1.) Exercise: Calculate the Average Monthly Temperature of the region of interest. Datasets will be downloaded from the Climate Change Knowledge portal [1].
[1] http://sdwebx.worldbank.org/climateportal/index.cfm

```
%matplotlib inline
import pandas as pd
# Can read from an URL!
datasets = pd.read_excel('http://sdwebx.worldbank.org/climateportal/DownloadData/tas_1991_2015.xls',
# This is to avoid strange characters in the file such as "\t" in Year
names=['tas', 'year', 'month', 'country', 'ISO3', 'ISO2'])
```

Take a look at the datasets

AverageTemperatures.mean().plot()

2.) Exercise: Calculate the Average Monthly Rainfall of the region of interest. Plot the average monthly temperature and rainfall in the same plot.

Datasets will be downloaded from the Climate Change Knowledge portal [1].

```
%matplotlib inline
import pandas as pd
amt = pd.read_excel('http://sdwebx.worldbank.org/climateportal/DownloadData/tas_1991_2015.xls',
# This is to avoid strange characters in the file such as "lt" in Year
names=['tas', 'year', 'month', 'country', 'ISO3', 'ISO2'])
```

\#\# We are interested in the temperature average per year
temperatures $=$ amt.groupby ('year')['tas']
temperatures.describe()

1991	12.0	8.472656	8.654666	-3.99520	2.928243	8.965345	16.018225	20.2824
1992	12.0	9.088098	8.959437	-3.55610	2.574670	10.161895	15.328250	22.4730
1993	12.0	8.552814	8.940789	-4.25900	0.984695	10.037220	16.622775	19.4695
1994	12.0	10.304846	8.353433	-0.77050	2.978630	10.098810	18.167150	21.2989
1995	12.0	8.991743	8.526971	-3.24200	2.361078	9.345450	15.308825	21.4993
1996	12.0	8.528108	9.148292	-3.87850	-1.125675	9.458615	7.3518	9.232

```
amr = pd.read_excel('http://sdwebx.worldbank.org/climateportal/DownloadData/pr_1991_2015.xls',
# This is to avoid strange characters in the file such as "\t" in Year
names=['pr', 'year', 'month', 'country', 'ISO3', 'ISO2'])
```

```
## We are interested in the rainfall average per year
rainfall = amr.groupby('year')['pr']
rainfall.describe()
```

count mean $\operatorname{std} \min \quad 25 \% \quad 50 \% \quad 75 \% \quad \max$

year								
1991	12.0	74.369725	30.826459	29.0172	55.291350	63.77745	97.174975	125.7610
$\mathbf{1 9 9 2}$	12.0	78.937642	41.624538	24.5945	52.197675	69.36015	94.904350	181.5330
$\mathbf{1 9 9 3}$	12.0	73.347617	42.812077	18.5650	46.504725	61.25655	87.266700	157.4780
$\mathbf{1 9 9 4}$	12.0	74.196592	34.056412	12.1600	59.188100	65.67540	94.257700	145.6820
$\mathbf{1 9 9 5}$	12.0	77.194133	27.688322	24.1628	64.909100	77.74910	93.283900	122.7290
$\mathbf{1 9 9 6}$	12.0	93.997900	29.031864	52.7393	73.732375	95.89745	113.726250	139.2530
$\mathbf{1 9 9 7}$	12.0	70.960017	40.763953	22.2927	40.909975	63.32270	87.113600	159.9860
$\mathbf{1 9 9 8}$	12.0	70.184408	31.736953	38.1457	47.045050	63.46375	79.221150	129.4610
$\mathbf{1 9 9 9}$	12.0	75.628083	17.841523	51.7722	66.328600	73.53995	80.209750	110.2680
$\mathbf{2 0 0 0}$	12.0	76.383017	42.391440	24.8360	53.752025	64.82355	89.378700	169.9690
$\mathbf{2 0 0 1}$	12.0	70.093225	27.916037	39.6471	46.225300	64.83510	87.007250	122.9260
$\mathbf{2 0 0 2}$	12.0	89.665333	38.398625	24.2556	64.223275	89.26395	116.804000	156.5390

temperatures.mean().plot()
rainfall.mean().plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f3acbef66a0>

