial pre-filtering of the monitoring results and encodes

them using AVRO serialization format5 before passing to the Compute Engine.

2.2.1.4 The ARGO Compute Engine

A powerful and scalable analytics engine built on top of Hadoop and HDFS6. The Compute Engine is

responsible for the aggregation of the status results and the computation of availability and

reliability of composite services using customer defined algorithms.

2.2.1.5 The ARGO Web API

The ARGO Web API provides the serving layer of ARGO. It is comprised of a high performance and

scalable data store and a multi-tenant REST HTTP API, which is used for retrieving the Status,

Availability and Reliability reports and the actual raw metric results.

2.2.1.6 The ARGO Web UI

The default web UI is based on the Lavoisier Data Aggregation Framework7.

2.2.2 Integration and dependencies

ARGO can utilize external configuration sources through connectors in order to allow the

automatic configuration of various ARGO components. The current version of ARGO includes

connectors for the following sources:

● GOCDB: It is used as the source of EGI infrastructure topology information and information

about declared downtimes.

● VAPOR: It is used as the source for custom factor values, which in the case of EGI it is the

HEPSPEC8 values of the sites.

The dependency to these external tools is optional. ARGO can be used without having any of these

connectors enabled, if there is at least a static configuration for the topology of the monitored

infrastructure.

Finally, ARGO relies on the Message Broker network as the transport layer for publishing

monitoring results from the Nagios Monitoring Engines to the ARGO Compute Engine.

5
 https://avro.apache.org/docs/1.2.0

6
 http://hadoop.apache.org/

7
 http://software.in2p3.fr/lavoisier/

8
 http://w3.hepix.org/benchmarks/doku.php

https://avro.apache.org/docs/1.2.0
http://hadoop.apache.org/
http://software.in2p3.fr/lavoisier/
http://w3.hepix.org/benchmarks/doku.php

 EGI-Engage

 19

2.3 Release notes

2.3.1 Requirements covered in the release

As already mentioned ARGO is not just single software, but a suite of software components, each

one managed independently. During the second year of the project, there have been 12 releases

of the ARGO components that covered the following requirements:

ARGO Compute Engine & Web API

● Support for multiple monitoring engines running in active-active setup;

● APIv2;

● Stability and performance improvements.

ARGO Monitoring Engine

● Completion of the Centralised Monitoring Engine;

● Migration of middleware versions (midmon) and EGI Fedcloud services (cloudmon)

monitoring to the Centralised Monitoring Engine;

● Initial support for GOCDB as a single source of topology;

● New probes (OneData);

● EGI Fedcloud probes update;

● Stability and performance improvements;

ARGO EGI Consumer and Connectors

● Use of CE ingestion API for EGI Consumer

● Update connectors to use the VAPOR service instead of the decommissioned GSTAT

● Stability and performance improvements

ARGO EGI Web UI

● UI Enhancements

● Integration of SAML

ARGO POEM

● Initial support for probe management

● Initial steps for the connection to the EGI IdP/SP Proxy

● Stability and performance improvements

 EGI-Engage

 20

2.3.1.1 Changelog

 24/12/2016

o ARGO Web UI [V1.3.4-1]

 https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.4-1

o ARGO Web UI [V1.3.3-1]

 https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.3-1

o ARGO Web UI [V1.3.2-1]

 https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.2-1

● 20/12/2016

o ARGO Web UI [V1.3.1-1]

 https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.1-1

● 12/12/2016

o ARGO Web API [v1.7.1-1]

 https://github.com/ARGOeu/argo-web-api/releases/tag/v1.7.1-1

o ARGO Connectors [V1.5.1-2]

 https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.5.1-2

o Poem [V1.0.3-1]

 https://github.com/ARGOeu/poem/releases/tag/v1.0.3-1

o Poem [V1.0.2-1]

 https://github.com/ARGOeu/poem/releases/tag/v1.0.2-1

o ARGO Compute Engine [v1.6.9-1]

 https://github.com/ARGOeu/argo-compute-

engine/releases/tag/untagged-00740fb1f34cc1f6be6e

● 24/10/2016

o ARGO Web API [v1.6.5.-2]

 https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.5-2

● 12/10/2016

o ARGO - Web API [v1.6.5.-1]

 https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.5-1

o ARGO Web UI [v1.2.2-1]

 https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.2.2

● 08/10/2016

o ARGO Consumer [ingestion-enabled]

 https://github.com/ARGOeu/argo-egi-consumer/commits/ingestion-

enabled

● 27/09/2016

https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.4-1
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.3-1
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.2-1
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.3.1-1
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.7.1-1
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.5.1-2
https://github.com/ARGOeu/poem/releases/tag/v1.0.3-1
https://github.com/ARGOeu/poem/releases/tag/v1.0.2-1
https://github.com/ARGOeu/argo-compute-engine/releases/tag/untagged-00740fb1f34cc1f6be6e
https://github.com/ARGOeu/argo-compute-engine/releases/tag/untagged-00740fb1f34cc1f6be6e
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.5-2
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.5-1
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.2.2
https://github.com/ARGOeu/argo-egi-consumer/commits/ingestion-enabled
https://github.com/ARGOeu/argo-egi-consumer/commits/ingestion-enabled

 EGI-Engage

 21

o ARGO Consumer [v1.4.5-1]

 https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.4.5-1

● 26/09/2016

o Poem [V1.0.1-1]

 https://github.com/ARGOeu/poem/releases/tag/v1.0.1-1

● 24/09/2016

o ARGO Web API [v1.6.4-1]

 https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.4-1

o ARGO Web UI [v1.2.1-1]

 https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.2.1-1

o ARGO Consumer [v1.4.4-1]

 https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.4.4-1

o ARGO Connectors [v1.5.0-1]

 https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.5.0-1

o Poem [V1.0.0-1]

 https://github.com/ARGOeu/poem/releases/tag/v1.0.0-1

● 23/03/2016

o ARGO Compute Engine [v1.6.7-1]

 https://github.com/ARGOeu/argo-compute-engine/releases/tag/1.6.7-

20160323160546.09642d4.build55

● 03/02/2016

o ARGO Web API [v1.6.3-1]

 https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.3-1

o ARGO Compute Engine [v1.6.6-1]

 https://github.com/ARGOeu/argo-compute-engine/releases/tag/1.6.6-

20160203183442.590f388.build48

● 11/01/2016

o Poem [V0.11.1-1]

 https://github.com/ARGOeu/poem/releases/tag/v0.11.1-1

2.4 Feedback on satisfaction

The ARGO product team uses a development process based around GitHub, which includes

procedures that guarantee a high quality of software releases. For details of the ARGO

development process, see Appendix I.

https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.4.5-1
https://github.com/ARGOeu/poem/releases/tag/v1.0.1-1
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.4-1
https://github.com/ARGOeu/argo-egi-web/releases/tag/v1.2.1-1
https://github.com/ARGOeu/argo-egi-consumer/releases/tag/v1.4.4-1
https://github.com/ARGOeu/argo-egi-connectors/releases/tag/v1.5.0-1
https://github.com/ARGOeu/poem/releases/tag/v1.0.0-1
https://github.com/ARGOeu/argo-compute-engine/releases/tag/1.6.7-20160323160546.09642d4.build55
https://github.com/ARGOeu/argo-compute-engine/releases/tag/1.6.7-20160323160546.09642d4.build55
https://github.com/ARGOeu/argo-web-api/releases/tag/v1.6.3-1
https://github.com/ARGOeu/argo-compute-engine/releases/tag/1.6.6-20160203183442.590f388.build48
https://github.com/ARGOeu/argo-compute-engine/releases/tag/1.6.6-20160203183442.590f388.build48
https://github.com/ARGOeu/poem/releases/tag/v0.11.1-1

 EGI-Engage

 22

2.5 Plan for Exploitation and Dissemination

Name of the
result

ARGO

DEFINITION

Category of
result

Software & service innovation

Description of
the result

Software enhancement: improve the portal designing new and easier way to
access and visualise data for the final users and exposing a complete API
allowing third parties to gather accounting data from the system.

Deployment of a central ARGO monitoring engine able to serve a large
infrastructure with a high availability setup.

With the introduction of a Centralized Monitoring Engine, accompanied with an
HA active-active setup, Compute Engine needs to be able to accept metric data
from two centralized sources at the same time. Thus, there were two major
design goals for the Compute Engine implemented. Compute A/R & status
results by accepting data from multiple monitoring engines and exclude data for
specific periods for problematic monitoring engines.

EXPLOITATION

Target group(s) RIs, service providers, Users, NGIs, Resource centres

Needs  Used for the Availability and Reliability monitoring

 Provide complete API allowing third parties to gather data from the system.

 Used as a source of alerts for resource centres administrators through the
Operations Portal Dashboard

 Used for middleware versions monitoring and upgrade campaigns

How the target
groups will use
the result?

The ARGO Availability and Reliability Monitoring Framework is used by the
ARGO Monitoring Service that is operated by EGI for the monitoring of the
availability and reliability of the EGI infrastructure. The ARGO Monitoring
Service can be provided also to research communities and other infrastructures
as a service in order to monitor the status, availability and reliability of their
services.

Benefits The developments during this period, allowed EGI to replace the older
implementation of the SAM Nagios Monitoring Engine, which required one
monitoring engine per NGI, with a new implementation using the ARGO
Monitoring Engine, which provided a monitoring engine that could deliver
monitoring probe scheduling and execution as a service for all the NGI and
communities. Central ARGO requires less maintenance effort and enables faster
and streamlined deployment of new tests or update of existing tests. This leads
to improvements in the performance, robustness and reliability of the ARGO

 EGI-Engage

 23

Monitoring Service.

How will you
protect the
results?

The ARGO Monitoring Framework is released under the Apache 2.0 license.

Actions for
exploitation

The new version of the ARGO Monitoring Framework has already been adopted
by the production ARGO Monitoring Service. In order to further exploit the
results, we should promote the service also to research communities and other
infrastructures that can benefit of its features.

URL to project
result

http://argo.egi.eu/

https://github.com/ARGOeu/

Success criteria The deployment of the results to the production EGI infrastructure. The usage of
the service to monitor third party services.

DISSEMINATION

Key messages Offer a guaranteed quality of services.

Channels EGI Broadcast tool, EGI Meetings.

Actions for
dissemination

EGI conferences, publications, participation to workshops organised by potential
users

Cost

Evaluation The number of requests for information is the main way to evaluate the impact
of the dissemination actions.

2.6 Future plans

ARGO Compute Engine

● Streaming processing

● Alerting mechanism

● Separation of A/R and Metric stores

● Stability and performance improvements

ARGO Monitoring Engine

● Finalize support for GOCDB as a single support of topology

● Integration with probe management feature in POEM

● EGI Fedcloud probes update

● Use of the messaging API

● Stability and performance improvements

ARGO Web UI

http://argo.egi.eu/
https://github.com/ARGOeu/

 EGI-Engage

 24

● UI Enhancements

● Connection to the EGI IdP/SP Proxy

ARGO EGI Consumers and Connectors

● Decommission of Consumer and use ARGO nagios AMS-publisher instead

● Use of the messaging API for Connectors component

● Stability and performance improvements

ARGO POEM

● Finalize the probe management feature

● Connect to the EGI IdP/SP Proxy

● Stability and performance improvements

 EGI-Engage

 25

3 Messaging service

3.1 Introduction

Tool name ARGO Messaging Service

Tool url http://argoeu.github.io

Tool wiki page https://wiki.egi.eu/wiki/Message_brokers

Description The Messaging service enables reliable asynchronous messaging for
the EGI infrastructure.

Value proposition e-Infrastructures and research communities are building distributed
services and workflows in order to satisfy their operational and
research requirements. Synchronization between services,
gathering of telemetry, monitoring and accounting data any secure
messages exchange is a core requirement in any type of distributed
services. The Messaging Service provides an easy to use and
reliable transport layer for the secure exchange of messages
between services such as accounting data, monitoring data, event
notifications, etc.

Customer of the tool EGI; NGI; RI; Resource Provider; Research Communities

User of the service Site admins; Operations Managers; large research group

User Documentation http://argoeu.github.io;

Technical Documentation http://argoeu.github.io

Product team GRNET, SRCE

License Apache License Version 2.0

Source code https://github.com/ARGOeu/

3.2 Service architecture

3.2.1 High-Level Service architecture

The Messaging service enables reliable asynchronous messaging for the EGI infrastructure. The

current implementation of the Messaging service relies on a Message Broker Network of

ActiveMQ services and uses the STOMP protocol for the publication and consumption of

messages.

http://argoeu.github.io/
https://wiki.egi.eu/wiki/Message_brokers
http://argoeu.github.io/
http://argo.egi.eu/
http://argoeu.github.io/
https://github.com/ARGOeu/

 EGI-Engage

 26

Figure 5. Messaging service architecture

During the project, we have developed a new version of the Messaging service that is going to

replace the STOMP interface with an HTTP one, which will make the implementation of new

clients easier and more robust. The new ARGO Messaging Service is a real-time messaging service

that allows you to send and receive messages between independent applications.

The ARGO Messaging Service is a Publish/Subscribe Service, which implements the Google PubSub

protocol. It provides an HTTP API that enables users/systems to implement a message-oriented

service using the Publish/Subscribe Model over plain HTTP. Publishers are users/systems that can

send messages to named-channels called Topics. Subscribers are users/systems that create

Subscriptions to specific topics and receive messages.

It supports both push and pull message delivery. In push delivery, the Messaging Service initiates

requests to your subscriber application to deliver messages. In pull delivery, your subscription

application initiates requests to the server to retrieve messages.

 EGI-Engage

 27

Figure 6. The new ARGO messaging service

3.2.2 Integration and dependencies

The following EGI Core Services rely on the EGI Messaging Service:

● ARGO Availability and Reliability Monitoring Service

● Accounting system

● Operations Portal

All these services are using the EGI Message Broker network today. The ARGO Monitoring Service

is already implementing a connector for the new Messaging Service. Accounting and Operations

portal are expected to also complete the implementation of their own interfaces to the new

Messaging Service, within the timeframe of the EGI-Engage project.

The Messaging Service does not have any dependencies to other services at the moment.

3.3 Release notes

3.3.1 Requirements covered in the release

● APIv1 test implementation

● APIv1 final draft specification (ready for external party review)

● APIv1 final implementation

● APIv1 final specification

● API for data ingestion specification

● API for data ingestion implementation

● Stability and performance improvements

 EGI-Engage

 28

3.3.2 Changelog

● 25/10/2016

o ARGO - Messaging Service [v1.0.0-1] https://github.com/ARGOeu/argo-

messaging/releases/tag/v1.0.0-1

3.4 Feedback on satisfaction

The ARGO product team uses a development process based around GitHub, which includes

procedures that guarantee a high quality of software releases. For details of the ARGO

development process, see Appendix I.

3.5 Plan for Exploitation and Dissemination

Name of the
result

ARGO Messaging Service

DEFINITION

Category of
result

Software & service innovation

Description of
the result

In the new version of the Messaging Service, the STOMP interface has been
replaced with an HTTP interface, which makes the implementation of new
clients easier and the implementation more robust. This new ARGO Messaging
Service is a real-time messaging service that allows services to asynchronously
send and receive messages using the Publish/Subscribe model.

EXPLOITATION

Target group(s) RIs, service providers, Users, NGIs, Resource centres, EGI Accounting Service
and the Operations Portal

Needs e-Infrastructures and research communities are building distributed services
and workflows in order to satisfy their operational and research requirements.
Synchronization between services, gathering of telemetry, monitoring and
accounting data any secure messages exchange is a core requirement in any
type of distributed services. The Messaging Service provides an easy to use and
reliable transport layer for the secure exchange of messages between services
such as accounting data, monitoring data, event notifications, etc.

How the target
groups will use
the result?

Infrastructure architects that need to design distributed architectures that
require a robust and easy to use messaging backbone, which can scale to
billions of messages.

https://github.com/ARGOeu/argo-messaging/releases/tag/v1.0.0-1
https://github.com/ARGOeu/argo-messaging/releases/tag/v1.0.0-1

 EGI-Engage

 29

Benefits The ARGO Messaging service offers the following features:

 Simple HTTP API for client access;

 Transparent scalability & high availability;

 Access controls implemented at the API layer;

 Multi-tenant support;

 Performance robustness.

How will you
protect the
results?

The ARGO Messaging service is released under the Apache 2.0 license.

Actions for
exploitation

 Promote the service to other research communities and infrastructures that
can benefit of its features.

 Provide the necessary documentation (all, for a publisher, or for a subscriber)

 Create test accounts per target group to publish messages to topics, or to
consume messages as subscribers from a topic.

URL to project
result

http://argo.egi.eu/

https://github.com/ARGOeu/

Success criteria  The ARGO Messaging Service should be operated as a production EGI service.

 All the EGI tools services should have migrated from the old Messaging Broker
service to the new ARGO Messaging service.

DISSEMINATION

Key messages Interconnect your distributed services in a ease and efficient manner.

Channels  Dissemination through the EGI conferences

 Article featured in the EGI newsletter

Actions for
dissemination

EGI conferences, publications, participation to workshops organised by potential
users

Cost

Evaluation The number of requests for information, and/or accounts (either test or
production) is the main way to evaluate the impact of the dissemination actions.

3.6 Future plans

 APIv1 final specification

 Message Service Accounting: metrics for Messaging Service

 Operational statistics

 Usage Statistics

 Stability and performance improvements

http://argo.egi.eu/
https://github.com/ARGOeu/

 EGI-Engage

 30

4 GOCDB

4.1 Introduction

Tool name GOCDB

Tool url https://goc.egi.eu

Tool wiki page https://wiki.egi.eu/wiki/GOCDB

Description GOCDB is a central registry to record information about the topology

of an e-Infrastructure. This includes entities such as resource centers

(sites), services, service-endpoints and their downtimes, contact

information and roles of users responsible for operations at different

levels. The service enforces a number of business rules and defines

different grouping mechanisms including object-tagging for the

purposes of fine-grained resource filtering.

Value proposition The new write API provides a script-accessible mechanism to manage

custom properties. This allows clients to automate their property

editing workflows, which aims to reduce the admin overhead of

manually managing custom properties.

The new cursor paging features allows all the data hosted in the DB

to be paginated. This provides full API access to all historic data if

needed.

Integration with the EGI CheckIn service provides Federated access to

GOCDB for users who do not own a client certificate or from

browsers without personal certificates installed.

Customer of the tool EGI Operations and WLCG

User of the service Site/service admins, NGI managers and Security teams.

User Documentation https://wiki.egi.eu/wiki/GOCDB

Technical Documentation https://wiki.egi.eu/wiki/GOCDB

Product team STFC

License Apache 2

Source code https://github.com/GOCDB/gocdb

https://goc.egi.eu/
https://wiki.egi.eu/wiki/GOCDB
https://wiki.egi.eu/wiki/GOCDB
https://wiki.egi.eu/wiki/GOCDB
https://github.com/GOCDB/gocdb

 EGI-Engage

 31

4.2 Service architecture

4.2.1 High-Level Service architecture

GOCDB is a central information repository providing a web portal interface for CRUD

operations, and a REST API for data queries.

It is a definitive information source where data is directly populated and managed in the

system. Because GOCDB is a primary data-input source, the portal applies a range of

business rules and data-validations to control input. It applies a comprehensive Role-

based authorization model that enables different actions over different target resources.

The Role model allows communities to manage their own resources where users with

existing roles can approve or reject new role-requests.

It is intentionally designed to have no dependencies on other operational tools (other

than the EGI CheckIn service described below). For example, it does not query other

systems to populate its core data model. The underling Oracle DB is hosted by the STFC DB

Services Team with nightly tape backups. An additional failover instance is hosted at a

second STFC site (Daresbury Labs). The failover instance is synchronized hourly against the

production data.

With the current release, a new dependency exists on the EGI CheckIn service to provide

federated access to GOCDB for users without client certificates. In addition, a new write

API has been introduced for managing custom properties on Sites/Services/Endpoints.

This allows clients to automate their property editing workflows with the aim of reducing

the admin overhead of manually managing custom properties. Other than this, there are

no major alterations to the architecture.

4.2.2 Integration and dependencies

GOCDB newly depends on the EGI CheckIn service to provide federated authentication

and access without client certificates. When accessed using a client certificate, GOCDB

continues to depend on no over tool.

4.3 Release notes

4.3.1 Requirements covered in the release

 Prioritized Roadmap9

 Full change log10 (includes smaller changes/bug fixes)

9
 https://wiki.egi.eu/wiki/EGI-Engage:TASK_JRA1.4_Operations_Tools#GOCDB

10
 https://github.com/GOCDB/gocdb/blob/dev/changeLog.txt

https://wiki.egi.eu/wiki/EGI-Engage:TASK_JRA1.4_Operations_Tools#GOCDB
https://github.com/GOCDB/gocdb/blob/dev/changeLog.txt

 EGI-Engage

 32

4.3.1.1 V5.7

 Addition of new monitoring attributes to service endpoints for ARGO monitoring. This has

allowed ARGO to remove its dependency on the BDII, and GOCDB is now the only

information system used for ARGO monitoring.

 A new write API for managing custom properties was implemented as requested by the

WLCG Information Systems Task Force. This allows site admins to manage their own DN

based ACLs per site required to post updates for a site/service.

https://rt.egi.eu/rt/Ticket/Display.html?id=11020

 Cursor paging: https://rt.egi.eu/rt/Ticket/Display.html?id=10716

 Federated access https://rt.egi.eu/rt/Ticket/Display.html?id=7493

4.4 Feedback on satisfaction

Before every production release, GOCDB development is frozen and a period of testing is

announced that lasts for approximately two weeks to one month using the GOCDB test instance

(https://gocdb-test.esc.rl.ac.uk). This testing phase is widely disseminated using the relevant mail

lists, and all operational tools and users are invited to perform tests against this instance. Recent

GOCDB releases successfully passed this stage.

The GOCDB development process is described in Appendix II.

4.5 Plan for Exploitation and Dissemination

Name of the
result

GOCDB

DEFINITION

Category of
result

Software & service innovation

Description of
the result

 Extension to authentication mechanism to allow federated access to the
GOCDB portal.

 Addition of a new write API for managing custom properties on
Sites/Services/Endpoints.

 Addition of new monitoring attributes to service endpoints.

 Cursor based paging of API results.

EXPLOITATION

Target group(s) WLCG tool developers, ARGO service, Resource/service provider admins and
NGI managers

Needs The Write API will allow clients to automate their property editing workflows,

https://rt.egi.eu/rt/Ticket/Display.html?id=11020
https://rt.egi.eu/rt/Ticket/Display.html?id=10716
https://rt.egi.eu/rt/Ticket/Display.html?id=7493
https://gocdb-test.esc.rl.ac.uk/

 EGI-Engage

 33

reducing the admin overhead of manually managing custom properties. The
addition of new monitoring attributes to service endpoints allows ARGO to
remove its dependency on the BDII, making the GOCDB the only information
system used for ARGO monitoring. The addition of federated access to GOCDB
makes the tool more attractive to users in communities which do not tend to
use personal certification.

How the target
groups will use
the result?

The results are integrated into the production instance of GOCDB, on which
much of the target group’s infrastructure relies.

Benefits The result will improve the efficiency of target group’s use of the GOCDB
service, as well as ensure its continuing fitness to serve them.

How will you
protect the
results?

Apache 2 licence

Actions for
exploitation

The code needs to be integrated into the production instance of the GOCDB in
order to provide the described functionality. This has been carried out. The full
source code is available for use (under the Apache 2 licence) at
https://github.com/GOCDB/gocdb

URL to project
result

https://github.com/GOCDB/gocdb/releases/tag/5.7

https://goc.egi.eu/

Success criteria Regular use of the write API by at least one tool. New service endpoint
attributes being used.

DISSEMINATION

Key messages  The write API is now available.

 GOCDB can be accessed using federated credentials.

 The required changes are in place for ARGO to switch to using GOCDB for
information being provided by the BDII.

Channels WP3 meetings, EGI OMB meetings, WLCG Information Systems Evolution Task
Force

Actions for
dissemination

WLCG Info. Sys. Evolution TF Dec. - https://indico.cern.ch/event/575249/
EGI OMB November meeting - https://indico.egi.eu/indico/event/2814/
GridPP37 - https://indico.cern.ch/event/556609/timetable/

Announcement emails to multiple EGI mailing lists and WLCG information
system evolution mailing list.

Cost

Evaluation Uptake of use of new features.

https://github.com/GOCDB/gocdb
https://github.com/GOCDB/gocdb/releases/tag/5.7
https://goc.egi.eu/
https://indico.cern.ch/event/575249/
https://indico.egi.eu/indico/event/2814/
https://indico.cern.ch/event/556609/timetable/

 EGI-Engage

 34

4.6 Future plans

Below, a list of the main planned activities classified accordingly to their priorities:

 High priority

o Write API Extensions (11020)

o Verify data freshness check (8240)

 Intermediate priority

o NGI Certification Status Rules (9084): Useful to have a quick way of changing

CertificationStatus of all the resource centres belonging to an NGI.

 Lower priority

o Downtime classification changes (10845)

o Add unique constraint on HostName + ServiceType pair (10368)

In future projects, GOCDB development activity will focus on replacing the UI with a modern

Web framework, extending GOCDB in the info-service space supporting dynamic attributes

and improve the change logging.

https://rt.egi.eu/rt/Ticket/Display.html?id=11020
https://rt.egi.eu/rt/Ticket/Display.html?id=8240
https://rt.egi.eu/rt/Ticket/Display.html?id=9084
https://rt.egi.eu/rt/Ticket/Display.html?id=10845
https://rt.egi.eu/rt/Ticket/Display.html?id=10368

 EGI-Engage

 35

5 Security Monitoring

5.1 Introduction

Tool name Secant

Tool url https://github.com/CESNET/secant

Tool wiki page https://wiki.egi.eu/wiki/Tools

Description Secant is a framework to detect security vulnerabilities in images of
virtual machines. It tries to detect the most common security issues
that often lead to incidents and prevent them from appearing in the
context of EGI cloud facilities.

Value proposition

Security incidents may cause significant problems for users, service
providers and infrastructure operators. Secant was designed to
detect common weakness in virtual appliances so that these can be
fixed before they threaten a production infrastructure.

Customer of the tool Cloud providers, VA owners, EGI operations, the EGI CSIRT

User of the service Administrators, operators, security staff

User Documentation https://github.com/CESNET/secant

Technical Documentation https://github.com/CESNET/secant

Product team CESNET

License Apache License Version 2.0

Source code https://github.com/CESNET/secant

5.2 Service architecture

5.2.1 High-Level Service architecture

Secant runs as a service that periodically checks for new images available in a repository and

performs their security assessment. When a new image becomes available in the system, it is

taken by Secant and checked for security vulnerabilities. In order to perform the security checks,

Secant instantiates a virtual machine from the appliance that is being verified and performs two

phases of security checks. During the first phase, Secant launches a series of external scans that

tries to detect vulnerabilities exposed by the machine to the Internet. Following these tests, and if

the machine supports that, Secant runs a series of internal probes on the virtual machine, which

checks security properties of the installed software. Both internal and external probes are modular

https://github.com/CESNET/secant
https://wiki.egi.eu/wiki/Tools
https://github.com/CESNET/secant
https://github.com/CESNET/secant
https://github.com/CESNET/secant

 EGI-Engage

 36

and new tests can be easily added when needed. After the probes are executed, Secant processes

the results and generated the assessment.

5.2.2 Integration and dependencies

There are two foreseen scenarios how Secant can be deployed, it can either work on the level of a

cloud site to assess images used by the particular provider, or it can act as a tool supporting

security assessment and endorsement on the level of the EGI infrastructure management. In any

case, Secant has to be integrated with a cloud management framework. The current

implementation uses OpenNebula commands to manage virtual machines and their images.

5.3 Release notes

5.3.1 Requirements covered in the release

The release focuses on addressing bugs and issues detected in a pilot deployment and testing.

5.4 Feedback on satisfaction

Secant is being tested at CESNET and its MetaCloud site. A movement to a more extensive testing

phase was blocked by changes of the mechanism to distribute images to EGI clouds, which allowed

the developers to only perform an evaluation in a closed environment. A few dozens of virtual

appliances underwent testing done by Secant.

5.5 Plan for Exploitation and Dissemination

Name of the
result

Secant

DEFINITION

Category of
result

Software & service innovation

Description of
the result

Secant is a framework to detect security vulnerabilities in images of virtual
machines. It tries to detect the most common security issues that often lead to
incidents and prevent them from appearing in the context of EGI cloud
facilities.

EXPLOITATION

Target group(s) Users, RIs, Resource centres, NGIs, security teams, VA endorsers.

Needs Prevent from security incidents that misuse common vulnerabilities exposed
by servers connected to the Internet.

How the target The tools will facilitate the endorsement process and will help the endorsers

 EGI-Engage

 37

groups will use
the result?

detect common weaknesses. The tools will also be available to users preparing
their images or installations on the top of running virtual machines.

Benefits Achieving a common security bottom line of virtual machines in clouds, based
on shared knowledge and tooling.

How will you
protect the
results?

The tool is released under a standard open-source license.

Actions for
exploitation

Secant will be freely available and its utilization documented.

URL to project
result

https://github.com/CESNET/secant

Success criteria Availability of the tool for performing assessments.

DISSEMINATION

Key messages Secant help identify common security vulnerabilities in virtual appliances.

Channels EGI Conferences, meetings with cloud experts.

Actions for
dissemination

Possibilities will be examined how to integrate Secant with the AppDB to
support endorsement process.

Cost

Evaluation Utilization of Secant in endorsement process.

5.6 Future plans

In next months, the product team will focus on analysing how the Secant tool could assist the

endorsement process and on the definition of the related interfaces with the AppDB.

https://github.com/CESNET/secant

 EGI-Engage

 38

6 Accounting Repository

6.1 Introduction

The EGI Accounting Repository runs using software from the APEL project.

APEL is an accounting tool that collects resource usage data from sites participating in the EGI and

WLCG infrastructures as well as from sites belonging to other Grid organisations that are

collaborating with EGI, including OSG and NorduGrid.

The accounting information is gathered from different sensors into a central accounting repository

where it is processed to generate statistical summaries that are available through the EGI/WLCG

Accounting Portal. Statistics are available for view in different detail by users, VO managers,

resource provider administrators and anonymous users according to well-defined access rights.

Table 1 provides a summary of the tool covered in this release.

Table 1 – APEL tool summary

Tool name APEL

Tool URL http://apel.github.io/

Tool wiki page https://wiki.egi.eu/wiki/Accounting_Repository

Description EGI Core Service – The Accounting Repository collects and stores user
accounting records from various services offered by EGI.

Value proposition Improved information about the usage of the cloud resources within
the EGI infrastructure.

Customer of the tool e-Infrastructures, research infrastructures and, in general, distributed
infrastructures.

User of the service Resource providers, NGI admins, EGI operations, end users.

User Documentation https://twiki.cern.ch/twiki/bin/view/EMI/EMI3APELClient

Technical Documentation https://twiki.cern.ch/twiki/bin/view/EMI/EMI3APELClient

Product team STFC

License Apache License, Version 2.0

Source code https://github.com/apel/apel

This section provides a short introduction to the components provided by the APEL project as part

of the EGI Accounting Repository. Then, the high-level architecture of the tool and its components

are described, along with the integrations and dependencies it has. Release notes and the results

http://apel.github.io/
https://wiki.egi.eu/wiki/Accounting_Repository
https://twiki.cern.ch/twiki/bin/view/EMI/EMI3APELClient
https://twiki.cern.ch/twiki/bin/view/EMI/EMI3APELClient
https://github.com/apel/apel

 EGI-Engage

 39

of testing for this release are then provided. Finally, plans for exploitation, dissemination, and

future developments are shown.

6.2 Service architecture

6.2.1 High-Level Service architecture

Figure 7 shows how the APEL client, central APEL server and EGI Accounting Portals interact.

Figure 7. APEL components and their interactions. Components in red are provided by the APEL project.

1. APEL clients can run an APEL parser to extract data from a batch system and place it in their

client database, or they can use third-party tools to extract batch or cloud data. This data is

then unloaded into a message format suitable for transmission.

2. APEL clients run a sending Secure Stomp Messenger11 (SSM) to send these messages

containing records via the EGI Message Brokers to the central APEL server. The messages

can contain either Job Records or Summary records. This is configurable in the APEL client.

3. The central APEL server runs an instance of the SSM, which receives these messages and a

“loader” processes the records in the messages and loads them into a MySQL database.

4. A “summariser” process runs to create summaries of any Job Records received and load

them in a “SuperSummaries” table along with any Summary records. This summariser runs

as a cron job approximately once a day.

5. A database “unloader” process unloads the summary records into the message format to be

sent on by the sending SSM via the EGI Message Brokers to the EGI Accounting Portal.

There are no changes to the service architecture in this release.

11

 https://github.com/apel/ssm

https://github.com/apel/ssm

 EGI-Engage

 40

6.2.2 Integration and dependencies

All communication between clients and servers is via the EGI Message Broker network using the

APEL SSM package. The SSM software can be configured to send or receive messages. Where the

messages are destined for is controlled by the queue, which is set in the SSM configuration.

The central APEL server uses the EGI service registry (GOCDB) to get a list of APEL endpoints so

that only data from endpoints correctly defined in GOCDB are processed.

SSM can be configured to get a list of message brokers from the EGI information system (querying

a BDII) or it can be pointed directly at a message broker.

There are no changes to the dependencies in this release.

6.3 Release notes

6.3.1 Requirements covered in the release

These are the changes included in this release of the APEL software, version 1.6.0, since the

previous Accounting Repository Release in EGI-Engage.

 Added support for v0.4 of the cloud accounting schema.

 Added support for GOCDB read API results paging.

 Added support for mixed time duration formats found in Torque 5.1.3.

 Added support for the new format of CPU counts found in Torque 5.1.0.

 Disabled non-performant duplicate sites check in summariser.

 Added scripts that support building packages for SL7 which are compatible with CentOS 7.

 Fixed handling of group attributes in storage records.

 Added setup script for installation on alternative operating systems.

 Added more unit tests.

 Minor bug fixes and tweaks.

6.4 Feedback on satisfaction

The APEL project uses a development process based around GitHub, which includes a semi-

automatic testing procedure used to assess the quality of software releases.

For details of the testing procedure used, see the APEL Development Process document12. Table 2

summarises the results of testing this release.

12

 https://documents.egi.eu/document/2739

https://documents.egi.eu/document/2739

 EGI-Engage

 41

Table 2 - APEL 1.5.1 testing results

 Result Link

Unit tests All unit tests passed https://travis-ci.org/apel/apel/builds/194861155

Coverage

Coverage metric decreased by
6.7% due to previously ignored
files being included – actual
coverage increased slightly

https://coveralls.io/builds/9818974

6.5 Plan for Exploitation and Dissemination

Name of the
result

Accounting Repository

DEFINITION

Category of
result

Software & service innovation

Description of
the result

Update to the software that provides the EGI Accounting Repository including a
number of small fixes and improvements as well as support for a new cloud
accounting usage record schema.

EXPLOITATION

Target group(s) RIs, international research collaborations, service providers, Funding agencies
and decision/policy makers

Needs Usage accounting data that can aid in ensuring resources are used as expected.

How the target
groups will use
the result?

Service providers update client installations. Extra metrics collected in the
repository will be presented in the Portal for various use.

Benefits Support for different version of batch system and packages now available for
EL7 based systems.

How will you
protect the
results?

Open source license (Apache License, Version 2.0)

Actions for
exploitation

Roll out update to production server infrastructure and package the software
for use at the client end. Work with Accounting Portal to update views.

URL to project
result

https://github.com/apel/apel/releases/latest

Success criteria Smooth roll out and any issues resolved quickly

https://travis-ci.org/apel/apel/builds/194861155
https://coveralls.io/builds/9818974
https://github.com/apel/apel/releases/latest

 EGI-Engage

 42

DISSEMINATION

Key messages New version of the accounting software available that support extra metrics for
cloud accounting

Channels EGI OMB, WP3 meetings

Actions for
dissemination

Announce at an OMB and WP3 meeting

Cost

Evaluation Installation of new release and feedback on new features

6.6 Future plans

The EGI Accounting Repository will be developed further under EGI-Engage culminating in the final

release of the Accounting Repository under EGI-Engage. This will include new batch parsers,

support for additional storage systems, support for long-running virtual machines, provision of a

method to extract APEL format records from non-APEL SQL databases, development of production

requirements for data set usage accounting, an initial implementation of GPGPU usage

accounting, and documenting of the support in the Repository for new AAI systems.

 EGI-Engage

 43

7 Accounting Portal

7.1 Introduction

Tool name Accounting Portal

Tool url https://accounting.egi.eu

Tool wiki page https://wiki.egi.eu/wiki/Accounting_Portal

Description The Accounting Portal provides data accounting views for users, VO
Managers, NGI operations and the general public.

Value proposition Improved look & feel. New views that allow to aggregate data in
different ways. Improved support for scientific disciplines.

Customer of the tool Infrastructure users, VO Managers, Operations Centres, Sites and
the general public.

User of the service Infrastructure users, VO Managers, Operations Centres, Sites and
the general public.

User Documentation https://documents.egi.eu/public/ShowDocument?docid=2789

Technical Documentation https://documents.egi.eu/public/ShowDocument?docid=2545

Product team CESGA, CSIC

License Apache

Source code https://github.com/cesga-egi/accounting

7.2 Service architecture

7.2.1 High-Level Service architecture

The Accounting Portal is a web application based on Apache, and MySQL, which has as its primary

function to provide users with customized accounting reports, containing tables and graphs, as

web pages. It also offers RESTful web services to allow external entities to gather accounting data.

The basic architecture of the Portal consists on:

1. A backend, which aggregates both data and metadata in a MySQL database, using the

APEL SSM messaging system13 to interact with the Accounting Repository and several

scripts, which periodically gather the data and metadata described below.

13 https://wiki.egi.eu/wiki/APEL/SSM

https://accounting.egi.eu/
https://wiki.egi.eu/wiki/Accounting_Portal
https://documents.egi.eu/public/ShowDocument?docid=2789
https://documents.egi.eu/public/ShowDocument?docid=2545
https://github.com/cesga-egi/accounting
https://wiki.egi.eu/wiki/APEL/SSM

 EGI-Engage

 44

2. A Model represented by database schemas both external and internal which define

database tables for several types of accounting (grid, cloud, storage, multicore, user

statistics etc.) and metadata (topology, geographical data, site status, nodes, VO users

and admins, site admins etc.), and a series of parameterised queries,

3. A set of views that expose the data to the user. These views contain a form to set the

parameters and metric of the report, a number of tables showing the data

parameterised by two selectable dimensions and filtered by several parameters, a line

graph showing the table data, and pie charts showing the percentage distribution on

each dimension. It is planned that this part of the portal will evolve with interactive

graphs, responsive in real time, reactive and only exposing advanced controls on user

demand.

A graphical representation of these components is depicted on Figure 8.

Figure 8. Accounting portal architecture

 EGI-Engage

 45

7.2.2 Integration and dependencies

There are dependencies on other tools and components that provide metadata that is used in the

portal, this metadata includes:

1. Geographical Metadata: Resource providers’ country and NGI affiliation. Generally, this

follows current borders, but there are important exceptions. This is gathered from GOCDB

using its XML-based API.

2. Topological Metadata: Resource providers are presented in trees, there are Country and NGI

trees that correspond to geographical classifications, but there are also trees based on

topological classifications like Tier1 and Tier2 sites, OSG sites and uncategorised sites. Inside

Tier2 sites, the federation they belong to is also important and can trigger special code in

some cases. Gathered from several sources, including OSG and WLCG databases.

3. Role Metadata: VO members and managers, and the site admins records. This metadata

controls the access to restricted views. Information is gathered from GOCDB and individual

VOMS servers constructing a list of individual VOMSes and querying them with the VOMS API.

4. Country affiliation data: Each user record contains a user identifier that has his/her user

name, institution and sometimes country. Scripts in the backend map each user with a country

based on the institution which issues their certificate. This data is used in anonymised

statistics per country on: how much resources from other countries are used by given country

and the distribution of its resources used by other countries.

5. VO Data: To make possible VO selection in the user interface, the portal stores lists of VOs.

They are also used to filter incorrect VO names, provide access to VO managers, and arrange

accounting by VO discipline (such as “High Energy Physics”, “Biomedicine”, “Earth Sciences”,

etc.). Information is gathered from the Operations Portal using its XML based APIs.

6. Site status metadata: Sites must be filtered to exclude those that are not in production (due

to being closed or being in test mode). There must be also metadata to aggregate the

accounting history of sites whose name has been changed. There are requirements to extend

this functionality to NGIs. Information is gathered from GOCDB using its XML tables and

internal tables compiled as part of EGI PROC 1514.

7. Pledge metadata: The WLCG reports have to contain only those sites where MoUs or other

pledges between VOs and sites are honoured, so the validity date and pledged hours are

needed. Information is gathered from WLCG using the REBUS service.

8. Other metadata: There are also other metadata like local privileges, SpecInt calculations,

publication status, VO activities and more. Some of these metadata is calculated internally

using other types of metadata and published for other EGI operational tools, like VO activity

data and Site UserDN publishing.

14

 https://wiki.egi.eu/wiki/PROC15_Resource_Center_renaming

https://wiki.egi.eu/wiki/PROC15_Resource_Center_renaming

 EGI-Engage

 46

7.3 Release notes

7.3.1 Requirements covered in the release

 New home page.

 New WLCG sub-portal with dedicated navigation and menu bar.

 Changed WLCG reports, integrated REBUS Tier1 report.

 Added contextual help.

 Added descriptive information on each page explaining the meaning of the input variables

and of the several metrics showed.

 Terminology used in the portal completely revised.

 New EGI Resource Centre Report with per-country, top10 and top100 reports for both HTC

and Cloud.

 Added Year, Half-year and Quarter granularity in all the views.

 Improved the scientific discipline view.

 Reorganization of the menus according to the EGI service catalogue.

 Sub-discipline views switch to VO-based view when no sub-disciplines are present.

 Changed EGI country view to only include EGI federation countries, re-implemented view

with all countries for WLCG.

 Modified CSV support back to the server so it can be linked.

 Improved table visualisation.

 Reimplemented VO metrics support.

7.4 Feedback on satisfaction

Several tests were executed in collaboration with the EGI UCST and Operations Team. User

communities were involved in the testing phase and the portal was updated according to the

gathered requirements.

Feedback collected on the final release by all the stakeholders involved in the testing phase was

very positive.

7.5 Plan for Exploitation and Dissemination

Name of the
result

Accounting Portal

DEFINITION

Category of
result

Software & service innovation

Description of
the result

Completed refactored portal with a modern and more attractive look & feel and
several new features such as new home page, a WLCG specific sub-portal, new

 EGI-Engage

 47

EGI reports, improved scientific discipline support, reorganized menus,
contextualised help inline, improved CSV support, reimplemented VO metrics.

EXPLOITATION

Target group(s) Infrastructure users, VO Managers, Operations Centres, Resource providers and
the general public.

Needs Modern look & feel, new ways to access data, new reports.

How the target
groups will use
the result?

Reporting activities, problem solving, MoU estimation.

Benefits Better reports, better problem solving, better MoU estimation.

How will you
protect the
results?

Attribution via open source license

Actions for
exploitation

The result is a public web page, immediately exploitable.

URL to project
result

http://accounting-next.egi.eu

Success criteria Continued use.

DISSEMINATION

Key messages A modern accounting portal with several new features is now available.

Channels  Dissemination through the EGI conferences

 Article featured in the EGI newsletter

Actions for
dissemination

EGI conferences, publications, participation to workshops organised by potential
users

Cost

Evaluation Number of accesses.

7.6 Future plans

Two new releases are planned by the end of the project, one in May and another one in August.

The May release will include:

 A complete API to get accounting data directly from the accounting portal;

 Maps showing the graphical distribution of the accounting data;

 Additional options to aggregate data;

 Support of the new cloud usage record;

http://accounting-next.egi.eu/

 EGI-Engage

 48

 Report to generate summaries about VOs that belong to the same discipline category;

 Revised restricted views in the new accounting portal

 Bug fixing.

The August release will include:

 Reports for spotting increasing/decreasing VO usage;

 Accounting data analytics;

 Dynamic pie charts;

 Change type of graph dynamically

 Support GPGPU Accounting;

 Support Data Accounting;

 Admin role;

 Bug fixing.

 EGI-Engage

 49

Appendix I. ARGO Development Process

The following text is a copy of the “ARGO Development Process” document. The latest version of

the document can be found here:

https://docs.google.com/document/d/1W0pT-zcBHG1E_hfftW67DH01LBZC7zMKLlIgJTlsFh8/edit#

Open development

We follow an open development process. All the repositories of ARGO are hosted on GitHub under

the ARGOeu organization. Each component that can be standalone, is hosted in its own repository

in the ARGOeu organization.

Each component should have a CONTRIBUTING guidelines document, describing how

contributions can be made. There will be a general CONTRIBUTING guidelines document.

Components that are maintained in their own repositories can should link to the general

CONTRIBUTING guidelines document or have their own set of guidelines if required.

 https://github.com/ARGOeu

Forked repositories

Following the spirit of DVCS, each of us forks the repositories from GitHub to her/his own account.

We can work on new or on-going features on our own forks and when we feel it is ready or

whenever we want feedback from the rest of the team, and then we can open a pull request

towards the respective ARGO repository.

Useful information:

 https://help.github.com/articles/fork-a-repo

 https://help.github.com/articles/syncing-a-fork

Pull requests & core team

All of the members of the core team should be able to merge pull requests in the ARGO

repositories. The person who opens a pull request never merges it {her,him}self, but asks/expects

another core team member to review it and merge it. The idea behind this is that at least two

people (the committer and the reviewer) will be involved for each new feature that we develop.

Advices for a committer:

 Do commit early and often

 Do make useful commit messages (they will be used for the release CHANGELOG).

Creating insightful and descriptive commit messages is one of the best things you can do for

others who use the repository. It lets people quickly understand changes without having to read

https://docs.google.com/document/d/1W0pT-zcBHG1E_hfftW67DH01LBZC7zMKLlIgJTlsFh8/edit
https://github.com/ARGOeu
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/syncing-a-fork

 EGI-Engage

 50

code. When doing “history archaeology” to answer some question, good commit messages

become very important.

Format of a commit message:

 Title: [Jira issue ID] - descriptive title

 Description: summary of your job with enough information so that a can understand the context

and the intention of the change.

The person who opens a pull request should make sure that {s}he includes enough information so

that the reviewer can understand the context and the intention of the changes proposed in the

pull request. A member can use the PULL_REQUEST_TEMPLATE that is supported by GitHub since

earlier this year. https://github.com/blog/2111-issue-and-pull-request-templates. It is strongly

encouraged that we open pull requests as soon as possible in the developer process in order to

trigger prompt feedback.

1 pull request should refer to 1 feature, task, bug. Pull requests that are not ready to be merged

should be marked as Work-In-Progress (WIP). Having the pull request open, means that each

commit is visible to the ARGO CI, which can then build the component, run all the unit tests and

attempt to package the component and at the end provide status feedback within the pull

request.

Useful information:

 https://help.github.com/articles/creating-a-pull-request

 https://help.github.com/articles/checking-out-pull-requests-locally

 https://help.github.com/articles/creating-a-pull-request

 https://help.github.com/articles/merging-a-pull-request

 https://quickleft.com/blog/pull-request-templates-make-code-review-easier

 https://help.github.com/articles/merging-a-pull-request

Pull request review process

https://github.com/blog/2111-issue-and-pull-request-templates
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/checking-out-pull-requests-locally
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/merging-a-pull-request
https://quickleft.com/blog/pull-request-templates-make-code-review-easier
https://help.github.com/articles/merging-a-pull-request

 EGI-Engage

 51

When a feature is ready, the developer removes the WIP mark from the pull request. Removing

the WIP mark effectively signals the rest of the team that the pull request can be peer reviewed.

At least one team member (other than the committer) has to act as the reviewer of the pull

request. During the peer review process, the reviewer has to check the feature implemented, the

code quality, the unit test coverage as computed, the existence of proper documentation and

whether the component can be packaged successfully. If all these checks pass, then the reviewer

can accept the pull request in order to be merged in the devel branch.

Branches and builds

Each repository should have at least 2 long-term branches:

 the devel branch, which should always be deployable

 the master branch, which should always be releasable

 Pull requests

Pull requests for new features should be opened initially against the devel branch. For every pull

request that is opened, the ARGO CI will execute the following workflow

Before a pull request can be merged in the devel branch, a member of the development team

(other than the original committer) has to review the pull request and check the following

according to the “Definition of Done”:

Check Status

1 Quality of Code

2 Passes acceptance criteria automatic Unit tests for non-UI

(80% or greater code coverage for business logic tier for new code)

3 CI build job is up-to-date and compiles, tests, and analyses the existing &

newly added code

4 DB migration script for DB Schema tasks

5 Sufficient documentation:

 APIs + Interfaces (public)

Check

out

pull

reque

st

Execu

te unit

tests

Build

Compo

nent

Build

Epheme

ral

Package

s

Report

status to

Github

 EGI-Engage

 52

 Manuals (where applicable)

 Changelog / Release Notes

 Inline comments where 'complex' code

6 Ability to be properly packaged

Devel branches

When new code is merged on the devel branch of each component, the CI system (a) picks it up,

(b) builds the codebase, (c) runs again the unit tests, (d) runs the sonarqube code analysis suite

and publishes the results on the ARGO sonarqube instance, (e) builds the devel packages and

publishes them on the ARGO devel RPM repository, (f) extracts, builds the documentation and

publishes it on the devel website and (g) reports the status of the CI on Github. New RPMs

published on the devel RPM repository are automatically installed on the devel testbed.

The devel testbed is using actual production data and is being operationally monitoring by the

same monitoring probes that are used to monitor also the production instance. Furthermore at

the end of each sprint, the product team performs the sprint review ceremony in which the

important features are presented to the ARGO

stakeholders and live tested on the devel testbed.

After the successful completion of the sprint

review, the new code base is merged on each

component's master branch.

In case more than one developer is working on the

same component or a developer is working in

parallel in more than one feature for the same

component, the use of feature branches is

advised.

The Devel branch is considered to be the main

branch where the source code of HEAD always

reflects a state with the latest delivered

Checkout

Devel

Branch

Execute

unit tests
Build

Component

Generate

Devel

Documentat

Build &

Publish

Devel

Execute

Code

Analysis

Report

Status

on

Deploymen

t on Devel

Testbed

 EGI-Engage

 53

development changes for the next release. Some would call this the “integration branch”. This is

where automatic builds are built from.

When the source code in the develop branch reaches a stable point and is ready to be released, all

of the changes should be merged back into master somehow and then tagged with a release

number.

Master Branches

When new code is merged in the master branch of each component, the CI system picks it up and

execute the follow workflow: (a) builds the codebase, (b) runs the unit tests again, (c) builds the

production packages, (d) publishes them on the ARGO production RPM repository and (e) extracts

& builds the documentation and publishes it on the ARGO website.

Each time changes are merged back into master; this is a new production release by definition.

Useful information:

 http://martinfowler.com/bliki/FeatureBranch.html

Releases

The release follows the process when new code is merged in the master branch of each

component. Some prerequisites for a helpful release:

Spec files should follow the correct release number shown in the following table. Spec files

(%changelog) should not contain information about features or fixes, but information about

changes in the package15. Do NOT put software's changelog at here. This changelog is for RPM

itself. If the package has no changes, the description should say “New RPM package release”.

Release: New release is created in the component repository. (Go to releases → Draft new

release) The release contains the release number and detailed information. The information is

created via the PR descriptions, so the PRs should have descriptive titles and messages. The

release description should have the following sections:

15

 https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Packagers_Guide/sect-

Packagers_Guide-Creating_a_Basic_Spec_File.html

Checkout

Master

Branch

Exe

cute

unit

tests

Build

Compo

nent

Generate

and Publish

Prod

Documentat

ion

Build &

Publish

Prod

Package

s

http://martinfowler.com/bliki/FeatureBranch.html
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Packagers_Guide/sect-Packagers_Guide-Creating_a_Basic_Spec_File.html
https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Packagers_Guide/sect-Packagers_Guide-Creating_a_Basic_Spec_File.html

 EGI-Engage

 54

New features/Enhancements

Fixes

Documentation updates

Release numbers

v1.0.[1] Patch release. A new minor release typically including just backwards-compatible

bug fixes. No new functionality is added.

v1.[1].1 Feature release. MINOR version when you add new functionality in a backwards-

compatible manner.

v[1].1.1 Major release. Significant changes in the functionality. Mandatory if the changes

are breaking backward compatibility.

A todo list of a release is described in this document.

Releases process

Planning: On every first meeting of the month we plan the new features, functionalities (jira

tasks) of the components. It is not obligatory to have new features, functionalities, fixes for all

components. For the planning process a Jira Sprint will be used, with the selected jira tasks. It will

be nice to comment and update the status of each Jira task.

Testing: All the new features, functionalities and fixes must be tested for 2 weeks at least in the

devel infrastructure. This effectively means that, in the next release, only the features that are

ready to be tested in the middle of the month will be included.

Release: All tested features, functionalities and fixes will be deployed to the production

infrastructure at the beginning of the next month. If a feature, functionality, fix is not properly

tested or requires more development it will be added to the next release.

https://docs.google.com/spreadsheets/d/1D1Zbsk3z_LOe-q6E0Kv7b3r46fmNWhew7CSiDtNvnN4/edit#gid=0

 EGI-Engage

 55

Appendix II. GOCDB development process

Testing:

● The GOCDB source code includes DBUnit and Unit tests for selected core packages. For a

data-centric product like GOCDB, emphasis is placed on the DBUnit tests, which are

essential to assert expected behaviour on the deployed RDBMS.

● The GOCDB test suite prioritizes quality functional testing of the most critical code-paths

rather than achieving high blanket coverage of less meaningful tests.

● As of Jan/2016 this includes 67 DBUnit tests with 668 assertions.

● Coverage reporting is included for selected core packages (DAOs – 55%, Doctrine 35%,

Gocdb_Services 17%) and it is acknowledged that a higher coverage should be achieved

for these packages.

● Continuous Integration is not yet supported but will be investigated in future.

Approach to Source Control:

● The GOCDB project is hosted in GitHub under the GOCDB organization.

● The main GOCDB repository has two main branches ‘master’ and ‘dev’.

● The master branch is always ‘releasable’.

● The dev branch is always ‘deployable’.

● Developers fork the repository into their own personal repository to work on features

using Topic branches.

● When ready, a pull request is opened against the ‘dev’ branch in the main repository for

review by other team members.

● After review, the pull request is merged into the ‘dev’ branch.

● When ready, the dev branch is merged into master.

● Tags are subsequently created from the master branch to identify specific releases (v5.5.

v5.6 etc).

● Throughout this process, the test suite is continuously executed and any failing tests

addressed before creating pull requests and/or merging.

● For certain scenarios, we consider it acceptable to push commits directly to the dev

branch rather than always enforcing pull requests which may add unnecessary overhead,

such as making documentation changes or small rendering updates.

