CODATA-RDA School of Research Data: Hands-on exercises with the EGI Jupyter Notebooks

INTRODUCTION	1
Data Import in R	1
1.) From table text file	1
2.) From Excel file	2
3.) From CSV File (Comma Separated Values)	2
Exercise 1: Calculate and plot average temperature	2
Download dataset from the Climate Change Knowledge portal	2
Calculate the Average Temperature with the R kernel of Jupyter	4
Exercise 2: Calculate the average rainfall	6

INTRODUCTION

<u>Requirements</u>: For this lab session, we will use the following R libraries: **gdata()** an open-source, library to import data frame from external data files and **plot()** to plot datasets.

Data Import in R

It is often necessary to import sample textbook data into R before you start working on your homework. We will import data from Excel but there are a number of options for this:

1.) From table text file

A data table can resides in a text file. The cells inside the table are separated by blank characters. Here is an example of a table with 4 rows and 3 columns.

Now copy and paste the table above in a file named "mydata.txt" with a text editor. Then load the data into the workspace with the function read.table.

3 300 a3 b3 4 400 a4 b4

2.) From Excel file

Quite frequently, the sample data is in **Excel** format, and needs to be imported into R prior to use. For this, we can use the function read.xls from the gdata package. It reads from an Excel spreadsheet and returns a <u>data frame</u>. The following shows how to load an Excel spreadsheet named "mydata.xls". This method requires Perl runtime to be present in the system.

3.) From CSV File (Comma Separated Values)

The sample data can also be in comma separated values (CSV) format. Each cell inside such data file is separated by a special character, which usually is a comma, although other characters can be used as well. The first row of the data file should contain the column names instead of the actual data. Here is a sample of the expected format.

Col 1, Col 2, Col 3 100, a1, b1 200, a2, b2 300, a3, b3

After we copy and paste the data above in a file named "mydata.csv" with a text editor, we can read the data with the function read.csv.

```
> mydata = read.csv("mydata.csv") # read csv file
> mydata
Col1 Col2 Col3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
```

Exercise 1: Calculate and plot average temperature

Download dataset from the Climate Change Knowledge portal

- 1. Visit http://sdwebx.worldbank.org/climateportal/index.cfm
- 2. Click on the area, then country of your interest on the interactive map
- 3. Click the 'Click to download historical data' link
- 4. Select 'Temperature', the country and the time period you are interested in (See screenshot below)
- 5. Click 'Download Data To Excel', and save the file on your computer as temperatures.xls

ABOUT	DOWNLOAD DATA			
About Climate Change Knowledge Portal	About Data Disclaimer			
START exploring now Explore global climate data		a from the Climate Change Knowledge Portal are ase make sure you agree to the Terms of Use ar		
	Historical climate data (i.e. temper updated to 2016. To request the r	r commercial purposes. Please contact us if you erature, maximum temperature, minimum tem most updated data, please send your email to d time interval (monthly vs. annual). Thank y	nperature, and precipitation) has been o climateportal@worldbank.org and specify	
	HISTORICAL PROJECTIONS F	UTURE DOWNSCALED		
N 19	Variable: Country: Temperature Country: Add countries	Time Period: 1991-2015		
"By providing information on lessons learned and insights gained on adaptation to			Download Data To Excel	
climate change from global, country, and sector-level analyses, the hope is to help				
policymakers worldwide prioritize actions, along with				
developing a robust, integrated approach for greater resilience to climate				
risks."				

Excel files downloaded from the <u>Climate Change Knowledge portal</u> are structured like this:

•	tas: average temp	perature of a giv	en country in a s	pecific year an	d month
				r · · · · · ·	

	A	В	С	D	E	F
1 2	tas ,	Year	Month	Country	ISO3	ISO2
	-0,4326		1	HUN		
3	-2,6597	1991	2	HUN		
4	7,37497	1991	3	HUN		
5	8,91267	1991	4	HUN		
6	12,3143		5	HUN		
7	18,5289	1991	6	HUN		
8	21,6088	1991	7	HUN		
9	19,8747	1991	8	HUN		
10	16,9864		9	HUN		
11	9,65744	1991	10	HUN		
12	5,57551	1991	11	HUN		
13	-1,9335	1991	12	HUN		
14	-0,2991	1992	1	HUN		
15	2,40148	1992	2	HUN		
16	5,90079	1992	3	HUN		
17	11,3545	1992	4	HUN		
18	15,7719	1992	5	HUN		
19	19,4253	1992	6	HUN		
20	21,3481	1992	7	HUN		
21	24,0015	1992	8	HUN		
22	16,3708	1992	9	HUN		
23	10,059	1992	10	HUN		
24	5,77228	1992	11	HUN		
25	-0,4692		12	HUN		
26	-0,4635	1993	1	HUN		
27	-1,8311	1993	2	HUN		
28	3,94041	1993	3	HUN		
29	10.6324	1993	4	HUN		

Calculate the Average Temperature with the R kernel of Jupyter

We will use R code in the EGI Jupyter Notebook service to process and plot the data:

- 1. Go to the training instance of the EGI Jupyter Notebook service: <u>https://training.fedcloud-tf.fedcloud.eu</u> (Note: the production instance of the service is at a different URL. You'll hear about that later.)
- 2. Click on 'Login with Check-in' and use your institutional account, or a Social Account for login (e.g ORCID, Google, Facebook, LinkedIn)
 - For further info, please check the "Instructions for accessing the EGI Jupyter Notebook" document.
- 3. Wait for your Jupyter server to boot up
- 4. Open a new **R** Notebook and save it under a new name (File/Save Notebook as)
- 5. Upload the XLS file into your Jupyter online folder residing on the left panel (use the same online folder where your notebook file is saved)
- 6. Use the gdata() library and the read.xls() method to read an Excel file from remote:

library(gdata) raw <- read.xls("temperatures.xls")

Note: Click on the play button to run the code segment where your cursor stands.

7. Use the **head()** method to display the first few rows of the imported dataset:

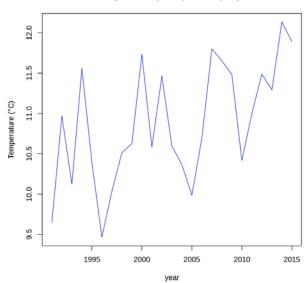
```
head(raw)
```

then click on the play button to run your code. A similar table should be displayed:

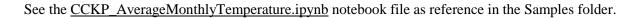
tas	X.Year	X.Month	X.Country	X.ISO3	X.ISO2
-0.43260	1991	1	HUN	NA	NA
-2.65970	1991	2	HUN	NA	NA
7.37497	1991	3	HUN	NA	NA
8.91267	1991	4	HUN	NA	NA
12.31430	1991	5	HUN	NA	NA
18.52890	1991	6	HUN	NA	NA

8. use the **aggregate()** function to group temperatures per Year, and to calculate the mean for each year:

datasets = aggregate(raw[, 1:2], list(raw\$X.Year), mean)

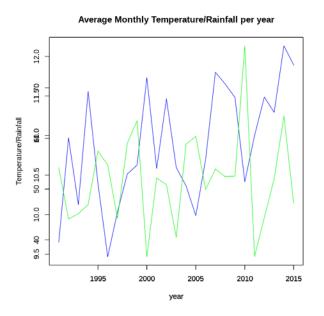

9. Print the average mean temperature per year:

print(datasets)


	Group.1	tas	X.Year
1	1991	9.650657	1991
2	1992	10.969779	1992
3	1993	10.124949	1993
4	1994	11.558376	1994
5	1995	10.397354	1995
6	1996	9.466537	1996
7	1997	10.034405	1997
8	1998	10.513293	1998
9	1999	10.626378	1999
10	2000	11.732897	2000
11	2001	10.582294	2001
12	2002	11.465237	2002
13	2003	10.596760	2003
14	2004	10.364570	2004
15	2005	9.986383	2005
16	2006	10.695692	2006
17	2007	11.801325	2007
18	2008	11.651632	2008
19	2009	11.482057	2009
20	2010	10.415981	2010
21	2011	10.999680	2011
22	2012	11.487604	2012
23	2013	11.294179	2013
24	2014	12.134994	2014
25	2015	11.892313	2015

10. Drop the duplicate column (X.Year) and plot results:

plot (datasets[-3], type="l", col="blue", main="Average Temperature per year", xlab="year", ylab="Temperature (°C)")



Average Monthly Temperature per year

Exercise 2: Calculate the average rainfall

- 1.) Modify the <u>CCKP_AverageMonthlyTemperature.ipynb</u> file to calculate the average rainfall as datasets.
- 2.) Plot the average temperature and rainfall in the same plot.
 - Tip: Download rainfall data into another file, then use par(new=TRUE) with plot().

