
	

	

This	material	by	Parties	of	the	EGI-Engage	Consortium	is	licensed	under	a	Creative	Commons	
Attribution	4.0	International	License.		
The	EGI-Engage	project	is	co-funded	by	the	European	Union	(EU)	Horizon	2020	program	
under	Grant	number	654142	http://go.egi.eu/eng	

	

	

EGI-Engage	
	

Final	release	of	the	accounting	and	operational	
tools	
D3.17	

	

Date	 14	February	2018	
Activity	 WP3	
Lead	Partner	 EGI	Foundation	
Document	Status	 FINAL	
Document	Link	 https://documents.egi.eu/document/3037		

	

Abstract	

This	 deliverable	 describes	 the	 final	 release	 of	 the	 EGI	 Accounting	 and	 Operational	 Tools	 during	
EGI-Engage	project,	including	the	developments	made	during	the	third	year	of	the	project	for	the	
Operations	 Portal,	 ARGO,	 Messaging,	 GOCDB,	 Security	 Monitoring,	 Accounting	 Repository	 and	
Portal.	The	evolution	of	these	tools	has	been	driven	by	the	need	to	support	new	technologies	(e.g.	
cloud)	and	to	satisfy	new	requirements	emerging	from	service	providers	and	user	communities,	in	
particular	 from	 the	Research	 Infrastructures	 contributing	 to	EGI-Engage	 via	 the	EGI	Competence	
Centres	 (CCs)	 and	 the	 Resource	 Providers	 (RPs)	 who	 contribute	 infrastructure	 services	 to	 the	
federation.	 The	 development	 roadmap	 has	 been	 reviewed	 and	 updated	 according	 to	 a	
requirement	gathering	process,	which	has	been	accomplished	in	collaboration	with	the	other	EGI	
Engage	WPs	in	charge	of	the	communication	with	users	and	key	stakeholders.	

	

	 	

	 EGI-Engage	

	

	

	 2	 	
	

COPYRIGHT	NOTICE		

	

This	 work	 by	 Parties	 of	 the	 EGI-Engage	 Consortium	 is	 licensed	 under	 a	 Creative	 Commons	
Attribution	 4.0	 International	 License	 (http://creativecommons.org/licenses/by/4.0/).	 The	 EGI-
Engage	project	is	co-funded	by	the	European	Union	Horizon	2020	programme	under	grant	number	
654142.	

DELIVERY	SLIP	

	 Name	 Partner/Activity	 Date	
From:	 Cyril	Lorphelin		

Themis	Zamani		
George	Ryall	
Daniel	Kouril	
Adrian	Coveney	
Ivan	Diaz	Alvarez	
Diego	Scardaci	

CNRS/WP3	
GRNET/WP3	
STFC/WP3	
CESNET/WP3	
STFC/WP3	
CSIC/WP3	
EGI	F.-INFN/WP3	

29/07/2017	

Moderated	by:	 Malgorzata	Krakowian		 EGI	Foundation	 	
Reviewed	by	 Alessandro	Paolini	 EGI	Foundation	 10/08/2017	
Approved	by:	 AMB	and	PMB	 	 	
	

DOCUMENT	LOG	

Issue	 Date	 Comment	 Author/Partner	
v.1	 29/07/2017	 Full	draft	ready	for	internal	review	 Cyril	Lorphelin/CNRS		

Themis	Zamani	/GRNET		
George	Ryall	/STFC	
Daniel	Kouril/CESNET	
Adrian	Coveney/STFC	
Ivan	Diaz	Alvarez/CSIC	
Diego	Scardaci/EGI	F.	-	INFN	

v.	2	 01/08/2017	 Full	draft	ready	for	external	review	 Diego	Scardaci/EGI	F.	-	INFN	
FINAL	 22/08/2017	 Final	version	 Diego	 Scardaci/EGI	 F.	 –	

INFN	
FINAL	 02/03/2018	 Updated	 final	 version	 to	 address	

comments	 from	 the	 reviewers’	 last	
review	 report	 (architectural	 information	
about	 the	 services	 was	 removed	 and	
replaced	by	references)	

Diego	 Scardaci/EGI	 F.	 –	
INFN	

	

TERMINOLOGY	

A	complete	project	glossary	and	acronyms	are	provided	at	the	following	pages:		

	 EGI-Engage	

	

	

	 3	 	
	

• https://wiki.egi.eu/wiki/Glossary		
• https://wiki.egi.eu/wiki/Acronyms		

						

Contents	
1	 Operations	Portal	...	8	

1.1	 Introduction	...	8	

1.2	 Service	architecture	...	9	

1.2.1	 High-Level	Service	architecture	...	9	

1.2.2	 Integration	and	dependencies	...	9	

1.3	 Release	notes	...	9	

1.3.1	 Operations	Portal	4.2	...	9	

1.3.2	 VAPOR	2.2	..	10	

1.3.3	 VAPOR	2.3	..	10	

1.4	 Feedback	on	satisfaction	..	10	

1.5	 Plan	for	Exploitation	and	Dissemination	..	11	

1.6	 Future	plans	...	12	

2	 ARGO	..	14	

2.1	 Introduction	...	14	

2.2	 Service	architecture	...	14	

2.2.1	 High-Level	Service	architecture	...	14	

2.2.2	 Integration	and	dependencies	...	14	

2.3	 Release	notes	...	15	

2.3.1	 Requirements	covered	in	the	release	..	15	

2.4	 Feedback	on	satisfaction	..	18	

2.5	 Plan	for	Exploitation	and	Dissemination	..	18	

2.6	 Future	plans	...	20	

3	 Messaging	Service	..	22	

3.1	 Introduction	...	22	

3.2	 Service	architecture	...	22	

3.2.1	 High-Level	Service	architecture	...	22	

	 EGI-Engage	

	

	

	 4	 	
	

3.2.2	 Integration	and	dependencies	...	24	

3.3	 Release	notes	...	25	

3.3.1	 Requirements	covered	in	the	release	..	25	

3.3.2	 Changelog	..	25	

3.4	 Feedback	on	satisfaction	..	25	

3.5	 Plan	for	Exploitation	and	Dissemination	..	25	

3.6	 Future	plans	...	27	

4	 GOCDB	..	28	

4.1	 Introduction	...	28	

4.2	 Service	architecture	...	28	

4.2.1	 High-Level	Service	architecture	...	28	

4.2.2	 Integration	and	dependencies	...	29	

4.3	 Release	notes	...	29	

4.3.1	 Requirements	covered	in	the	release	..	29	

4.4	 Feedback	on	satisfaction	..	29	

4.5	 Plan	for	Exploitation	and	Dissemination	..	30	

4.6	 Future	plans	...	31	

5	 Security	Monitoring	..	32	

5.1	 Introduction	...	32	

5.2	 Service	architecture	...	32	

5.2.1	 High-Level	Service	architecture	...	32	

5.2.2	 Integration	and	dependencies	...	32	

5.3	 Release	notes	...	33	

5.3.1	 Requirements	covered	in	the	release	..	33	

5.4	 Feedback	on	satisfaction	..	33	

5.5	 Plan	for	Exploitation	and	Dissemination	..	33	

5.6	 Future	plans	...	34	

6	 Accounting	Repository	..	35	

6.1	 Introduction	...	35	

6.2	 Service	architecture	...	36	

6.2.1	 High-Level	Service	architecture	...	36	

	 EGI-Engage	

	

	

	 5	 	
	

6.2.2	 Integration	and	dependencies	...	36	

6.3	 Release	notes	...	37	

6.3.1	 Requirements	covered	in	the	release	..	37	

6.4	 Feedback	on	satisfaction	..	37	

6.5	 Plan	for	Exploitation	and	Dissemination	..	38	

6.6	 Future	plans	...	39	

7	 Accounting	Portal	...	40	

7.1	 Introduction	...	40	

7.2	 Service	architecture	...	40	

7.2.1	 High-Level	Service	architecture	...	40	

7.2.2	 Integration	and	dependencies	...	44	

7.3	 Release	notes	...	45	

7.3.1	 Requirements	covered	in	the	release	..	45	

7.4	 Feedback	on	satisfaction	..	46	

7.5	 Plan	for	Exploitation	and	Dissemination	..	46	

7.6	 Future	plans	...	47	

Appendix	I.	 ARGO	development	process	...	48	

Appendix	II.	 GOCDB	development	process	..	56	

Appendix	III.	 Accounting	Repository	dev	process	..	57	

	

	 	

	 EGI-Engage	

	

	

	 6	 	
	

Executive	summary	
This	 deliverable	 describes	 the	 final	 release	 of	 the	 EGI	 Accounting	 and	 Operational	 Tools	 during	
EGI-Engage	project,	including	the	developments	made	during	the	third	year	of	the	project	for	the	
Operations	 Portal,	 ARGO,	 Messaging,	 GOCDB,	 Security	 Monitoring,	 Accounting	 Repository	 and	
Portal.	The	evolution	of	these	tools	has	been	driven	by	the	need	to	support	new	technologies	(e.g.	
cloud)	and	to	satisfy	new	requirements	emerging	from	service	providers	and	user	communities,	in	
particular	 from	 the	Research	 Infrastructures	 contributing	 to	EGI-Engage	 via	 the	EGI	Competence	
Centres	 (CCs)	 and	 the	 Resource	 Providers	 (RPs)	 who	 contribute	 infrastructure	 services	 to	 the	
federation.	 The	 development	 roadmap	 has	 been	 reviewed	 and	 updated	 according	 to	 a	
requirement	gathering	process,	which	has	been	accomplished	in	collaboration	with	the	other	EGI	
Engage	WPs	in	charge	of	the	communication	with	users	and	key	stakeholders.	

The	Operations	Portal	 team	 implemented	a	new	metric	view	for	 the	VOs	merging	data	collected	
from	both	the	Accounting	system	and	the	AppDB.	The	tool	now	supports	the	new	EGI	AAI	based	
on	 the	CheckIn	 service1	 and	 improvements	were	applied	 to	 the	VO	 ID	Card.	 The	VAPOR	module	
provides	now	a	summary	of	 the	CPU	and	storage	capacities	by	countries,	 resource	or	operations	
centres,	and	geographical	maps	with	a	global	view	of	all	the	resource	providers	with	a	VO	filter.	

Several	new	features	are	now	available	in	the	ARGO	Monitoring	system.	The	Compute	Engine	was	
enhanced	to	support	stream	processing	in	real	time.	The	introduction	of	this	new	feature	enables	
the	 development	 of	 new	 functionalities	 that	 go	 beyond	 the	 infrastructure	 monitoring,	 as	 for	
example	an	alerting	system.	The	support	for	probe	management	in	the	POEM	component	greatly	
simplifies	the	addition	of	new	probes	in	the	system.	In	addition,	ARGO	now	only	uses	GOCDB	as	a	
source	of	topology	 information,	new	probes	were	developed	and	the	UI	was	enhanced	with	new	
reports	and	updates	on	existing	views.	

Final	 tests	 to	move	 the	new	Messaging	Service	 into	production	are	 running.	 It	provides	an	HTTP	
API	 that	 enables	 users/systems	 to	 implement	 a	 service-oriented	 messaging	 system	 using	 the	
Publish/Subscribe	 Model	 over	 plain	 HTTP.	 Work	 to	 migrate	 the	 ARGO	 monitoring	 system,	 the	
Operations	Portal	and	the	accounting	system	to	the	new	Messaging	Service	is	progressing	well	and	
will	be	completed	shortly.	

To	meet	requirements	of	communities,	including	WLCG,	the	write	API	of	the	GOCDB	was	extended	
to	allow	the	programmatic	creation,	update,	and	deletion	of	service	endpoints	and	updates	to	the	
details	 of	 services.	 This	 update	 allows	 changes	 to	 key	 entities	within	 GOCDB,	 programmatically,	
and	 represents	 a	 significant	 evolution	 in	 the	 way	 in	 which	 GOCDB	 works,	 allowing	 for	 much	
greater	automated	interaction	with	the	information	managed	by	GOCDB.	

Work	 on	 Security	 Monitoring	 is	 progressing	 and	 Secant,	 the	 framework	 to	 detect	 security	
vulnerabilities	in	images	of	virtual	machines,	will	be	integrated	with	AppDB	in	the	coming	months	
to	support	the	assessment	of	the	virtual	appliances	during	the	endorsement	process.	
																																																													
1	https://wiki.egi.eu/wiki/AAI		

	 EGI-Engage	

	

	

	 7	 	
	

Finally,	 the	 accounting	 system	 has	 added	 storage	 systems	 as	 a	 source	 of	 accounting	 data	 and	
support	for	long	running	virtual	machines	was	included	in	cloud	accounting.	The	Accounting	Portal	
has	been	enhanced	with	the	introduction	of	new	views	and	metrics.	

	 EGI-Engage	

	

	

	 8	 	
	

1 Operations	Portal	
1.1 Introduction	
	

Tool	name	 Operations	Portal	

Tool	url	 http://operations-portal.egi.eu	

Tool	wiki	page	 https://wiki.egi.eu/wiki/Operations_Portal	

Description	 The	Operations	Portal	provides	VO	management	functions	and	other	
capabilities,	 which	 support	 the	 EGI	 daily	 operations.	 It	 is	 a	 central	
portal	for	the	operations	community	that	offers	a	bundle	of	different	
capabilities,	such	as	 the	broadcast	 tool,	VO	management	 facilities,	a	
security	 dashboard	 and	 an	 operations	 dashboard	 that	 is	 used	 to	
display	 information	 about	 failing	 monitoring	 probes	 and	 to	 open	
tickets	 to	 the	 affected	 Resource	 Centres.	 The	 dashboard	 also	
supports	the	central	grid	oversight	activities.	It	is	fully	interfaced	with	
the	EGI	Helpdesk	and	the	monitoring	system	through	messaging.	It	is	
a	 critical	 component	 as	 it	 is	 used	 by	 all	 EGI	 Operations	 Centres	 to	
provide	support	 to	the	respective	Resource	Centres.	The	Operations	
Portal	 provides	 tools	 supporting	 the	 daily	 running	 of	 operations	 of	
the	 entire	 infrastructure:	 grid	 oversight,	 security	 operations,	 VO	
management,	broadcast,	VO	metrics.	

VAPOR:	 the	 Vo	 Administration	 and	 Operations	 Portal,	 is	 a	 generic	
tool	to	assist	community	managers	and	support	teams	in	performing	
their	 daily	 activities.	 The	 application	 provides	 resources	 status	
indicators,	 statistical	 reports,	 data	 management	 tools.	 It	 gathers	
resource	 information	from	the	BDII	and	displays	them	in	an	ordered	
way,	replacing	the	features	previously	offered	by	GSTAT.	The	amount	
of	 resources	 and	 the	 resources	 themselves	 are	 shown	 in	 different	
views	that	group	 information	per	Operations	Centres,	Countries	and	
VOs.	

Value	proposition	 New	features	offered	by	the	Operations	Portals	allow	its	customers	
to	better	monitor	and	browse	the	infrastructure	and,	then,	adapting	
their	workflows	according	to	the	exact	status	of	the	computing	and	
storage	resources	(e.g.	moving	some	computation	from	one	provider	
to	another	since	the	latter	is	working	better).	

	 EGI-Engage	

	

	

	 9	 	
	

Customer	of	the	tool	 EGI;	NGI;	RI;	Resource	Provider;	Research	Communities	

User	of	the	service	 Site	admins;	Operations	Managers;		VO	Manager;	VO	users;		

User	Documentation		 https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of
_the_dashboard	

http://operations-portal.egi.eu/vapor/globalHelp	

Technical	Documentation		 https://forge.in2p3.fr/projects/opsportaluser/wiki/Main_Features_of
_the_dashboard		

Product	team	 IN2P3/CNRS	

License	 Apache	2.0	

Source	code	 https://gitlab.in2p3.fr/groups/opsportal		

	

1.2 Service	architecture	

1.2.1 High-Level	Service	architecture	

The	high-level	service	architecture	of	the	Operations	Portal	is	described	in	section	1	of	D3.102.	

	

1.2.2 Integration	and	dependencies	

Operations	Portal	dependencies	have	been	already	described	in	section	1	of	D3.103.	They	are	not	
changed	in	this	release.	

1.3 Release	notes	
Refer	to	section	1	of	D3.10	for	release	notes	of	older	version.	

● 	

1.3.1 Operations	Portal	4.2	

This	version	is	foreseen	for	August	and	is	focused	on:	

● Integration	 of	 complementary	 metrics	 for	 the	 VO:	 accounting	 data	 and	 AppDB	
changes;	

● Improvements	on	the	VO	ID	Card;	
● The	support	of	the	new	EGI	AAI	based	on	the	CheckIn	service	(IdP/SP	Proxy).	

																																																													
2	https://documents.egi.eu/document/3018	
3	https://documents.egi.eu/document/3018	

	 EGI-Engage	

	

	

	 10	 	
	

● A	backend	for	the	monitoring	
○ Exploration	of	logs	(Apache	,	symfony,	access)	
○ Status	of	the	Lavoisier	servers	and	views	
○ Status	of	some	tables	of	the	DB	
○ The	use	of	ARGO	messaging	system	to	collect	Nagios	notifications	

● 	

1.3.2 VAPOR	2.2	

This	release	has	been	delivered	in	February	2017.	

For	 this	 release,	 the	 Operations	 Portal	 team	 has	 worked	 closely	 with	 the	 EGI	 Operations	 to	
consolidate	 the	different	queries	 to	 the	Top	BDII	and	 the	different	extracted	 figures.	The	 results	
are	the	following:	

● A	summary	of	the	CPU	and	storage	capacities	by	countries,	sites	or	Operations	Centres;	
● A	geographical	map	with	the	distribution	of	sites	with	a	VO	filter;	
● Some	 additions	 in	 the	 faulty	 publications:	 bad	 HEPSPEC,	 mismatches	 between	 the	

different	benchmarks,	negative	values	for	jobs.	
	

This	release	has	been	also	focused	on	the	documentation	of	the	different	features	and	the	access	
to	the	API.	

1.3.3 VAPOR	2.3	

This	release	is	currently	in	the	test	phase	and	will	be	delivered	in	August	2017.	

Once	again	this	release	is	the	results	of	multiple	exchanges	with	EGI	Operations	team	to	enhance	
the	current	features.	We	have	worked	on	different	improvements:	

● Upgrade	of	the	different	JavaScript	libraries	to	improve	the	performances.	
● Identify	the	duplicated	values	published	by	the	sites.	
● A	map	has	been	added	with	a	global	view	of	all	the	sites.	
● A	summary	of	the	figures	is	now	available	for	each	site.	
● The	global	storage	capacity	computation	has	been	improved.	
● One	 new	 metric	 has	 been	 added	 in	 agreement	 with	 EGI	 Operations	 team	 :	 “the	

Computation	power”	

1.4 Feedback	on	satisfaction	
Prioritization	 and	 testing	 has	 been	 done	 by	 dedicated	 Operations	 Portal	 Advisory	 and	 Testing	
Board	(OPAnTG)4	coordinated	by	EGI	Operations	team.	Furthermore,	 the	Operations	Portal	 team	

																																																													
4	https://wiki.egi.eu/wiki/OTAG#Operations_Portal_Advisory_and_Testing_Board		

	 EGI-Engage	

	

	

	 11	 	
	

has	worked	on	the	automation	of	tests.	Unit	and	acceptance	tests	are	now	done	through	Docker	
piloted	by	GitLab	Continuous	Integration	server.	

If	 tests	 are	 failing,	 new	 features	 are	 not	 propagated	 to	 the	 test	 infrastructure.	 This	 allows	
performing	 a	 first	 bug	 filter	 before	manually	 tests	 are	 executed.	 Complementary	 to	 these	 tests,	
the	team	also	adopted	a	SonarQBE	instance	to	inspect	the	quality	of	code.	

The	architecture	of	the	Operations	Portal	automatic	test	suite	is	described	below.	

As	a	result,	a	minor	number	of	bugs	have	been	identified	by	the	testing	team	in	the	most	recent	
releases.	

	
Figure	1.	Operations	Portal	-	Automatic	test	suite.	

1.5 Plan	for	Exploitation	and	Dissemination	
	

Name	of	the	
result	

Operation	Portal	

DEFINITION		

	 EGI-Engage	

	

	

	 12	 	
	

Category	of	
result	

Software		&	service	innovation	

Description	of	
the	result	

Software	enhancement:	integrate	the	VO	Administration	and	operations	PORtal	
(VAPOR)	 into	 the	 Operations	 Portal	 and	 enhance	 the	 monitor	 infrastructure	
resources	including	the	most	relevant	features	currently	offered	by	GSTAT.		

EXPLOITATION	

Target	group(s)	 Users,	NGIs,	Resource	centres,	RIs	

Needs	 Monitor	/	browse	/	Evaluate	the	resources	for	VO,	sites,	Operations	Centres	

How	the	target	
groups	will	use	
the	result?	

• Exploit	the	new	features	in	the	daily	operations	of	the	EGI	infrastructure	
• Exploit	the	advanced	metrics	to	better	promote	the	EGI	infrastructure	

Benefits	 • Ease	the	daily	administration	of	the	resources	
• Have	an	overview	of	the	resources	and	their	status	
• Be	more	efficient	in	the	daily	job	submission	

How	will	you	
protect	the	
results?	

Apache	2	License	

Actions	for	
exploitation	

The	result	is	accessible	through	the	web	site	and	the	code	is	hosted	on	a	GitLab.	

URL	to	project	
result	

http://operations-portal/vapor	

https://gitlab.in2p3.fr/opsportal/		

Success	criteria	 The	deployment	in	production	and	the	use	by	end	users.	

DISSEMINATION	

Key	messages	 Browse	and	evaluate	your	resources	

Channels	 EGI	Broadcast	tool,	EGI	Meetings	

Actions	for	
dissemination	

EGI	conferences,	publications,	participation	to	workshops	organised	by	potential	
users.	

Cost	 	

Evaluation	 The	number	of	requests	and	the	feedback	given	by	users	

1.6 Future	plans	
Future	plans	cover	following	aspects:		

● VAPOR	
○ Enhance	the	historical	scripts,	especially	the	‘JobMonitor’	Tool;	
○ Consolidation	/	coherency	of	the	data:	

	 EGI-Engage	

	

	

	 13	 	
	

■ Data	issued	from	site	publications	with	incoherencies:	
■ Detect	and	propose	corrections:	

○ Extend	the	current	features	with	user	feedback.	
● Operations	Portal	

○ integration	of	complementary	metrics	for	the	VO;	
○ Add	more	genericity	in	the	VO	Id	cards;	
○ Extend	the	current	features	with	user	feedback;	
○ Adapt	the	current	tools	to	the	new	communities;	
○ Define	a	new	module	for	the	SLA/OLA	management	including:	

■ workflows	to	automatic	service	activations;	
■ on-demand	generation	of	reports	on	resource	usage.	

	 EGI-Engage	

	

	

	 14	 	
	

2 ARGO	
2.1 Introduction	
Tool	name	 ARGO	

Tool	url	 http://argo.egi.eu		

Tool	wiki	page	 https://wiki.egi.eu/wiki/ARGO		

Description	 ARGO	 is	 a	 flexible	 and	 scalable	 framework	 for	 monitoring	 status,	
availability	and	reliability	

Value	proposition	 Improved	 portal	 design	 that	 allows	 new	 and	 easier	way	 to	 access	
and	visualise	data	for	the	final	users.	Third	parties	can	now	gather	
monitoring	data	from	the	system	through	a	complete	API.	A	central	
deployment	 of	 the	 ARGO	 monitoring	 engine	 can	 serve	 a	 large	
infrastructure	reducing	the	maintenance	costs.	

Customer	of	the	tool	 EGI;	NGI;	RI;	Resource	Provider;	Research	Communities	

User	of	the	service	 Site	admins;	Operations	Managers;	large	research	group	

User	Documentation		 http://argoeu.github.io;	http://argo.egi.eu	

Technical	Documentation		 http://argoeu.github.io	

Product	team	 GRNET,	SRCE,	CNRS	

License	 Apache	License	Version	2.0	

Source	code	 https://github.com/ARGOeu/		

	

2.2 Service	architecture	

2.2.1 High-Level	Service	architecture	

The	high-level	service	architecture	of	ARGO	is	described	in	section	2	of	D3.105.	

	

2.2.2 Integration	and	dependencies	

ARGO	dependencies	are	not	changed	in	this	release.	Refer	to	D3.10	for	more	information.	

	

																																																													
5	https://documents.egi.eu/document/3018	

	 EGI-Engage	

	

	

	 15	 	
	

2.3 Release	notes	

2.3.1 Requirements	covered	in	the	release	

As	already	mentioned	ARGO	is	not	just	single	software,	but	a	suite	of	software	components,	each	
one	managed	 independently.	During	 the	 third	year	of	 the	project,	 there	have	been	a	number	of	
releases	of	the	ARGO	components	that	covered	the	following	requirements:	

ARGO	Compute	Engine	&	Web	API	

● Streaming	processing;	

● Alerting	mechanism;	

● Separation	of	A/R	and	Metric	stores:	

● APIv2;	

● Stability	and	performance	improvements.	

ARGO	Monitoring	Engine	

● Migration	 of	 ops	 probes	 from	 opsmon.egi.eu	 to	 the	 central	 monitoring	 instances	 argo-
mon/2.egi.eu	and	decommissioning	of	opsmon.egi.eu;	

● Deployment	of	three	new	ARGO	Monitoring	Services:	

○ Testing	 instance	 (argo-mon-test)	 used	 for	 testing	 new	 ARGO	Monitoring	
Service	 releases	 and	 deployment	 of	 new	 probes	 and	 updates	 of	 existing	
probes;	 instance	 is	constantly	monitoring	subset	of	EGI	 infrastructure	and	 list	
of	sites	and	service	endpoints	is	extended	on	demand;	

○ Uncertified	 instance	 (argo-mon-uncert)	 used	 for	 monitoring	 uncertified	
sites	which	fully	relies	on	information	provided	by	sites	in	GOCDB;	

○ Internal	 instance	 used	 for	 monitoring	 all	 internal	 ARGO	 components	 by	
using	ARGO	probes	and	NRPE;	

● New	probes	and	updates	of	existing	probes:	

○ New	probe	for	decommissioning	of	dCache	2.10	and	dCache	2.13;	

○ New	probes	for	OneData	services;	

○ New	probes	for	AAI	CheckIn	service;	

○ New	probe	for	NGI	Argus	service;	

○ New	probe	for	WebDAV	service;	

○ Improved	probes	for	FTS3,	gsisshd	and	VOMS	services;	

○ Improved	probes	for	CREAM-CE;	

	 EGI-Engage	

	

	

	 16	 	
	

○ Analysis	and	deployment	of	new	ARC-CE	probes;	

○ Scripts	provided	for	handling	UNICORE	probes	configuration;	

● Prototype	version	of	ARGO	Monitoring	Service	for	biomed	VO;	

● AMS	 Publisher:	 is	 a	 new	 component	 acting	 as	 bridge	 from	 Nagios	 to	 ARGO	 Messaging	
system.	 It	 is	 integral	 part	 of	 software	 stack	 running	 on	 ARGO	 monitoring	 instance	 and	 is	
responsible	for	forming	and	dispatching	messages	that	are	results	of	Nagios	tests.	Successfully		
running	on	the	development	infrastructure	for	more	than	a	month;	

● Support	for	GOCDB	as	a	single	source	of	topology:	

○ Step	1:	Randomly	check	service	endpoint;	

● Stability	and	performance	improvements.	

ARGO	EGI	Consumer	and	Connectors	

● Use	of	ARGO	nagios	AMS-publisher;	

○ Ready	on	development	infrastructure;	

● Use	of	the	messaging	API	for	Connectors	component;	

○ Ready	on	development	infrastructure;	

● Stability	and	performance	improvements.	

ARGO	EGI	Web	UI	

● New	Uncertified	report;	

● New	FedCloud	Report;	

● UI	Enhancements;	

○ New	pdf	report;	

○ Updates	to	ELIXIR	report;	

○ Updates	to	admin	list;	

○ Updates	to	links	to	reports.	

ARGO	POEM	

● Finalize	support	for	probe	management;	

● Initial	steps	for	the	connection	to	the	EGI	IdP/SP	Proxy;	

● Stability	and	performance	improvements.	

2.3.1.1 Changelog	

● 25/06/2017	

	 EGI-Engage	

	

	

	 17	 	
	

○ ARGO	Monitoring	Plugin	-	AMS	publisher	[Version	0.2.0-1]	

https://github.com/ARGOeu/argo-nagios-ams-publisher/releases/tag/v0.2.0-1		

○ ARGO-Monitoring	Engine	[Version	0.4.0-1]	https://github.com/ARGOeu/argo-

ncg/releases/tag/v0.4.0-1		

● 20/06/2017		

○ ARGO-Poem	[Version	1.0.5-1]																							

https://github.com/ARGOeu/poem/releases/tag/v1.0.5-1		

● 24/05/2017	

○ ARGO-Connectros	[Version	1.5.9-1]	https://github.com/ARGOeu/argo-egi-

connectors/releases/tag/v1.5.9			

○ ARGO-Monitoring	Engine	[Version	0.3.4-1]		https://github.com/ARGOeu/argo-

ncg/releases/tag/0.3.4-1		

● 06/05/2017		

○ ARGO-Poem	[Version	1.0.4-1]																							

https://github.com/ARGOeu/poem/releases/tag/v1.0.4-1		

○ ARGO	Web	UI	[Version	1.3.6-2]	https://github.com/ARGOeu/argo-egi-

web/releases/tag/V1.3.6-2		

● 04/05/2017	

○ ARGO-Monitoring	Engine	[Version	0.3.3-1]		https://github.com/ARGOeu/argo-

ncg/releases/tag/0.3.3-1		

● 03/04/2017	

○ ARGO-Monitoring	Engine	[Version	0.3.2-1]		https://github.com/ARGOeu/argo-

ncg/releases/tag/0.3.2-1	

● 03/04/2017	

○ ARGO-Connectros	[Version	1.5.8-1]	https://github.com/ARGOeu/argo-egi-

connectors/releases/tag/v1.5.8			

● 17/03/2017	

○ ARGO-Connectros	[Version	1.5.6-1]	https://github.com/ARGOeu/argo-egi-

connectors/releases/tag/v1.5.6			

● 06/03/2017	

○ ARGO-Connectros	[Version	1.5.4-1]	https://github.com/ARGOeu/argo-egi-

connectors/releases/tag/V1.5.4-1		
● 03/03/2017	

○ ARGO-Monitoring	Engine	[Version	0.3.1-1]		https://github.com/ARGOeu/argo-

ncg/releases/tag/0.3.1-1		

● 16/02/2017	

○ ARGO-Monitoring	Engine	[Version	0.3.0-1]		https://github.com/ARGOeu/argo-

	 EGI-Engage	

	

	

	 18	 	
	

ncg/releases/tag/0.3.0-1		

● 09/02/2017	

○ ARGO	Web	UI	[Version	1.3.6-1]	https://github.com/ARGOeu/argo-egi-

web/releases/tag/v1.3.6-1		

● 30/01/2017	

○ ARGO	Web	UI	[Version	1.3.5-1]	https://github.com/ARGOeu/argo-egi-

web/releases/tag/v1.3.5-1		

● 17/01/2017	

○ ARGO	Compute	Engine	[Version	1.6.9-1]	https://github.com/ARGOeu/argo-compute-

engine/releases/tag/v1.6.9-1		

● 10/01/2017	

○ ARGO-Poem	[Version	1.0.3-1]																							

https://github.com/ARGOeu/poem/releases/tag/v1.0.3-1	

2.4 Feedback	on	satisfaction	
The	 ARGO	 product	 team	 uses	 a	 development	 process	 based	 around	 GitHub,	 which	 includes	
procedures	 that	 guarantee	 a	 high	 quality	 of	 software	 releases.	 For	 details	 of	 the	 ARGO	
development	process,	see	Appendix	I.	

2.5 Plan	for	Exploitation	and	Dissemination	
	

Name	of	the	
result	

ARGO	

DEFINITION		

Category	of	
result	

Software		&	service	innovation	

Description	of	
the	result	

Software	 enhancement:	 improve	 the	 portal	 designing	 new	 and	 easier	 way	 to	
access	 and	 visualise	 data	 for	 the	 final	 users	 and	 exposing	 a	 complete	 API	
allowing	third	parties	to	gather	accounting	data	from	the	system.	

Stability	 and	 performance	 improvements	 of	 the	 central	 ARGO	 Monitoring	
Service.	 NGI	 instances	 were	 decommissioned	 or	 kept	 for	 NGI’s	 internal	
purposes.	 In	 addition,	 specific	 monitoring	 instances	 like	 opsmon.egi.eu	 were	
decommissioned	and	all	probes	were	 integrated	 into	central	ARGO	Monitoring	
Service.	A/R	calculations	are	performed	solely	by	using	results	from	the	central	
ARGO	 Monitoring	 Service.	 Uncertified	 instances	 are	 also	 monitored	 via	 the	
centralized	 ARGO	 Monitoring	 Service.	 Two	 additional	 centralized	 ARGO	
Monitoring	 Services	were	 deployed	 for	 testing	 and	 verification	 of	 new	 probes	
and	for	monitoring	internal	ARGO	components.	

	 EGI-Engage	

	

	

	 19	 	
	

Centralized	 ARGO	 Monitoring	 Service	 poses	 a	 risk	 if	 only	 one	 instance	 is	
deployed.	In	case	of	failure	of	that	instance,	the	whole	infrastructure	will	not	be	
monitored.	Therefore,	a	high	availability	setup	is	used.	

The	reorganization	of	the	Compute	Engine	to	support	stream	processing	in	real	
time	is	one	of	the	key	new	factors.	A	new	streaming	layer	has	been	introduced.	
Monitoring	 results	 flow	 through	 the	AMS	 to	 the	 streaming	 layer	 (in	parallel	 to	
the	HDFS).	The	streaming	layer	is	used	in	order	to	push	raw	metric	results	to	the	
metric	 result	 store	and	 to	compute	status	 results	and	push	 them	to	 the	status	
store	in	real-time.	The	streaming	and	batch	job	for	the	status	results	is	running	
in	the	development	infrastructure	producing	the	same	results	as	the	production	
infrastructure.		

At	 the	 same	 time,	 the	 new	 AMS	 publisher	 has	 been	 introduced.	 It	 is	 a	 new	
component	acting	as	bridge	from	Nagios	to	the	new	ARGO	Messaging	system.	It	
is	successfully	running	on	the	development	infrastructure	for	a	while	producing	
the	 same	 results	 as	 on	 production.	 	 It	 is	 integral	 part	 of	 the	 software	 stack	
running	 on	 ARGO	 monitoring	 instance	 and	 is	 responsible	 for	 forming	 and	
dispatching	messages	that	are	results	of	Nagios	tests.		

Thanks	 to	 the	 new	 real-time	 Streaming	 processing	 layer,	 we	 are	 now	 able	 to	
introduce	new	 functionality	 to	 the	ARGO	Monitoring	Service	 that	goes	beyond	
infrastructure	monitoring,	 as,	 for	 example,	 the	 alerting.	We	 are	 working	 on	 a	
new	 component	 on	 top	 of	 the	 streaming	 engine.	 This	 component	will	 analyse	
the	 monitoring	 results	 and	 send	 notification	 based	 on	 a	 set	 of	 rules.	 The	
minimum	set	of	rules	support	should	mimic	the	Nagios	behaviour.	

EXPLOITATION	

Target	group(s)	 RIs,	Service	providers,	Users,	NGIs,	Resource	centres	

Needs	 • Used	for	the	Availability	and	Reliability	monitoring		
• Provide	complete	API	allowing	third	parties	to	gather	data	from	the	system.	
• Used	 as	 a	 source	 of	 alerts	 for	 resource	 centres	 administrators	 through	 the	

Operations	Portal	Dashboard	
• Used	for	middleware	versions	monitoring	and	upgrade	campaigns	

How	the	target	
groups	will	use	
the	result?	

The	 ARGO	 Availability	 and	 Reliability	 Monitoring	 Framework	 is	 used	 by	 the	
ARGO	 Monitoring	 Service	 that	 is	 operated	 by	 EGI	 for	 the	 monitoring	 of	 the	
availability	 and	 reliability	 of	 the	 EGI	 infrastructure.	 The	 ARGO	 Monitoring	
Service	can	be	provided	also	to	research	communities	and	other	infrastructures	
as	 a	 service	 in	 order	 to	monitor	 the	 status,	 availability	 and	 reliability	 of	 their	
services.	

Benefits	 The	 developments	 during	 this	 period,	 allowed	 EGI	 to	 replace	 the	 older	
implementation	 of	 the	 SAM	 Nagios	 Monitoring	 Engine,	 which	 required	 one	
monitoring	 engine	 per	 NGI,	 with	 a	 new	 implementation	 using	 the	 ARGO	
Monitoring	 Engine,	 which	 provided	 a	 monitoring	 engine	 that	 could	 deliver	
monitoring	 probe	 scheduling	 and	 execution	 as	 a	 service	 for	 all	 the	 NGI	 and	
communities.	Central	ARGO	requires	less	maintenance	effort	and	enables	faster	

	 EGI-Engage	

	

	

	 20	 	
	

and	streamlined	deployment	of	new	tests	or	update	of	existing	tests.	This	leads	
to	 improvements	 in	 the	 performance,	 robustness	 and	 reliability	 of	 the	 ARGO	
Monitoring	Service.	

Furthermore,	 real-time	computations	give	 the	ability	 to	 take	 immediate	action	
for	urgent	 issues.	The	goal	 is	 to	obtain	 the	 insight	 required	to	act	prudently	at	
the	right	time	-	which	increasingly	means	immediately.	

How	will	you	
protect	the	
results?	

The	ARGO	Monitoring	Framework	is	released	under	the	Apache	2.0	license.	

Actions	for	
exploitation	

The	new	version	of	the	ARGO	Monitoring	Framework	has	already	been	adopted	
by	 the	 production	 ARGO	 Monitoring	 Service.	 In	 order	 to	 further	 exploit	 the	
results,	we	should	promote	the	service	also	to	research	communities	and	other	
infrastructures	that	can	benefit	of	its	features.	

URL	to	project	
result	

http://argo.egi.eu/		

https://github.com/ARGOeu/		

Success	criteria	 The	deployment	of	the	results	to	the	production	EGI	infrastructure.	The	usage	of	
the	service	to	monitor	third	party	services.	

DISSEMINATION	

Key	messages	 Offer	a	guaranteed	quality	of	services.	

Channels	 EGI	Broadcast	tool,	EGI	Meetings.	

Actions	for	
dissemination	

EGI	conferences,	publications,	participation	to	workshops	organised	by	potential	
users	

Cost	 	

Evaluation	 The	number	of	requests	for	information	is	the	main	way	to	evaluate	the	impact	
of	the	dissemination	actions.	

	

	

2.6 Future	plans	
Future	plans	cover	following	aspects:		

ARGO	Compute	Engine	

• Streaming	processing;	
• Alerting	mechanism;	
• Separation	of	A/R	and	Metric	stores;	
• Stability	and	performance	improvements.	

ARGO	Monitoring	Engine	

	 EGI-Engage	

	

	

	 21	 	
	

• Finalize	support	for	GOCDB	as	a	single	support	of	topology;	
• Integration	with	probe	management	feature	in	POEM;	
• Use	of	the	messaging	API	on	production;	
• Fedcloud	probes	updates;	
• Stability	and	performance	improvements.	

ARGO	Web	UI	

• UI	Enhancements.	

ARGO	EGI	Consumers	and	Connectors	

• Decommission	of	Consumer	and	use	ARGO	nagios	AMS-publisher	instead;	
• Finalize	the	use	of	the	messaging	API	for	Connectors	component	on	production;	
• Stability	and	performance	improvements.	

ARGO	POEM	

• Finalize	the	probe	management	feature;	
• Connect	to	the	EGI	IdP/SP	Proxy;	
• Stability	and	performance	improvements.	

	 EGI-Engage	

	

	

	 22	 	
	

3 Messaging	Service	

3.1 Introduction	
Tool	name	 ARGO	Messaging	Service	

Tool	url	 http://argoeu.github.io	

Tool	wiki	page	 https://wiki.egi.eu/wiki/Message_brokers		

Description	 	 The	Messaging	service	enables	reliable	asynchronous	messaging	for	
the	EGI	infrastructure.		

Value	proposition	 e-Infrastructures	and	research	communities	are	building	distributed	
services	 and	 workflows	 in	 order	 to	 satisfy	 their	 operational	 and	
research	 requirements.	 Synchronization	 between	 services,	
gathering	 of	 telemetry,	 monitoring	 and	 accounting	 data,	 and	 any	
secure	 messages	 exchange	 are	 core	 requirements	 in	 any	 type	 of	
distributed	services.	The	Messaging	Service	provides	an	easy	to	use	
and	 reliable	 transport	 layer	 for	 the	 secure	 exchange	 of	 messages	
between	 services	 such	as	accounting	data,	monitoring	data,	 event	
notifications,	etc.	

Customer	of	the	tool	 EGI;	NGI;	RI;	Resource	Provider;	Research	Communities	

User	of	the	service	 Site	admins;	Operations	Managers;	Large	research	group	

User	Documentation		 http://argoeu.github.io;		

Technical	Documentation		 http://argoeu.github.io	

Product	team	 GRNET,	SRCE	

License	 Apache	License	Version	2.0	

Source	code	 https://github.com/ARGOeu/		

	

3.2 Service	architecture	

3.2.1 High-Level	Service	architecture	

The	high-level	service	architecture	of	the	Messaging	service	is	described	in	section	3	of	D3.106.	

	

	

																																																													
6	https://documents.egi.eu/document/3018	

	 EGI-Engage	

	

	

	 23	 	
	

3.2.1.1 AMS	Metrics	

The	AMS	Pub/Sub	API	exports	usage	metrics	that	can	be	monitored	programmatically.	The	list	of	
available	metrics	is	the	following:	

● Memory	 usage	 per	 AMS	 instance:	 percentage	 value	 that	 displays	 the	Memory	 usage	 of	
AMS	service	in	the	specific	node;	

● CPU	usage	per	AMS	instance:	percentage	value	that	displays	the	CPU	usage	of	AMS	service	
in	the	specific	node;	

● Messages	published	per	topic/project/user:		

○ Counter	 that	 displays	 the	 number	 of	 messages	 published	 to	 the	 specific	
topic	(per	project	and	per	user);		

● Messages	delivered	per	topic/subscription/project/user:	

○ Counter	 that	 displays	 the	 number	 of	 messages	 delivered	 to	 the	 specific	
subscription	(per	project,	per	user	and	per	topic);	

● Bytes	in/out	per	topic/subscription/project/user:	

○ Counter	 that	 displays	 the	 total	 size	 of	 data	 (in	 bytes)	 published	 to	 the	
specific	topic;	

○ Counter	 that	displays	 the	 total	 size	of	data	 (in	bytes)	consumed	 from	the	
specific	subscription;	

● Topics	per	project/user:	

○ Counter	 that	 displays	 the	 number	 of	 topics	 belonging	 to	 the	 specific	
project;	

○ Counter	that	displays	the	number	of	topics	belonging	to	the	specific	user;	

● Subscriptions	per	project/topic/user:	

○ Counter	that	displays	the	number	of	subscriptions	belonging	to	the	specific	
project:	

○ Counter	that	displays	the	number	of	subscriptions	that	a	user	has	access	to	
the	specific	project:	

○ Counter	that	displays	the	number	of	subscriptions	belonging	to	the	specific	
topic;	

○ Counter	that	displays	the	number	of	subscriptions	belonging	to	the	specific	
user.	

	 EGI-Engage	

	

	

	 24	 	
	

3.2.1.2 Operational	Metrics7	

The	Operational	Metrics	mainly	 include	metrics	related	to	the	CPU	or	memory	usage	of	the	AMS	
nodes.	The	list	of	operational	metrics	is	the	following:		

● Memory	usage	per	AMS	instance;	

● CPU	usage	per	AMS	instance;	

● Messages	published	per	topic/project/user;	

● Messages	delivered	per	topic/subscription/project/user;	

● Bytes	in/out	per	topic/subscription/project/user;	

● Topics	per	project/user;	

● Subscriptions	per	project/topic/user.	

3.2.1.3 Accounting	

The	list	of	accounting	metrics	is	the	following:	

● Number	of	messages	published	per	topic/project/user;	

● Number	of	messages	delivered	per	topic/subscription/project/user;	

● Number	of	topics	per	project/user;	

● Number	of	subscriptions	per	project/topic/user.	

3.2.1.4 AMS	-	Library8	

It	is	a	simple	Python	library	for	interacting	with	the	ARGO	Messaging	Service.	

The	Messaging	 Service	 is	 implemented	 as	 a	 Publish/Subscribe	 service.	 Instead	 of	 focusing	 on	 a	
single	Messaging	 API	 specification	 for	 handling	 the	 logic	 of	 publishing/subscribing	 to	 the	 broker	
network,	the	API	focuses	on	creating	nodes	of	Publishers	and	Subscribers	as	a	Service.	

In	 the	 Publish/Subscribe	 paradigm,	 Publishers	 are	 users/systems	 that	 can	 send	 messages	 to	
named-channels	called	Topics.	Subscribers	are	users/systems	that	create	Subscriptions	to	specific	
topics	and	receive	messages.	

You	may	find	more	information	in	the	ARGO	Messaging	Service	documentation9.	

3.2.2 Integration	and	dependencies	

	

The	Messaging	Service	does	not	have	any	dependencies	to	other	services	now.	

																																																													
7	http://argoeu-devel.github.io/messaging/v1/api_metrics/		
8	https://github.com/ARGOeu/argo-ams-library		
9	http://argoeu.github.io/messaging/v1/		

	 EGI-Engage	

	

	

	 25	 	
	

3.3 Release	notes	

3.3.1 Requirements	covered	in	the	release	

• APIv1	test	implementation;	
• APIv1	final	implementation;	
• APIv1	final	specification;	
• Support	APEL	to	use	Messaging	Service;	
• Support	AppDB	to	use	Messaging	Service;	
• Support	Operational	Portal	to	use	Messaging	Service;	
• Message	Service	Accounting:	Metrics	for	Messaging	Service;	
• Operational	statistics;	
• Usage	Statistics;	
• Stability	and	performance	improvements.	

3.3.2 	Changelog	

● 28/06/2017	

● AMS	 Library	 [Version	 0.3.0-1]	 https://github.com/ARGOeu/argo-ams-

library/releases/tag/v0.3.0-1		

● 08/06/2017	

● AMS	Library	[Version	0.2.0-1]	https://github.com/ARGOeu/argo-ams-

library/releases/tag/v0.2.0-1	

● 	

3.4 Feedback	on	satisfaction	
The	 ARGO	 product	 team	 uses	 a	 development	 process	 based	 around	 GitHub,	 which	 includes	
procedures	 that	 guarantee	 a	 high	 quality	 of	 software	 releases.	 For	 details	 of	 the	 ARGO	
development	process,	see	Appendix	I.	

3.5 Plan	for	Exploitation	and	Dissemination	
	

Name	of	the	
result	

ARGO	Messaging	Service	

DEFINITION		

Category	of	
result	

Software		&	service	innovation	

Description	of	 In	 the	 new	 version	 of	 the	 Messaging	 Service,	 the	 STOMP	 interface	 has	 been	

	 EGI-Engage	

	

	

	 26	 	
	

the	result	 replaced	 with	 an	 HTTP	 interface,	 which	 makes	 the	 implementation	 of	 new	
clients	easier	and	the	 implementation	more	robust.	This	new	ARGO	Messaging	
Service	 is	a	 real-time	messaging	 service	 that	allows	 services	 to	asynchronously	
send	and	receive	messages	using	the	Publish/Subscribe	model.	

EXPLOITATION	

Target	group(s)	 RIs,	 Service	 providers,	 Users,	 NGIs,	 Resource	 centres,	 EGI	 Accounting	 service	
and	the	Operations	Portal	

Needs	 e-Infrastructures	 and	 research	 communities	 are	 building	 distributed	 services	
and	workflows	 in	order	to	satisfy	 their	operational	and	research	requirements.	
Synchronization	 between	 services,	 gathering	 of	 telemetry,	 monitoring	 and	
accounting	 data,	 and	 any	 secure	messages	 exchange	 are	 core	 requirements	 in	
any	type	of	distributed	services.	The	Messaging	Service	provides	an	easy	to	use	
and	 reliable	 transport	 layer	 for	 the	 secure	 exchange	 of	 messages	 between	
services	such	as	accounting	data,	monitoring	data,	event	notifications,	etc.			

How	the	target	
groups	will	use	
the	result?	

Infrastructure	 architects	 that	 need	 to	 design	 distributed	 architectures	 that	
require	 a	 robust	 and	 easy	 to	 use	 messaging	 backbone,	 which	 can	 scale	 to	
billions	of	messages.	

Benefits	 The	ARGO	Messaging	service	offers	the	following	features:			

• Simple	HTTP	API	for	client	access;	
• An	easy	to	use	python	library;	
• Operations	&	usage	metrics	;	
• Transparent	scalability	&	high	availability;	
• Access	controls	implemented	at	the	API	layer;	
• Multi-tenant	support;	
• Performance	robustness.	

How	will	you	
protect	the	
results?	

The	ARGO	Messaging	service	is	released	under	the	Apache	2.0	license.	

Actions	for	
exploitation	

• Promote	 the	service	 to	other	 research	communities	and	 infrastructures	 that	
can	benefit	of	its	features.	

• Provide	the	necessary	documentation	(all,	for	a	publisher,	or	for	a	subscriber)	
• Create	 test	 accounts	 per	 target	 group	 to	 publish	 messages	 to	 topics,	 or	 to	

consume	messages	as	subscribers	from	a	topic.	

	

URL	to	project	
result	

http://argo.egi.eu/		

https://github.com/ARGOeu/		

Success	criteria	 • The	ARGO	Messaging	Service	should	be	operated	as	a	production	EGI	service.	
• All	the	EGI	tools	services	should	have	migrated	from	the	old	Messaging	Broker	

service	to	the	new	ARGO	Messaging	service.	

	 EGI-Engage	

	

	

	 27	 	
	

DISSEMINATION	

Key	messages	 Interconnect	your	distributed	services	in	a	ease	and	efficient	manner.	

Channels	 • Dissemination	through	the	EGI	conferences	
• Article	featured	in	the	EGI	newsletter	

Actions	for	
dissemination	

EGI	conferences,	publications,	participation	to	workshops	organised	by	potential	
users	

Cost	 	

Evaluation	 The	 number	 of	 requests	 for	 information,	 and/or	 accounts	 (either	 test	 or	
production)	is	the	main	way	to	evaluate	the	impact	of	the	dissemination	actions.	

	

3.6 Future	plans	
Future	plans	cover	following	aspects:		

• Move	to	production	
• Stability	and	performance	improvements	

	 EGI-Engage	

	

	

	 28	 	
	

4 GOCDB	
4.1 Introduction	
Tool	name	 GOCDB	

Tool	url	 https://goc.egi.eu		

Tool	wiki	page	 https://wiki.egi.eu/wiki/GOCDB	

Description	 GOCDB	is	a	central	registry	to	record	information	about	the	topology	
of	an	e-Infrastructure.	This	includes	entities	such	as	resource	centers	
(sites),	 services,	 service-endpoints	 and	 their	 downtimes,	 contact	
information	and	roles	of	users	responsible	for	operations	at	different	
levels.	 The	 service	 enforces	 a	 number	 of	 business	 rules	 and	defines	
different	 grouping	 mechanisms	 including	 object-tagging	 for	 the	
purposes	of	fine-grained	resource	filtering.	

Value	proposition	 The	 Extensions	 to	 the	 write	 API	 will	 greatly	 increase	 the	 ability	 for	
external	 tools	 to	 interact	 in	 a	 programmatic	way	with	 GOCDB.	 This	
will	make	GOCDB	more	viable	for	the	future	and	reduce	the	need	for	
other	information	systems.		

Customer	of	the	tool	 EGI	Operations	and	WLCG		

User	of	the	service	 Site/service	admins,	NGI	managers	and	Security	teams.	

User	Documentation		 https://wiki.egi.eu/wiki/GOCDB	

Technical	Documentation		 https://wiki.egi.eu/wiki/GOCDB	

Product	team	 STFC	

License	 Apache	2		

Source	code	 https://github.com/GOCDB/gocdb	

	

4.2 Service	architecture	

4.2.1 High-Level	Service	architecture	

Details	about	the	high-level	service	architecture	of	the	GOCDB	are	available	in	D3.1010.	

																																																													
10	https://documents.egi.eu/document/3018	

	 EGI-Engage	

	

	

	 29	 	
	

The	previous	release,	introduced	a	new	dependency	on	the	EGI	CheckIn	service	in	order	to	provide	
federated	 access	 to	 GOCDB	 for	 users	 without	 client	 certificates.	 However,	 for	 users	 with	
certificates	 there	 continues	 to	 be	 no	 dependencies	 on	 other	 operational	 tools.	 Other	 than	 the	
extensions	 to	 the	 capability	 to	 the	 write	 API,	 this	 release	 brings	 no	 major	 alterations	 to	 the	
architecture.	

4.2.2 Integration	and	dependencies	

GOCDB	newly	depends	on	the	EGI	CheckIn	service	to	provide	federated	authentication	and	access	
without	client	certificates.	When	accessed	using	a	client	certificate,	GOCDB	continues	 to	depend	
on	no	other	tool.	

4.3 Release	notes	

4.3.1 Requirements	covered	in	the	release	

By	August	the	Write	API	will	have	been	extended	to	meet	requirements	of	WLCG11.	This	will	allow	
programmatic:	

• Creation,	update,	and	deletion	of	service	endpoints	
• Update	of	details	of	services	

There	will	be	no	changes	to	the	way	authentication	and	authorisation	for	the	write	API	since	the	
previous	release.	Building	upon	the	previous	release,	these	updates	allow	changes	to	key	entities	
within	GOCDB	programmatically.	This	represents	a	significant	change	in	the	way	in	which	GOCDB	
works,	allowing	for	much	greater	automated	interaction	with	the	information	managed	by	GOCDB.	
This	will	help	secure	GOCDBs	future	in	an	evolving	information	space.			

	A	number	of	smaller	bugs12	will	also	have	been	addressed.	

4.4 Feedback	on	satisfaction	
Before	 every	 production	 release,	 GOCDB	 development	 is	 frozen	 and	 a	 period	 of	 testing	 is	
announced	that	lasts	for	approximately	two	weeks	to	one	month	using	the	GOCDB	test	instance13.	
This	testing	phase	is	widely	disseminated	using	the	relevant	mail	lists,	and	all	operational	tools	and	
users	 are	 invited	 to	 perform	 tests	 against	 this	 instance.	 Recent	 GOCDB	 releases	 successfully	
passed	this	stage.	

The	GOCDB	development	process	is	described	in	Appendix	II.	

																																																													
11	https://rt.egi.eu/rt/Ticket/Display.html?id=11020		
12	from	the	GitHub	bug	list:	https://github.com/GOCDB/gocdb/issues		
13	https://gocdb-test.esc.rl.ac.uk		

	 EGI-Engage	

	

	

	 30	 	
	

4.5 Plan	for	Exploitation	and	Dissemination	
Name	of	the	
result	

GOCDB	

DEFINITION		

Category	of	
result	

Software		&	service	innovation	

Description	of	
the	result	

• Extension	of	the	write	API.	

EXPLOITATION	

Target	group(s)	 WLCG	 tool	 developers,	 ARGO	 service,	 Resource/service	 provider	 admins	 and	
NGI	managers		

Needs	 The	extension	to	the	Write	API	will	enable	communities	 (e.g.	WLCG)	to	further	
automate	 their	 interactions	 with	 the	 GOCDDB	 and	 move	 away	 from	 other	
information	sources.		

How	the	target	
groups	will	use	
the	result?	

The	 results	 are	 integrated	 into	 the	 production	 instance	 of	 GOCDB,	 on	 which	
much	of	the	target	group’s	infrastructure	relies.		

Benefits	 The	 result	 will	 improve	 the	 efficiency	 of	 target	 group’s	 use	 of	 the	 GOCDB	
service,	as	well	as	ensure	its	continuing	fitness	to	serve	them.	

How	will	you	
protect	the	
results?	

Apache	2	licence	

Actions	for	
exploitation	

The	code	needs	to	be	 integrated	 into	the	production	 instance	of	the	GOCDB	in	
order	 to	 provide	 the	 described	 functionality.	 The	 full	 source	 code	 will	 be	
available	 for	 use	 (under	 the	 Apache	 2	 licence)	 at	
https://github.com/GOCDB/gocdb	

URL	to	project	
result	

https://github.com/GOCDB/gocdb/releases/tag/5.814		

https://goc.egi.eu/		

Success	criteria	 Regular	use	of	the	write	API	extension	by	at	least	one	tool.	

DISSEMINATION	

Key	messages	 The	Write	API	has	now	been	extended	to	have	greater	functionality.	

Channels	 WP3	meetings,	 EGI	OMB	meetings,	WLCG	 Information	 Systems	 Evolution	 Task	
Force	

Actions	for	 Announcement	 emails	 to	 multiple	 EGI	 mailing	 lists	 and	 WLCG	 information	

																																																													
14	Link	will	not	be	live	until	release	in	August		

	 EGI-Engage	

	

	

	 31	 	
	

dissemination	 system	evolution	mailing	list.	

Description	of	new	features	to	EGI	Conference	(May	2017:	
https://indico.egi.eu/indico/event/3249/session/32/contribution/31.	

Cost	 	

Evaluation	 Uptake	of	use	of	new	features.	

	

4.6 Future	plans	
Future	plans	cover	following	aspects:		

• Data	freshness	check15;	
• Replacement	of	the	GOCDB	UI	with	a	modern	Web	framework;	
• Extending	GOCDB	in	the	info-service	space	supporting	dynamic	attributes;	
• Improve	change	logging.	

	

																																																													
15	https://rt.egi.eu/rt/Ticket/Display.html?id=8240		

	 EGI-Engage	

	

	

	 32	 	
	

5 Security	Monitoring	

5.1 Introduction	
Tool	name	 Secant	

Tool	url	 https://github.com/CESNET/secant		

Tool	wiki	page	 https://wiki.egi.eu/wiki/Tools		

Description	 Secant	is	a	framework	to	detect	security	vulnerabilities	in	images	of	
virtual	machines.	It	tries	to	detect	the	most	common	security	issues	
that	often	lead	to	incidents	and	prevent	them	from	appearing	in	the	
context	of	EGI	cloud	facilities.	

Value	proposition	

	

Security	incidents	may	cause	significant	problems	for	users,	service	
providers	and	infrastructure	operators.	Secant	was	designed	to	
detect	common	weakness	in	virtual	appliances	so	that	these	can	be	
fixed	before	they	threaten	a	production	infrastructure.	

Customer	of	the	tool	 Cloud	providers,	VA	owners,	EGI	operations,	the	EGI	CSIRT	

User	of	the	service	 Administrators,	operators,	security	staff	

User	Documentation		 https://github.com/CESNET/secant		

Technical	Documentation		 https://github.com/CESNET/secant		

Product	team	 CESNET	

License	 Apache	License	Version	2.0	

Source	code	 https://github.com/CESNET/secant		

	

5.2 Service	architecture	

5.2.1 High-Level	Service	architecture	

The	high-level	service	architecture	of	Secant	is	described	in	section	5	of	D3.1016.	

	

5.2.2 Integration	and	dependencies	

Secant	 needs	 to	 integrate	 support	 of	 a	 cloud	 management	 framework,	 which	 enables	 to	 both	
manage	 virtual	machines	 and	maintain	 the	 list	 of	 images	 to	 assess.	 The	 current	 implementation	

																																																													
16	https://documents.egi.eu/document/3018	

	 EGI-Engage	

	

	

	 33	 	
	

supports	OpenNebula	for	the	management	of	virtual	machine	and	uses	the	EGI	CloudKeeper17	to	
maintain	the	list	of	images	and	templates	in	the	cloud	repository.		

In	order	to	facilitate	integration	with	existing	infrastructure	services,	support	for	a	messaging	has	
been	 introduced	 recently.	 Secant	 uses	 the	 ARGO	 messaging	 to	 consume	 information	 about	
available	images	and	to	deliver	assessment	reports	once	assessment	has	been	finished.	

5.3 Release	notes	

5.3.1 Requirements	covered	in	the	release	

Following	the	principles	of	continuous	delivery,	Secant	does	not	have	fixed	releases.	The	outcomes	
of	 recent	 development	 are	 always	 available	 from	 the	 pilot	 installation	 deployed	at	 CESNET.	 The	
features	 introduced	 recently	 involve	 integration	 of	 the	 EGI	Messaging,	 support	 of	 CloudKeeper,	
and	 integration	 work	 aiming	 at	 utilization	 of	 Secant	 for	 the	 Application	 Database	 and	 EGI	
endorsement	of	virtual	appliances.	

5.4 Feedback	on	satisfaction	
Secant	 runs	 in	 a	 piloting	 environment	 established	 at	 CESNET	 and	 its	 MetaCloud	 site.	 The	
development	 follows	 expectations	 of	 the	 EGI	 CSIRT	 team	 and	 the	 service	was	 presented	 to	 the	
team	 several	 times.	 Since	 the	 integration	 works	 are	 on-going,	 assessment	 tests	 can	 only	 be	
executed	manually.	So	 far,	 several	dozens	of	virtual	appliances	underwent	 testing	by	Secant	and	
findings	were	incorporated	by	the	developers.	

5.5 Plan	for	Exploitation	and	Dissemination	
Name	of	the	
result	

Secant	

DEFINITION		

Category	of	
result	

Software		&	service	innovation	

Description	of	
the	result	

Secant	 is	 a	 framework	 to	 detect	 security	 vulnerabilities	 in	 images	 of	 virtual	
machines.	It	tries	to	detect	the	most	common	security	issues	that	often	lead	to	
incidents	 and	 prevent	 them	 from	 appearing	 in	 the	 context	 of	 EGI	 cloud	
facilities.	

EXPLOITATION	

Target	group(s)	 Users,	RIs,	Resource	centres,	NGIs,	security	teams,	VA	endorsers.	

Needs	 Prevent	 from	 security	 incidents	 that	misuse	 common	 vulnerabilities	 exposed	

																																																													
17	https://appdb.egi.eu/store/software/cloudkeeper		

	 EGI-Engage	

	

	

	 34	 	
	

by	servers	connected	to	the	Internet.	

How	the	target	
groups	will	use	
the	result?	

The	 tools	will	 facilitate	 the	endorsement	process	and	will	help	 the	endorsers	
detect	common	weaknesses.	The	tools	will	also	be	available	to	users	preparing	
their	images	or	installations	on	the	top	of	running	virtual	machines.	

Benefits	 Achieving	a	common	security	bottom	line	of	virtual	machines	in	clouds,	based	
on	shared	knowledge	and	tooling.	

How	will	you	
protect	the	
results?	

The	tool	is	released	under	a	standard	open-source	license.	

Actions	for	
exploitation	

Secant	will	be	freely	available	and	its	utilization	documented.	

URL	to	project	
result	

https://github.com/CESNET/secant		

Success	criteria	 Availability	of	the	tool	for	performing	assessments.	

DISSEMINATION	

Key	messages	 Secant	help	identify	common	security	vulnerabilities	in	virtual	appliances.	

Channels	 EGI	Conferences,	meetings	with	cloud	experts.	

Actions	for	
dissemination	

Integration	with	AppDB	will	facilitate	the	introduction	of	the	assessment	in	the	
endorsement	process.	

Cost	 	

Evaluation	 Utilization	of	Secant	in	endorsement	process.	

	

5.6 Future	plans	
After	 Secant	 has	 been	 fully	 integrated	 with	 AppDB,	 it	 will	 be	 necessary	 to	 overview	 the	
endorsement	 process	 to	 support	 the	 assessment.	 We	 will	 need	 to	 take	 into	 account	 emerging	
technologies	(like	containers)	to	examine	their	impact	on	the	assessment	process.	

	 EGI-Engage	

	

	

	 35	 	
	

6 Accounting	Repository	
6.1 Introduction	
The	EGI	Accounting	Repository	 is	an	accounting	tool	 that	collects	 resource	usage	data	 from	sites	
participating	 in	 the	 EGI	 and	 WLCG	 infrastructures	 as	 well	 as	 from	 sites	 belonging	 to	 other	 e-
infrastructures	 and	 organisations	 that	 are	 collaborating	with	 EGI,	 including	OSG	 and	NorduGrid.	
The	Repository	uses	software	from	the	APEL	project	run	by	the	STFC.	

The	 accounting	 information	 is	 gathered	 from	 different	 sensors	 into	 a	 central	 Accounting	
Repository	where	it	 is	processed	to	generate	statistical	summaries	that	are	available	through	the	
EGI	 Accounting	 Portal.	 Statistics	 are	 available	 for	 view	 at	 different	 levels	 of	 detail	 by	 users,	 VO	
managers,	 resource	 provider	 administrators,	 and	 anonymous	 users	 according	 to	 well-defined	
access	rights.	Table	1	provides	a	summary	of	the	tool	covered	in	this	release.	

Table	1.	APEL	tool	summary.	

Tool	name	 APEL	

Tool	URL	 http://apel.github.io/	

Tool	wiki	page	 https://wiki.egi.eu/wiki/Accounting_Repository	

Description	 EGI	 Core	 Service	 –	 The	 Accounting	 Repository	 collects	 and	 stores	
user	accounting	records	from	various	services	offered	by	EGI.	

Value	proposition	 Improved	 information	 about	 the	 usage	 of	 the	 cloud	 resources	
within	the	EGI	infrastructure.	Added	storage	systems	as	a	source	of	
accounting	data	

Customer	of	the	tool	 e-Infrastructures,	 research	 infrastructures	 and,	 in	 general,	
distributed	infrastructures.	

User	of	the	service	 Resource	providers,	NGI	admins,	EGI	operations,	end	users.	

User	Documentation		 https://wiki.egi.eu/wiki/APEL	

Technical	
Documentation		

https://wiki.egi.eu/wiki/APEL	

Product	team	 STFC	

License	 Apache	License,	Version	2.0	

Source	code	 https://github.com/apel/apel	

https://github.com/apel/ssm	

	 EGI-Engage	

	

	

	 36	 	
	

	

This	section	provides	a	short	introduction	to	the	components	provided	by	the	APEL	project	as	part	
of	the	EGI	Accounting	Repository.	Then,	the	high-level	architecture	of	the	tool	and	its	components	
are	described,	along	with	the	integrations	and	dependencies	it	has.	Release	notes	and	the	results	
of	 testing	 for	 this	 release	 are	 then	 provided.	 Finally,	 plans	 for	 exploitation,	 dissemination,	 and	
future	work	are	shown.	

6.2 Service	architecture	

6.2.1 High-Level	Service	architecture	

Figure	2	shows	how	the	 latest	APEL	client,	EGI	developed	collectors,	central	APEL	server	and	the	
EGI	Accounting	Portal	 interact.	For	a	detailed	description	of	the	 interactions,	see	section	6.2.1	of	
deliverable	D3.1018.	

	
Figure	2.	APEL	components	and	their	interactions.	Components	in	red	are	provided	by	the	APEL	project.	

This	 release	 has	 added	 storage	 systems	 as	 a	 source	 of	 accounting	 data.	 Much	 like	 cloud	
accounting,	 the	 storage	 accounting	 collectors	 have	 been	 developed	 by	 EGI	 partners	 who	 are	
experts	in	the	underlying	storage	system.	

6.2.2 Integration	and	dependencies	

See	deliverable	D3.1019	for	the	details	of	dependencies.	There	are	no	changes	to	the	dependencies	
in	this	release.	

																																																													
18	https://documents.egi.eu/document/3018	
19	https://documents.egi.eu/document/3018	

	 EGI-Engage	

	

	

	 37	 	
	

6.3 Release	notes	

6.3.1 Requirements	covered	in	the	release	

These	 are	 the	 changes	 included	 in	 this	 release	 of	 the	 APEL	 software,	 version	 1.7.0,	 since	 the	
previous	Accounting	Repository	Release	in	EGI-Engage:	

• Added	support	for	long	running	virtual	machines	in	cloud	accounting.	
• Advanced	storage	accounting	to	production	level.	
• Added	support	for	version	10	of	the	LSF	batch	system.	
• Documentation	of	a	method	to	extract	APEL	format	records	from	non-APEL	SQL	databases.	
• Developed	a	draft	GPGPU	usage	schema	for	cloud	accounting	to	enable	accelerator	usage	to	

be	accounted	for.	
• Added	 support	 for	 more	 operating	 systems	 so	 that	 the	 software	 can	 be	 used	 in	 a	 wider	

variety	of	infrastructures.	
• Added	more	unit	tests	to	improve	the	quality	of	the	code	and	streamline	quality	assurance	

activities.	
• Developed	many	minor	bug	fixes	and	tweaks	to	improve	the	overall	quality	of	the	software.	

6.4 Feedback	on	satisfaction	
The	 APEL	 project	 uses	 a	 development	 process	 based	 around	 GitHub,	 which	 includes	 a	 semi-
automatic	 testing	 procedure	 used	 to	 assess	 the	 quality	 of	 software	 releases.	 For	 details	 of	 the	
testing	 procedure	 used,	 see	Appendix	 III.	 This	 process	 is	 also	 detailed	 in	 the	APEL	Development	
Process	document20.	Table	2	summarises	the	results	of	testing	this	release.	

Once	these	automatic	and	manual	checks	were	passed,	the	server-side	software	was	rolled	out	to	
a	 pre-production	 system	 for	 testing	 and	 feedback	 from	 users,	 and	 the	 client-side	 software	 was	
submitted	though	the	EGI	release	process	so	that	feedback	could	be	collected	on	that	part	of	the	
software.	 Neither	 feedback	 process	 raised	 any	 issues	 with	 the	 software	 so	 it	 was	 put	 into	
production.	

	

Table	2.	APEL	software	testing	results.	

	 Result	 Link	

Unit	tests	 Build	passed	 https://travis-ci.org/apel/apel/builds/242356858	

Coverage	 No	reduction	in	coverage	 https://coveralls.io/builds/12374751	
	

																																																													
20	https://documents.egi.eu/document/2739	

	 EGI-Engage	

	

	

	 38	 	
	

6.5 Plan	for	Exploitation	and	Dissemination	
Name	 of	 the	
result	

Accounting	Repository	

DEFINITION		

Category	 of	
result	

Software	and	service	innovation	

Description	 of	
the	result	

Update	to	the	software	that	provides	the	EGI	Accounting	Repository	including	a	
number	 of	 small	 fixes	 and	 improvements	 as	 well	 as	 support	 for	 a	 new	 cloud	
accounting	usage	record	schema	and	storage	accounting.	

EXPLOITATION	

Target	group(s)	 RIs,	 international	 research	 collaborations,	 service	 providers,	 Funding	 agencies	
and	decision/policy	makers	

Needs	 Usage	accounting	data	that	can	aid	in	ensuring	resources	are	used	as	expected.	

How	the	 target	
groups	will	 use	
the	result?	

Service	 providers	 update	 client	 installations.	 Extra	 metrics	 collected	 in	 the	
repository	will	be	presented	in	the	Portal	for	various	uses.	

Benefits	 Support	 for	 different	 version	 of	 batch	 system	 and	 packages	 now	 available	 for	
EL7	based	systems.	

How	 will	 you	
protect	 the	
results?	

Open	source	license	(Apache	License,	Version	2.0)	

Actions	 for	
exploitation	

Roll	 out	 update	 to	 production	 server	 infrastructure	 and	 package	 the	 software	
for	use	at	the	client	end.	Work	with	Accounting	Portal	to	update	views.	

URL	 to	 project	
result	

https://github.com/apel/apel/releases/latest	

Success	criteria	 Smooth	roll	out	and	any	issues	resolved	quickly	

DISSEMINATION	

Key	messages	 New	version	of	the	accounting	software	available	that	support	extra	metrics	for	
cloud	and	storage	accounting	

Channels	 EGI	OMB,	WP3	meetings	

Actions	 for	
dissemination	

Announce	at	an	OMB	and	WP3	meeting	

	 EGI-Engage	

	

	

	 39	 	
	

Cost	 Low	

Evaluation	 Installation	of	new	release	and	feedback	on	new	features	

	

6.6 Future	plans	
Although	 this	 is	 the	 final	 release	 of	 the	 EGI	 Accounting	 Repository	 under	 EGI-Engage,	 the	
repository	 will	 likely	 be	 developed	 further	 under	 follow-on	 projects.	 Areas	 that	 are	 a	 natural	
extension	of	work	done	under	EGI-Engage	include:	applying	the	research	done	on	big	data	tools	to	
a	 new	 prototype	 accounting	 repository,	 extending	 support	 for	 GPGPU	 accounting	 if	 it	 becomes	
available	in	grid	batch	systems,	and	producing	a	production	level	dataset	accounting	service.	

	 EGI-Engage	

	

	

	 40	 	
	

7 Accounting	Portal	
7.1 Introduction	
Tool	name	 Accounting	Portal	

Tool	url	 https://accounting.egi.eu		

Tool	wiki	page	 https://wiki.egi.eu/wiki/Accounting_Portal		

Description	 The	Accounting	Portal	provides	data	accounting	views	for	users,	VO	
Managers,	NGI	operations	and	the	general	public.	

Value	proposition	 Improved	 look	&	 feel.	 New	 views	 that	 allow	 to	 aggregate	 data	 in	
different	ways.	Improved	support	for	scientific	disciplines.	

Customer	of	the	tool	 Infrastructure	 users,	 VO	Managers,	 Operations	 Centres,	 Sites	 and	
the	general	public.	

User	of	the	service	 Infrastructure	 users,	 VO	Managers,	 Operations	 Centres,	 Sites	 and	
the	general	public.	

User	Documentation		 https://documents.egi.eu/public/ShowDocument?docid=2789		

Technical	Documentation		 https://documents.egi.eu/public/ShowDocument?docid=2545		

Product	team	 CESGA,	CSIC	

License	 Apache		

Source	code	 https://github.com/cesga-egi/accounting		

	

7.2 Service	architecture	

7.2.1 High-Level	Service	architecture	

The	Accounting	Portal	is	a	web	application	based	on	Apache	and	MySQL,	which	has	as	its	primary	
function	 to	 provide	 users	 with	 customized	 accounting	 reports,	 containing	 tables	 and	 graphs,	 as	
web	pages.	It	also	offers	RESTful	web	services	to	allow	external	entities	to	gather	accounting	data.	

The	basic	architecture	of	the	Portal	consists	on:	

1. A	backend,	which	aggregates	both	data	and	metadata	in	a	MySQL	database,	using	the	
APEL	SSM	messaging	system21	to	 interact	with	the	Accounting	Repository	and	several	
scripts,	which	periodically	gather	the	data	and	metadata	described	below;	

																																																													
21	https://wiki.egi.eu/wiki/APEL/SSM				

	 EGI-Engage	

	

	

	 41	 	
	

2. A	 Model	 represented	 by	 the	 database	 schemas,	 both	 external	 and	 internal,	 which	
defines	 database	 tables	 for	 several	 types	 of	 accounting	 (HTC,	 Cloud,	 Storage,	 	 user	
statistics	 etc.)	 and	 metadata	 (topology,	 geographical	 data,	 Resource	 Centre	 status,	
nodes,	 VO	 users	 and	 admins,	 Resource	 Centre	 admins	 etc.),	 and	 a	 series	 of	
parametrised	queries;	

3. A	set	of	views	that	exposes	the	data	to	the	user.	These	views	contain	a	form	to	set	the	
parameters	 and	 metric	 of	 the	 report,	 a	 number	 of	 tables	 showing	 the	 data	
parametrised	by	two	selectable	dimensions	and	filtered	by	several	parameters,	a	 line	
graph	showing	the	table	data,	and	pie	charts	showing	the	percentage	distribution	on	
each	dimension.	

	 Figure	3.	Accounting	Portal	architecture.	

	 EGI-Engage	

	

	

	 42	 	
	

A	 graphical	 representation	 of	 these	 components	 is	 depicted	 on	 Error!	 Reference	 source	 not	
found.	

7.2.1.1 Backend	

The	Accounting	Portal	backend	is	a	varied	collection	of	messaging	systems	and	scripts	that	gather	
accounting	data	and	metadata	from	several	external	sources	like	GOCDB,	the	Operations	Portal	or	
WLCG	REBUS	for	the	portal	consumption.	

The	accounting	data	are	sent	by	each	Resource	Centre	to	the	central	APEL	Accounting	Repository,	
processed	and	made	into	summaries	using	internal	processes	by	APEL.	Data	is	organised	to	enable	
the	ease	implementation	of	optimised	queries.	Metadata	is	a	category	of	data,	which	complement	
that	raw	data	and	allows	the	portal	to	organize,	categorize	and	impart	new	meaning	to	it.	

7.2.1.2 Model	

The	model	in	the	portal	is	designed	to	interchange	data	with	the	Accounting	Repository	and	other	
operational	tools.	The	queries	are	parametrized	to	avoid	SQL	injections	(SQL	attack	vectors	based	
on	malicious	code	on	SQL	input	parameters).	

Since	 there	 is	a	 large	number	of	possible	queries,	and	 the	accounting	data	have	many	reads	but	
are	only	written	on	updates	from	the	repository,	the	portal	can	be	very	aggressive	with	database	
indexes,	and	there	are	periodic	optimizations	of	these	queries.	

The	queries	have	a	common	structure	derived	from	the	views:	

• Metric:	 It	 is	 the	number	we	want	 to	 use	 for	 the	 accounting,	 it	 varies	 from	view	 to	 view	
(e.g.	Number	of	VMs	on	cloud),	but	we	usually	have:	

o Number	of	jobs:	The	number	of	jobs	run,	regardless	the	CPU	or	the	time	used.	

o CPU	time:	The	time	used	by	CPU	core	in	hours	while	executing	jobs.	

o Normalised	 CPU	 Time:	 The	 time	 used	 by	 CPU	 core	multiplied	 by	 a	 corrective	 factor	

depending	 on	 a	 benchmark	 run	 on	 the	 machines.	 This	 benchmark	 is	 usually	
HEPSPEC06.	

o Elapsed	 Time:	 The	 wall	 time,	 or	 real	 time	 spent	 in	 executing	 jobs,	 this	 should	 be	
greater	than	the	CPU	time	since	it	also	includes	I/O	and	SO	time.	

o Normalised	Elapsed	Time:	Wall	time	normalised	in	the	same	way	that	the	CPU	time.	

o Efficiency:	Wall	time	divided	by	CPU	time.	This	indicated	the	percentage	of	time	used	
doing	 calculation	 instead	 of	 doing	 I/O	 or	 servicing	 other	 tasks.	 This	 is	 important	 for	
pledges	and	VO	admins.	

	

	 EGI-Engage	

	

	

	 43	 	
	

o Monetary	Cost:	An	estimation	of	the	equivalent	monetary	cost	of	the	accounted	work,	
this	is	only	an	indicative	value.	

• Time	period:	All	queries	are	limited	to	a	time	period	expressed	in	months,	and	which	can	
go	from	January	2004	to	the	present.	

• Dimensions:	All	data	shown	 in	 the	portal	 is	parametrized	by	 two	dimensions	 (the	“rows”	
and	“columns”	of	the	tables),	these	include,	but	are	not	limited	to:	

o Date:	The	month	of	the	accounting	data.	

o Region:	The	Operation	Centre	or	federation	in	which	it	was	accounted.	

o Country:	The	country	that	the	data	was	accounted	for.	

o VO:	The	VO	that	the	jobs	were	run	as.	

o Resource	Centre:	The	Resource	Centre	the	data	was	accounted	for.	

o Number	of	processors:	The	number	of	cores	used	by	the	job.	

• VO	Group:	The	VOs	that	appear	in	the	accounting:	

o LHC:	The	VOs	directly	associated	with	the	Large	Hadron	Collider	in	Geneva,	comprises	
“alice”,	“atlas”,	“cms”	and	“lhcb”.	

o TOP10:	The	top	10	VOs	in	the	selected	range	in	raw	CPU	consumption.	

o ALL:	All	available	VOs.	

o Custom:	It	shows	all	VOs	available	in	the	range	so	the	user	can	select	which	to	display.	

• dteam	VO:	 It	excludes	 the	“dteam”	and	“ops”	VOs	 that	are	only	used	 for	admin	and	 test	
purposes.	

• Local	Jobs:	Some	Resource	Centres	can	account	jobs	that	have	been	processed	locally	on	
Resource	 Centre	 bypassing	 the	 infrastructure	 middleware.	 The	 available	 options	 are	
“Infrastructure	Jobs	only”,	“Infrastructure	and	local	jobs”	and	“Local	Jobs	only”.	

There	are	customized	reports	and	views,	which	use	other	inputs,	but	in	general	those	are	the	usual	
inputs	of	the	common	queries.	

7.2.1.3 SSM	and	Messaging	

The	 Accounting	 Portal	 has	 to	 refresh	 its	 database	 periodically	 with	 data	 from	 the	 Accounting	
Repository	 to	 assure	 their	 freshness.	 The	 system	 uses	 the	 EGI	 Messaging	 System,	 a	 queue	
messaging	 system	 based	 on	 ActiveMQ,	 which	 is	 also	 used	 for	 the	 communications	 between	
Resource	 Centres	 and	 the	 Accounting	 Repository.	 Since	 the	 repository	 uses	 it	 internally	 for	 all	

	 EGI-Engage	

	

	

	 44	 	
	

communications,	 it	 is	 also	needed	 to	 gather	 the	 accounting	 data	 from	 them.	 The	 SSM	 system	 is	
composed	by:	

• A	 SSM	 loader	 for	 each	 accounting	 source	 (multicore,	 cloud,	 storage,	 etc…).	 This	 daemon	
waits	 for	messages	arriving	on	a	queue	and	authenticates	 it	with	a	DN	and	 certificate.	 If	
the	message	is	deemed	valid,	it	is	saved	to	a	spool	directory	for	further	processing.	

• A	DB	loader,	this	daemon	monitors	the	spool	directory	and	if	there	are	messages	these	are	
introduced	 in	 the	DB	 in	 order.	 This	 introduction	 at	 present	 does	 not	 delete	 the	previous	
data	in	the	tables,	it	only	overwrites	it,	then	manual	intervention	is	needed	for	stale	data.	

7.2.2 Integration	and	dependencies	

There	are	dependencies	on	other	tools	and	components	that	provide	metadata	used	in	the	portal.	
This	metadata	includes:	

• Geographical	 Metadata:	 Resource	 providers’	 country	 and	 Operation	 Centre	 affiliation.	
Generally,	 this	 follows	 current	 borders,	 but	 there	 are	 important	 exceptions.	 This	 is	
gathered	from	GOCDB	using	its	XML-based	API.	

• Topological	Metadata:	 Resource	providers	are	presented	 in	 trees,	 there	 are	Country	 and	
Operation	Centre	 trees	 that	correspond	to	geographical	classifications,	but	 there	are	also	
trees	 based	 on	 topological	 classifications	 like	 Tier1	 and	 Tier2	 Resource	 Centres,	 OSG	
Resource	Centres	and	uncategorised	Resource	Centres.	Inside	Tier2	Resource	Centres,	the	
federation	 they	 belong	 to	 is	 also	 important	 and	 can	 trigger	 special	 code	 in	 some	 cases.	
Gathered	from	several	sources,	including	OSG	and	WLCG	databases.	

• Role	 Metadata:	 VO	 members	 and	 managers,	 and	 Resource	 Centre	 admin	 records.	 This	
metadata	controls	the	access	to	restricted	views.	Information	is	gathered	from	GOCDB	and	
individual	VOMS	servers	constructing	a	 list	of	 individual	VOMSes	and	querying	them	with	
the	VOMS	API.	

• Country	affiliation	data:	Each	user	 record	contains	a	user	 identifier	 that	has	his/her	user	
name,	 institution	and	sometimes	country.	Scripts	 in	 the	backend	map	each	user	with	 the	
country	of	the	institution	which	issues	their	certificate.	These	data	are	used	in	anonymised	
statistics	 per	 country	 on:	 how	 many	 resources	 from	 other	 countries	 are	 used	 by	 given	
country	and	the	distribution	of	its	resources	used	by	other	countries.	

• VO	Data:		To	make	possible	VO	selection	in	the	user	interface,	the	portal	stores	lists	of	VOs.	
They	 are	 also	 used	 to	 filter	 incorrect	 VO	 names,	 provide	 access	 to	 VO	 managers,	 and	
arrange	accounting	by	VO	discipline	(such	as	“High	Energy	Physics”,	“Biomedicine”,	“Earth	
Sciences”,	 etc.).	 Information	 is	 gathered	 from	 the	Operations	 Portal	 using	 its	 XML	 based	
APIs.	

	 EGI-Engage	

	

	

	 45	 	
	

• Resource	Centre	status	metadata:	Resource	Centres	must	be	filtered	to	exclude	those	that	
are	not	in	production	(because	not	certified	yet,	suspended,	closed	or	being	in	test	mode).	
There	 must	 be	 also	 metadata	 to	 aggregate	 the	 accounting	 history	 of	 Resource	 Centres	
whose	name	has	been	changed.	Information	is	gathered	from	GOCDB	using	its	XML	tables	
and	internal	tables	compiled	as	part	of	EGI	PROC	1522.	

• Pledge	metadata:	The	WLCG	reports	have	 to	contain	only	 those	Resource	Centres	where	
MoUs	or	other	pledges	between	VOs	and	Resource	Centres	are	honoured,	so	 the	validity	
date	and	pledged	hours	are	needed.	Information	is	gathered	from	WLCG	using	the	REBUS	
service.	

• Other	metadata:	There	are	also	other	metadata	 like	 local	privileges,	SpecInt	calculations,	
publication	status,	VO	activities	and	more.	Some	of	these	metadata	is	calculated	internally	
using	 other	 types	 of	 metadata	 and	 published	 for	 other	 EGI	 operational	 tools,	 like	 VO	
activity	data	and	Resource	Centre	UserDN	publishing.	

7.3 Release	notes	

7.3.1 Requirements	covered	in	the	release	

• Implementation	of	the	Storage	Accounting	views	

• Added	geographical	JSON	encoding	options	

• Add	day,	month,	quarter,	half-year	and	year	scaling	to	hour	based	units	

• Processors	and	initial	Flavor	variable	support	on	cloud	accounting	

• Added	“number	of	processors”	and	“elapsed	time	*	processors”	to	cloud	views	

• Improved	Scientific	Discipline	report	

• Solved	filtering	of	valid	cloud	Discipline	classifications	

• Metric	Unit	field	changes	to	cosmetic	one	option	select	on	non-hourly	metrics	

• Fixed	unit	definition	matrix	on	WLCG	pages	

• REST	API	implementation	(JSON	+	CSV	output)	

• Simplifying	URLs	and	separating	CSV	+	JSON	links	

• REST	API	documentation	on	a	detailed	wiki	form	

• Mass	mailing	notification	support	for	VO	Managers	and	Resource	Centre	Admins	

• Bug	fixing	

																																																													
22	https://wiki.egi.eu/wiki/PROC15_Resource_Center_renaming		

	 EGI-Engage	

	

	

	 46	 	
	

7.4 Feedback	on	satisfaction	
Several	 tests	 were	 executed	 in	 collaboration	 with	 the	 EGI	 UCST	 and	 Operations	 Team.	 User	
communities	 were	 involved	 in	 the	 testing	 phase	 and	 the	 portal	 was	 updated	 according	 to	 the	
gathered	requirements.	

Feedback	collected	on	the	 final	 release	by	all	 the	stakeholders	 involved	 in	 the	testing	phase	was	
very	positive.	

7.5 Plan	for	Exploitation	and	Dissemination	
Name	 of	 the	
result	

Accounting	Portal	

DEFINITION		

Category	 of	
result	

Software		&	service	innovation	

Description	 of	
the	result	

Completed	refactored	portal	with	a	modern	and	more	attractive	look	&	feel	and	
several	new	features	such	as	new	home	page,	a	WLCG	specific	sub-portal,	new	
EGI	 reports,	 improved	 scientific	 discipline	 support,	 reorganized	 menus,	
contextualised	help	inline,	improved	CSV	support,	reimplemented	VO	metrics.		

EXPLOITATION	

Target	group(s)	 Infrastructure	users,	VO	Managers,	Operations	Centres,	Resource	providers	and	
the	general	public.	

Needs	 Modern	look	&	feel,	new	ways	to	access	data,	new	reports.	

How	the	target	
groups	will	 use	
the	result?	

Reporting	activities,	problem	solving,	MoU	estimation.	

Benefits	 Better	reports,	better	problem	solving,	better	MoU	estimation.	

How	 will	 you	
protect	 the	
results?	

Attribution	via	open	source	license		

Actions	 for	
exploitation	

The	result	is	published	in	a	public	web	page,	immediately	exploitable.	

URL	 to	 project	
result	

http://accounting.egi.eu	

Success	criteria	 Continued	use.	

	 EGI-Engage	

	

	

	 47	 	
	

DISSEMINATION	

Key	messages	 A	modern	accounting	portal	with	several	new	features	is	now	available.	

Channels	 • Dissemination	through	the	EGI	conferences	

• Article	featured	in	the	EGI	newsletter	

Actions	 for	
dissemination	

EGI	conferences,	publications,	participation	to	workshops	organised	by	potential	
users	

Cost	 	

Evaluation	 Number	of	accesses.	

	

7.6 Future	plans	
Future	plans	cover	following	aspects:		

• Additional	options	to	aggregate	data.	

• Reports	for	spotting	increasing/decreasing	VO	usage.	

• Accounting	data	analytics.	

• Dynamic	pie	charts.	

• Change	type	of	graph	dynamically	

• Support	GPGPU	Accounting.	

• Support	Data	Accounting.	

• Bug	fixing.	

	

	 EGI-Engage	

	

	

	 48	 	
	

Appendix	I. ARGO	development	process	
The	following	text	is	a	copy	of	the	“ARGO	Development	Process”	document.	The	latest	version	of	
the	document	can	be	found	here:		

https://docs.google.com/document/d/1W0pT-zcBHG1E_hfftW67DH01LBZC7zMKLlIgJTlsFh8/edit#		

Open	development	

We	follow	an	open	development	process.	All	the	repositories	of	ARGO	are	hosted	on	GitHub	under	
the	ARGOeu	organization.	Each	component	that	can	be	standalone,	is	hosted	in	its	own	repository	
in	the	ARGOeu	organization.	

Each	 component	 should	 have	 a	 CONTRIBUTING	 guidelines	 document,	 describing	 how	
contributions	 can	 be	 made.	 There	 will	 be	 a	 general	 CONTRIBUTING	 guidelines	 document.	
Components	 that	 are	 maintained	 in	 their	 own	 repositories	 can	 should	 link	 to	 the	 general	
CONTRIBUTING	guidelines	document	or	have	their	own	set	of	guidelines	if	required.		

• https://github.com/ARGOeu		

Forked	repositories	

Following	the	spirit	of	DVCS,	each	of	us	forks	the	repositories	from	GitHub	to	her/his	own	account.	
We	 can	 work	 on	 new	 or	 on-going	 features	 on	 our	 own	 forks	 and	 when	 we	 feel	 it	 is	 ready	 or	
whenever	 we	 want	 feedback	 from	 the	 rest	 of	 the	 team,	 and	 then	 we	 can	 open	 a	 pull	 request	
towards	the	respective	ARGO	repository.		

Useful	information:	

• https://help.github.com/articles/fork-a-repo	

• https://help.github.com/articles/syncing-a-fork	

Pull	requests	&	core	team	 	

All	 of	 the	 members	 of	 the	 core	 team	 should	 be	 able	 to	 merge	 pull	 requests	 in	 the	 ARGO	
repositories.	The	person	who	opens	a	pull	request	never	merges	it	{her,him}self,	but	asks/expects	
another	 core	 team	member	 to	 review	 it	 and	merge	 it.	 The	 idea	 behind	 this	 is	 that	 at	 least	 two	
people	(the	committer	and	the	reviewer)	will	be	involved	for	each	new	feature	that	we	develop.	

Advices	for	a	committer:	

• Do	commit	early	and	often		

• Do	make	 useful	 commit	messages	 (they	will	 be	 used	 for	 the	 release	 CHANGELOG).	 Creating	
insightful	 and	 descriptive	 commit	messages	 is	 one	 of	 the	 best	 things	 you	 can	 do	 for	 others	
who	 use	 the	 repository.	 It	 lets	 people	 quickly	 understand	 changes	 without	 having	 to	 read	

	 EGI-Engage	

	

	

	 49	 	
	

code.	When	 doing	 “history	 archaeology”	 to	 answer	 some	 question,	 good	 commit	 messages	
become	very	important.	

• Format	of	a	commit	message:	

o Title:	[Jira	issue	ID]	-	descriptive	title	

o Description:	 summary	 of	 your	 job	 with	 enough	 information	 so	 that	 a	 can	
understand	the	context	and	the	intention	of	the	change.	

	

The	person	who	opens	a	pull	request	should	make	sure	that	{s}he	includes	enough	information	so	
that	 the	 reviewer	 can	understand	 the	 context	and	 the	 intention	of	 the	 changes	proposed	 in	 the	
pull	request.	A	member	can	use	the	PULL_REQUEST_TEMPLATE	that	is	supported	by	GitHub	since	
earlier	 this	 year.	 https://github.com/blog/2111-issue-and-pull-request-templates.	 It	 is	 strongly	
encouraged	 that	we	open	pull	 requests	as	 soon	as	possible	 in	 the	developer	process	 in	order	 to	
trigger	prompt	feedback.		

1	pull	request	should	refer	to	1	feature,	task,	bug.	Pull	requests	that	are	not	ready	to	be	merged	
should	 be	 marked	 as	 Work-In-Progress	 (WIP).	 	 Having	 the	 pull	 request	 open,	 means	 that	 each	
commit	 is	visible	to	the	ARGO	CI,	which	can	then	build	the	component,	run	all	the	unit	tests	and	
attempt	 to	 package	 the	 component	 and	 at	 the	 end	 provide	 status	 feedback	 within	 the	 pull	
request.	

Useful	information:	

• https://help.github.com/articles/creating-a-pull-request	

• https://help.github.com/articles/checking-out-pull-requests-locally	

• https://help.github.com/articles/creating-a-pull-request	

• https://help.github.com/articles/merging-a-pull-request	

• https://quickleft.com/blog/pull-request-templates-make-code-review-easier	

• https://help.github.com/articles/merging-a-pull-request	

	 EGI-Engage	

	

	

	 50	 	
	

Pull	request	review	process	

When	a	 feature	 is	 ready,	 the	developer	 removes	 the	WIP	mark	 from	the	pull	 request.	Removing	
the	WIP	mark	effectively	signals	the	rest	of	the	team	that	the	pull	request	can	be	peer	reviewed.	
At	 least	 one	 team	 member	 (other	 than	 the	 committer)	 has	 to	 act	 as	 the	 reviewer	 of	 the	 pull	
request.	During	the	peer	review	process,	the	reviewer	has	to	check	the	feature	implemented,	the	
code	 quality,	 the	 unit	 test	 coverage	 as	 computed,	 the	 existence	 of	 proper	 documentation	 and	
whether	the	component	can	be	packaged	successfully.	If	all	these	checks	pass,	then	the	reviewer	
can	accept	the	pull	request	in	order	to	be	merged	in	the	devel	branch.	

Branches	and	builds	

Each	repository	should	have	at	least	2	long-term	branches:	

• the	devel	branch,	which	should	always	be	deployable	

• the	master	branch,	which	should	always	be	releasable	

Pull	requests	

Pull	requests	for	new	features	should	be	opened	initially	against	the	devel	branch.	For	every	pull	
request	that	is	opened,	the	ARGO	CI	will	execute	the	following	workflow	

	

Before	 a	 pull	 request	 can	 be	merged	 in	 the	 devel	 branch,	 a	member	 of	 the	 development	 team	
(other	 than	 the	 original	 committer)	 has	 to	 review	 the	 pull	 request	 and	 check	 the	 following	
according	to	the	“Definition	of	Done”:	

#	 Check	 Status	

1	 Quality	of	Code	 	

2	 Passes	acceptance	criteria	automatic	Unit	tests	for	non-UI		

(80%	or	greater	code	coverage	for	business	logic	tier	for	new	code)	

	

3	 CI	 build	 job	 is	 up-to-date	 and	 compiles,	 tests,	 and	 analyses	 the	 existing	&	
newly	added	code	

	

4	 DB	migration	script	for	DB	Schema	tasks	 	

Check
out
pull

reque
st	

Execu
te unit
tests	

Build
Compo

nent	

Build
Epheme

ral
Package

s	

Report
status to
Github	

	 EGI-Engage	

	

	

	 51	 	
	

5	 Sufficient	documentation:	

• APIs	+	Interfaces		(public)	

• Manuals	(where	applicable)	

• Changelog	/	Release	Notes	

• Inline	comments	where	'complex'	code	

	

6	 Ability	to	be	properly	packaged	 	

	

Devel	branches	

When	new	code	is	merged	on	the	devel	branch	of	each	component,	the	CI	system	(a)	picks	it	up,	
(b)	builds	 the	codebase,	 (c)	 runs	again	 the	unit	 tests,	 (d)	 runs	 the	 sonarqube	code	analysis	 suite	
and	 publishes	 the	 results	 on	 the	 ARGO	 sonarqube	 instance,	 (e)	 builds	 the	 devel	 packages	 and	
publishes	 them	 on	 the	 ARGO	 devel	 RPM	 repository,	 (f)	 extracts,	 builds	 the	 documentation	 and	
publishes	 it	 on	 the	 devel	 website	 and	 (g)	 reports	 the	 status	 of	 the	 CI	 on	 Github.	 New	 RPMs	
published	on	the	devel	RPM	repository	are	automatically	installed	on	the	devel	testbed.	

	

The	 devel	 testbed	 is	 using	 actual	 production	 data	
and	 is	being	operationally	monitoring	by	the	same	
monitoring	 probes	 that	 are	 used	 to	 monitor	 also	
the	production	instance.	Furthermore	at	the	end	of	
each	 sprint,	 the	product	 team	performs	 the	 sprint	
review	 ceremony	 in	which	 the	 important	 features	
are	 presented	 to	 the	 ARGO	 stakeholders	 and	 live	
tested	 on	 the	 devel	 testbed.	 After	 the	 successful	
completion	of	the	sprint	review,	the	new	code	base	
is	merged	on	each	component's	master	branch.	

In	case	more	than	one	developer	is	working	on	the	
same	 component	 or	 a	 developer	 is	 working	 in	

Checkout
Devel
Branch	

Execute
unit tests	

Build
Component	

Generate
Devel

Documentat
	

Build &
Publish
Devel

	

Execute
Code

Analysis
	

	

Report
Status

on
	

Deploymen
t on Devel

Testbed	

	 EGI-Engage	

	

	

	 52	 	
	

parallel	in	more	than	one	feature	for	the	same	component,	the	use	of	feature	branches	is	advised.		

The	 Devel	 branch	 is	 considered	 to	 be	 the	main	 branch	where	 the	 source	 code	 of	 HEAD	 always	
reflects	a	state	with	the	 latest	delivered	development	changes	 for	 the	next	release.	Some	would	
call	this	the	“integration	branch”.	This	is	where	automatic	builds	are	built	from.	

When	the	source	code	in	the	develop	branch	reaches	a	stable	point	and	is	ready	to	be	released,	all	
of	 the	 changes	 should	 be	 merged	 back	 into	 master	 somehow	 and	 then	 tagged	 with	 a	 release	
number.		

Master	Branches	

When	new	code	is	merged	in	the	master	branch	of	each	component,	the	CI	system	picks	it	up	and	
execute	the	follow	workflow:	(a)	builds	the	codebase,	 (b)	runs	the	unit	tests	again,	 (c)	builds	the	
production	packages,	(d)		publishes	them	on	the	ARGO	production	RPM	repository	and	(e)	extracts	
&	builds	the	documentation	and	publishes	it	on	the	ARGO	website.	

	

Each	time	changes	are	merged	back	into	master;	this	is	a	new	production	release	by	definition.		

Useful	information:	

• http://martinfowler.com/bliki/FeatureBranch.html		

Releases	

The	 release	 follows	 the	 process	 when	 new	 code	 is	 merged	 in	 the	 master	 branch	 of	 each	
component.	Some	prerequisites	for	a	helpful	release:	

• Spec	 files	 should	 follow	 the	 correct	 release	 number	 shown	 in	 the	 following	 table.	 Spec	 files		
(%changelog)	 should	 not	 contain	 information	 about	 features	 or	 fixes,	 but	 information	 about	
changes	in	the	package23.	Do	NOT	put	software's	changelog	at	here.	This	changelog	is	for	RPM	
itself.	If	the	package	has	no	changes,	the	description	should	say	“New	RPM	package	release”.	

• Release:	 New	 release	 is	 created	 in	 the	 component	 repository.	 (Go	 to	 releases	→	Draft	 new	
release)	The	release	contains	the	release	number	and	detailed	information.	The	information	is	
created	via	the	PR	descriptions,	so	the	PRs	should	have			descriptive	titles	and	messages.	The	
release	description	should	have	the	following	sections:	

	
	

																																																													
23	 https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/Packagers_Guide/sect-
Packagers_Guide-Creating_a_Basic_Spec_File.html		

Checkout
Master
Branch	

Exe
cute
unit
tests	

Build
Compo

nent	

Generate
and Publish

Prod
Documentat

ion	

Build &
Publish

Prod
Package

s	

	 EGI-Engage	

	

	

	 53	 	
	

#	New	features/Enhancements	

	

#	Fixes	

	

#	Documentation	updates	

	

Release	numbers	

v1.0.[1]	 Patch	 release.	 A	 new	minor	 release	 typically	 including	 just	 backwards-compatible	
bug	fixes.	No	new	functionality	is	added.	

v1.[1].1	 Feature	 release.	MINOR	 version	when	 you	 add	new	 functionality	 in	 a	 backwards-
compatible	manner.				

v[1].1.1	 Major	 release.	 Significant	 changes	 in	 the	 functionality.	Mandatory	 if	 the	 changes	
are	breaking	backward	compatibility.	

	

A	todo	list	of	a	release	is	described	in	this	document.	

Releases	process	

Planning:	 On	 every	 first	 meeting	 of	 the	 month	 we	 plan	 the	 new	 features,	 functionalities	 (jira	
tasks)	 of	 the	 components.	 It	 is	 not	 obligatory	 to	 have	 new	 features,	 functionalities,	 fixes	 for	 all	
components.	For	the	planning	process	a	Jira	Sprint	will	be	used,	with	the	selected	jira	tasks.	It	will	
be	nice	to	comment	and	update	the	status	of	each	Jira	task.		

Testing:	All	 the	new	features,	 functionalities	and	fixes	must	be	tested	for	2	weeks	at	 least	 in	the	
devel	 infrastructure.	 This	 effectively	means	 that,	 in	 the	 next	 release,	 only	 the	 features	 that	 are	
ready	to	be	tested	in	the	middle	of	the	month	will	be	included.	

Release:	 All	 tested	 features,	 functionalities	 and	 fixes	 will	 be	 deployed	 to	 the	 production	
infrastructure	 at	 the	 beginning	 of	 the	 next	month.	 If	 a	 feature,	 functionality,	 fix	 is	 not	 properly	
tested	or	requires	more	development	it	will	be	added	to	the	next	release.	

Process	based	on	proc23	

	 Responsible	 Action	 Notes	

	 EGI-Engage	

	

	

	 54	 	
	

1	 Service	 Provider	
team	

Once	 release	 is	 ready	 the	 team	 opens	 a	 GGUS	
ticket	 to	 Operations	 with	 the	 following	
information:	

• Name	of	the	tool	

• Date	of	release	

• Release	notes	

• Suggested	deployment	date	

• Testing	 instance	 url	 and	 testing	
instructions	

• Names	of	testers	 if	testing	is	manual	(if	
not	defined	Development	team	may	ask	
to	appoint	testers)	

This	 refers	 only	 to	
monitoring	 boxes	
and	WEB	UI	

2	 Operations	Team	 • Inform	 the	 Noc-Managers	 about	 the	
upcoming	 release,	 asking	 if	 there	 is	
anyone	 else	 interested	 in	 performing	
the	tests	

• can	 add	 further	 people	 for	 performing	
the	tests	

• The	 suggested	 duration	 of	 the	 test	
phase	is	two	weeks	

• Update	the	ticket	

	

3a	 Operations	 Team	 /	
Noc-Managers	

Update	 the	 ticket	with	 the	 information	 on	 the	
performed	tests	and	their	result	

	

3b	 Service	 Provider	
team	

Update	 the	 ticket	 with	 information	 about	
results	of	the	overall	testing	phase	

	

4	 Service	 Provider	
team	

Provide	 in	 the	 ticket	 the	 link	 to	 updated	
documentation	

	

5	 Service	 Provider	
team	 and	
Operations	team	

Agree	 on	 deployment	 date	 and	 update	 the	
ticket	

	

	 EGI-Engage	

	

	

	 55	 	
	

6	 Operations	team	 10	 days	 before	 the	 upcoming	 deployment,	
inform	the	Noc-Managers.	

Update	the	ticket	

	

7	 Service	 Provider	
team	

Schedule	a	downtime	of	the	service	in	case	it	is	
needed	

	

8	 Service	 Provider	
team	

Deploy	release	and	update	the	ticket	 	

9	 Operations	team	 Close	 the	 GGUS	 ticket	 after	 a	 week	 of	 the	
deployment	only	if	the	release	was	successful	

	

	

Step	1:	Example		

https://ggus.eu/index.php?mode=ticket_info&ticket_id=129318&come_from=submit		

	 EGI-Engage	

	

	

	 56	 	
	

Appendix	II. GOCDB	development	process	
Testing:		

● The	GOCDB	source	code	includes	DBUnit	and	Unit	tests	for	selected	core	packages.	For	a	
data-centric	 product	 like	 GOCDB,	 emphasis	 is	 placed	 on	 the	 DBUnit	 tests,	 which	 are	
essential	to	assert	expected	behaviour	on	the	deployed	RDBMS.		

● The	GOCDB	test	suite	prioritizes	quality	 functional	 testing	of	 the	most	critical	code-paths	
rather	than	achieving	high	blanket	coverage	of	less	meaningful	tests.		

● As	of	Jan/2016	this	includes	67	DBUnit	tests	with	668	assertions.			
● Coverage	 reporting	 is	 included	 for	 selected	 core	 packages	 (DAOs	 –	 55%,	 Doctrine	 35%,	

Gocdb_Services	 17%)	 and	 it	 is	 acknowledged	 that	 a	 higher	 coverage	 should	 be	 achieved	
for	these	packages.		

● Continuous	Integration	is	carried	out	on	all	pull	requests	to	GitHub	using	Travis.	This	uses	
the	unit	tests	to	check	the	GOCDB	code	base	against	PhP	5.3,	5.4,	5.5,	MySQL	and	SQLite	
(though	not	all	the	tests	currently	pass	for	SQLLite).	

		

Approach	to	Source	Control:		

● The	GOCDB	project	is	hosted	in	GitHub	under	the	GOCDB	organization.		
● The	main	GOCDB	repository	has	two	main	branches	‘master’	and	‘dev’.		
● The	master	branch	is	always	‘releasable’.		
● The	dev	branch	is	always	‘deployable’.		
● Developers	 fork	 the	 repository	 into	 their	 own	 personal	 repository	 to	 work	 on	 features	

using	Topic	branches.		
● When	ready,	a	pull	 request	 is	opened	against	the	 ‘dev’	branch	 in	the	main	repository	for	

review	by	other	team	members.		
● After	review,	the	pull	request	is	merged	into	the	‘dev’	branch.		
● When	ready,	the	dev	branch	is	merged	into	master.		
● Tags	are	subsequently	created	from	the	master	branch	to	 identify	specific	releases	(v5.5.	

v5.6	etc).		
● Throughout	 this	 process,	 the	 test	 suite	 is	 continuously	 executed	 and	 any	 failing	 tests	

addressed	before	creating	pull	requests	and/or	merging.	
● For	 certain	 scenarios,	 we	 consider	 it	 acceptable	 to	 push	 commits	 directly	 to	 the	 dev	

branch	rather	than	always	enforcing	pull	requests	which	may	add	unnecessary	overhead,	
such	as	making	documentation	changes	or	small	rendering	updates.	

	 EGI-Engage	

	

	

	 57	 	
	

Appendix	III. Accounting	Repository	dev	process	
The	APEL	project	 produces	 its	 own	 software,	which	 is	written	 in	Python	and	uses	MySQL	as	 the	
database	 backend.	 Source	 code	 is	 hosted	 on	 GitHub	 under	 the	 APEL	 organization.	 As	 Git	 is	 a	
distributed	 version	 control	 system,	 all	 the	 developers	who	work	 on	 the	 APEL	 project	 have	 their	
own	copy	of	the	repositories,	known	as	a	fork,	in	their	own	GitHub	accounts.	The	developers	work	
on	local	copies	of	these	forks,	fixing	bugs	or	creating	new	features.	

When	the	changes	a	developer	has	been	working	on	are	ready	to	be	merged	back	into	the	parent	
repository	a	pull	request	is	opened.	The	developer	should	include	information	about	the	changes,	
such	as	 their	purpose	and	whether	 they	address	an	outstanding	 issue,	so	 that	someone	else	can	
understand	the	context	of	these	changes.	Where	new	features	are	added,	they	should	be	covered	
by	 a	 corresponding	 unit	 test.	 Opening	 the	 pull	 request	 initiates	 the	 execution	 of	 a	 number	 of	
checks.	 The	main	one	 is	 the	 execution	of	 the	 test	 suite	 using	 the	hosted	 continuous	 integration	
service	 Travis	 CI24.	 Code	 test	 coverage	 checking	 is	 performed	 by	 Coveralls25	 and	 Python	 code	
quality	 checks.	 These	 tools	 report	 the	 result	 of	 their	 checks	 directly	 in	 the	 pull	 request	 for	 the	
developers	to	see.	The	continuous	 integration	test	must	pass	before	the	changes	can	be	merged	
back	into	the	parent	and	it	is	highly	recommended	that	the	other	checks	also	pass.	

The	changes	are	reviewed	by	at	least	one	other	member	of	the	APEL	team	who	did	not	submit	the	
pull	request.	This	is	so	that	at	least	two	people	have	seen	or	worked	on	the	changes	that	are	to	be	
added.	After	this	stage,	the	reviewer	can	either	approve	the	changes,	or	suggest	improvements.	If	
approved,	then	the	changes	are	merged	into	the	parent	repository	by	the	team	member	with	the	
release	manager	 role.	 If	 not	 approved,	 then	 the	 developer	 can	 incorporate	 the	 suggestions	 and	
add	more	changes	to	the	pull	request	which	leads	to	the	automated	checks	being	made	again	and	
then	the	process	can	repeat	until	the	reviewer	is	satisfied	with	the	suitability	of	the	changes.	

Both	 of	 the	 main	 APEL	 repositories	 have	 two	 branches	 used	 to	 manage	 the	 source	 code:	 The	
development	branch	and	the	master	branch.	The	development	branch	(shortened	to	“dev”	in	the	
version	control	system)	is	where	pull	requests	are	merged	to	and	so	contains	the	latest	features	as	
they	 are	 completed.	 Therefore	 the	 code	 in	 this	 branch	 should	 always	 be	 deployable	 to	 test	
systems.	The	master	branch	 is	where	 the	development	branch	 is	merged	 to	when	preparing	 the	
software	 for	 a	 release.	 Therefore	 the	 code	 in	 this	 branch	 should	 always	 be	 releasable	 to	
production	systems.	

Extra	testing	can	be	performed	using	a	test	system	if	it	is	thought	that	the	changes	are	not	tested	
comprehensively	 enough	 in	 the	 unit	 tests	 or	 if	 there	 are	 potential	 integration	 issues.	 The	 APEL	
project	 has	 a	 test	 server	 where	 new	 versions	 of	 the	 software	 are	 installed	 so	 that	 external	
developers	can	test	against	them	before	deploying	to	production.	
																																																													
24	https://travis-ci.org/	
25	https://coveralls.io/	

