

EOSC-HUB RECEIVES FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER
GRANT AGREEMENT NO. 777536.

D10.4 EOSC Hub Technical Architecture and

standards roadmap v2

Lead Partner: INFN

Version: 2

Status: FINAL

Dissemination Level: Public

Document Link: https://documents.egi.eu/document/3495

Deliverable Abstract

This document describes the EOSC-hub contribution to the definition of the EOSC
Technical Architecture, which is currently being developed by the EOSC architecture
Working Group. It is based on the concepts of service interoperability and end-to-end
composition of services and foresees the definition of a reference architecture in
which EOSC building blocks and the main functions, interfaces, APIs and standards
are identified. This architecture is expected to facilitate access to services, lower the
barriers to integrate and composes services and promote the usage of services
between adjacent communities.

As a basis for the proposed architecture, service categories have been introduced,
mapping their functions, relationships and organisation to the kinds of services
required for the federating core of EOSC and the external EOSC service portfolio. The
concept of the end-to-end composition of services has been presented, highlighting

https://documents.egi.eu/document/3495

2

the most common integration scenarios. Leveraging the defined service categories
and on the concepts of service interoperability and composition, a reference EOSC
Technical Architecture has been defined identifying a hierarchical structure where
the first level relies on service categories (Federation & Access enabling,, Common
and Thematic), the second level introduces functional categories, that groups
technical functions to facilitate their identification, and the third is made of the
technical functions that has been called building blocks.

EOSC-hub is working on defining the building blocks of the architecture for each
service type and specified a common approach to complete this task. It foresees the
identification of the main building blocks/technical functions in each service category
and, for each of those, the definition of a technical specification that includes a high-
level architecture, suggested EOSC standards and APIs and interoperability
guidelines. As a consequence, interoperability between services compliant with the
EOSC specifications will be easier to be achieved.

3

COPYRIGHT NOTICE

This work by Parties of the EOSC-hub Consortium is licensed under a Creative Commons Attribution

4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EOSC-hub project is

co-funded by the European Union Horizon 2020 programme under grant number 777536.

DELIVERY SLIP

 Name Partner/Activity Date

From: Giacinto Donvito, Diego Scardaci
and Mark Van De Sanden

INFN/WP10,
EGI.eu/WP10 &
SurfSARA/WP10

01/08/2019

Moderated by: Malgorzata Krakowian EGI.eu/WP1

Reviewed by Daan Broeder
Baptiste Grenier

KNAW
EGI.eu

15/09/2019

Approved by: AMB

DOCUMENT LOG

Issue Date Comment Author

v.0.1 01/08/2019 Full draft Diego Scardaci (EGI.eu), Giacinto

Donvito (INFN) and Mark Van De

Sanden (SurfSARA)

Lukas Dutka (Cyfronet)

Giuseppe Fiameni (CINECA)

Heinrich Widmann (DRKZ)

Ignacio Blanquer (UPV)

Enol Fernandez (EGU.eu)

Joao Pina (LIP)

Marica Antonacci (INFN)

Marcin Plociennik (PSNC)

Jens Jensen (STFC)

Michal Prochazka (CESNET)

Licia Florio (GEANT)

v. 0.2 20/08/2019 New version answering to reviewers’

comments

Diego Scardaci (EGI.eu), Giacinto

Donvito (INFN) and Mark Van De

Sanden (SurfSARA)

v. 0.3 27/08/19 Proofing Section 5 abstract exec

summary, intro.

Owen Appleton (EGI.eu)

v. 0.4 13/12/2019 New version answering to EC

comments

Stefano Nicotri (INFN), Alessandro

Costantini (INFN), Giacinto Donvito

(INFN)

http://creativecommons.org/licenses/by/4.0/

4

TERMINOLOGY

https://wiki.eosc-hub.eu/display/EOSC/EOSC-hub+Glossary

Terminology/Acronym Definition

Access Enabling

services

Delivering features allowing customers to easily exploit EOSC

resources such as discovery, ordering and workflow enabling services

(e.g. the EOSC Portal).

AAI Authentication and Authorisation infrastructure

Building block Technical functions that can be offered by one or more services. A

building block is defined through a technical specification that

includes an high-level architecture, suggested EOSC standards and

APIs and interoperability guidelines

Common services Providing generic capabilities usable by any science discipline each

supporting aspects of the data lifecycle from creation to processing,

analysis, preservation, access and reuse. Examples of services

belonging to this category are multi-disciplinary services for data

discovery, processing, workflow management and orchestration, data

management, etc.

CMDB Configuration Management Database

Federation services Needed to operate the EOSC (e.g. a common helpdesk, accounting

information gathering, monitoring)

HPC High Parallel Computing

HTC High Throughput Computing

IaaS Infrastructure as a Service

Interoperability Ability of two or more services to work together to deliver a feature

for users.

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

PaaS Platform as a Service

Reference architecture In the field of software architecture or enterprise architecture,

reference architecture provides a template solution for architecture

for a particular domain. It provides a common vocabulary with which

to discuss implementations, often with the aim of stressing

commonalities.

Service composability Ability to compose services to create new workflow.

https://wiki.eosc-hub.eu/display/EOSC/EOSC-hub+Glossary

5

Thematic services Community-specific capabilities including research core data, data

products, scientific software, and pipelines. Examples of thematic

services are data resources and software tools to access study and

compare the data; data brokering services tailored to the needs of

specific scientific communities.

UR Accounting Usage Record

VM Virtual Machine

6

Contents

1 Introduction ... 11

2 Landscape ... 13

2.1 EC Implementation Roadmap .. 13

2.2 EOSC Architecture Working Group .. 14

2.3 Past work on the EOSC Technical Architecture .. 15

2.3.1 EOSC Pilot Service Architecture ... 15

2.3.2 EOSC-hub Technical Architecture v1 .. 16

3 The EOSC Portfolios and the EOSC Federating Core ... 18

4 Service Composability .. 20

4.1 Fostering the service interoperability .. 20

4.2 Federating thematic services in the EOSC ... 22

5 Defining the EOSC Technical Architecture .. 23

5.1 Reference Architecture ... 23

5.1.1 Approach to define building blocks ... 24

5.1.2 Technical Specification template ... 26

5.2 Proposed EOSC Technical Architecture ... 26

5.2.1 EOSC Access Enabling and Federation services .. 27

5.2.2 EOSC Common services ... 32

5.2.3 EOSC Thematic services ... 35

5.2.4 EOSC Portal .. 36

5.2.5 Architecture governance ... 38

6 Use cases to drive the identification and the specification of the building blocks 39

7 Relationship with the EOSC Architecture Working Group .. 42

8 Technical Specifications for Federation services .. 43

8.1 AAI ... 43

8.1.1 AAI ... 43

8.2 Federation Tools .. 48

8.2.1 Helpdesk .. 48

8.2.2 Accounting ... 53

8.2.3 Monitoring ... 58

8.2.4 Software Quality Assurance ... 67

7

8.3 Security ... 71

8.3.1 Security Incident Response Trust Framework for Federated Identity (SIRTFI) 71

9 Technical Specifications for Common services ... 75

9.1 Data Publishing and Open Data ... 75

9.1.1 Digital Repository .. 75

9.2 Metadata Management and Data Discovery ... 84

9.2.1 Metadata Cataloguing and Management .. 84

9.2.2 Data Discovery and Access .. 87

9.3 Cloud Compute, Containers and Orchestration ... 90

9.3.1 Cloud IaaS VM Management ... 90

9.3.2 Cloud IaaS Container Management ... 92

9.3.3 Cloud IaaS Orchestration ... 94

9.4 PaaS solutions ... 96

9.4.1 PaaS Orchestration .. 96

9.5 Workflow Management and User Interfaces and Data Analytics 100

9.5.1 Marketplace .. 100

10 Conclusions and next steps .. 103

8

Executive summary

This document describes the EOSC-hub contribution to the definition of the EOSC Technical

Architecture which is currently being developed by the EOSC architecture Working Group. It is based

on the concepts of service interoperability and end-to-end composition of services and foresees the

definition of a reference architecture where all the EOSC main functions, interfaces, APIs and

standards are identified. This reference architecture will increase the added value provided by EOSC

and foster its uptake, facilitating access to services, lowering barriers to integrate and composes

services and promoting the usage of services between adjacent communities.

This work has taken into account the surrounding landscape and has followed the recommendations

on the EOSC architecture of the European Commission described in the Staff Working Document on

the Implementation roadmap for the European Open Science Cloud (EOSC)1 and the mandate of the

EOSC Architecture Working Group (WG)2, recently launched by the EOSC governance. This paved

the way for a refinement and better focusing of the scope of the EOSC architecture work within

EOSC-hub. EOSC-hub is member of the EOSC Architecture Working Group and will contribute to the

discussion within this WG. This deliverable must be seen in the light of the EOSC-hub contribution

to the EOSC Architecture WG. Past work on this topic has been also analysed, notably the EOSC

Service Architecture proposed by the EOSCpilot project3.

The proposed architecture is organised according to service categories: Federation & Access

enabling, Common and Thematic services. As a basis to describe the architecture, service categories

have been introduced, mapping their functions, relationships and organisation to the kinds of

services required for the federating core of EOSC and the external EOSC service portfolio. The

concept of end-to-end service composition has been presented, highlighting the most common

integration scenarios and how services belonging to different categories can cooperate to create

added-value solutions for research. EOSC-hub effort to foster service interoperability and the

impact of the service composability on federating thematic services into the EOSC has also been

depicted.

Leveraging the service categories and on the concepts of service interoperability and composition,

a proposal for a reference Technical Architecture for EOSC has been defined identifying a

hierarchical structure. The first level of this hierarchy relies on the subdivision in categories and

allows to differentiate services according to their function within EOSC: Federation and Access

enabling are key services to operate the EOSC (e.g. the EOSC Portal or the accounting

infrastructure), Common services offer add-value features on top of EOSC resources (computing,

storage, data, etc) and can be reused by a multitude of other services, Thematic services implement

discipline specific features and are provided directly by scientific communities. The second level of

the hierarchy introduces the functional categories that groups technical functions to facilitate their

identification (e.g. Authentication and Authorisation or Monitoring for federation services, Cloud

1 Commission Staff Working Document - Implementation roadmap for the European Open Science
Cloud: https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf
2 https://www.eoscsecretariat.eu/working-groups/architecture-working-group
3 https://www.eoscpilot.eu/

https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf
https://www.eoscsecretariat.eu/working-groups/architecture-working-group
https://www.eoscpilot.eu/

9

Compute and Metadata management for common services). In the case of thematic services, the

functional categories are identified per scientific discipline. The third level is made of the technical

functions that have been called building blocks. Examples of building blocks are AAI and accounting

infrastructure for federation services, Cloud Infrastructure as a Service (IaaS) Virtual Machine (VM)

management, a Platform as a Service (PaaS) solution or a Data Repository for common services,

scientific workflows for thematic services.

EOSC-hub is working on defining the building blocks of the architecture for each service type and

specified a common approach to complete this task. It foresees the identification of the main

building blocks/technical functions in each service category. As described above, the typology of

the building blocks changes according to the category they belong to. Then, for each of those

building blocks, a technical specification that includes a high-level architecture, suggested EOSC

standards and APIs and interoperability guidelines will be defined. As a consequence, thanks to

the provided guidelines, interoperability between services offering the same technical function(s)

and following the EOSC specifications will be easier to achieve, examples are the Authentication and

Authorisation Infrastructure (AAI) services compliant with the AARC blueprint architecture and

guidelines or monitoring and/or accounting systems able to exchange/share information and

provide integrated views to the EOSC customers and service providers. This approach is tailored to

the varied environment seen in EOSC, where many solutions to satisfy a given technical requirement

already exist. Furthermore, having well defined EOSC endorsed standards and APIs and related

interoperability guidelines for each of the identified building blocks will foster the end-to-end

composition of services, lowering the barriers to make services interoperable. Indeed, other

building blocks/services offering different technical functions can interoperate thanks to the EOSC

interfaces, described in the technical specification (e.g. it would be easier for a thematic service

integrating a common services if clear interoperability guidelines are available).

The EOSC interoperability guidelines that are being defined in the context of this work will take into

account and will be based on existing community practices, well-known standards and interfaces.

They should be defined by all relevant EOSC stakeholders (communities, e-infrastructures, etc.) in a

collaborative manner and their adoption should not be mandatory but a natural consequence of the

advantages, for a service, generated by being compliant.

In the proposed architecture, identifying building blocks and the related technical specifications for

all the service categories has proved to be complex and long work; therefore we decided to follow

an iterative approach starting from the functions that are more requested by the EOSC use cases4.

Also the technical specifications, initially prepared by the technical experts within the EOSC-hub

project, will be iteratively improved collecting feedback from external people with expertise in the

area and involving them in the maintenance and evolution of such specifications.

4 EOSC-hub is taking into account in this work requirements collected from EOSC Pilot Scientific

Demonstrator (see D5.6 Evaluation Report of service pilots), EOSC-hub Thematic Services (see D7.2 First
report on Thematic Service architecture and software integration), EOSC Competence Centers (see D8.1
Report on progress, achievements and plans of the Competence Centres) and EOSC use cases identified
through the EOSC Portal (see the EOSC-hub Community Requirements Database).

https://eoscpilot.eu/content/d56-evaluation-report-service-pilots
https://documents.egi.eu/document/3412
https://documents.egi.eu/document/3412
https://wiki.eosc-hub.eu/display/EOSC/D8.1+Report+on+progress%2C+achievements+and+plans+of+the+Competence+Centres
https://wiki.eosc-hub.eu/display/EOSC/D8.1+Report+on+progress%2C+achievements+and+plans+of+the+Competence+Centres
https://wiki.eosc-hub.eu/display/EOSC/Community+requirements+DB

10

EOSC-hub already identified a considerable number of building blocks per service category and

completed the technical specifications of the most relevant. However, we consider fundamental

involvement of other relevant stakeholders in this work to have a real impact on the research world.

For example, we think that including other technical experts in refining technical specifications and

finding consensus around them to be essential. For this reason, we started a process to share our

approach and collect feedback. The first step was a webinar where we presented this work5,

followed by a formal collection of feedback and we are planning to organise a workshop by the end

of this year involving the largest expected EOSC user groups.

Finally, EOSC-hub intends to propose the contribution to the definition of the EOSC technical

architecture described in this document, including the related approach to define the EOSC

technical specification for building blocks, to the EOSC Architecture WG for its adoption in the wider

EOSC environment, as soon as this WG will be fully operative. EOSC-hub would also like to

collaborate with the WG on further refining the proposed architecture taking into account

requirements and suggestions from the largest possible set of service providers and user

communities.

5 https://www.eosc-hub.eu/events/eosc-hub-proposal-eosc-technical-architecture

https://www.eosc-hub.eu/events/eosc-hub-proposal-eosc-technical-architecture

11

1 Introduction

The aim of the work presented in this document is increasing the added value provided by EOSC and

fostering its uptake through the definition of a reference Technical Architecture for EOSC that

facilitates access to services, lower barriers to integrate and composes services and promotes the

usage of services between adjacent communities. This is achieved identifying key technical

functions, named building blocks in the rest of the document, for each of the EOSC service category

(Federation, Access Enabling, Common and Thematic) and defining related technical specifications

that include an high-level architecture, suggested EOSC standards and APIs and interoperability

guidelines. In this way, EOSC ‘compliant’ services will offer well-established and documented

interfaces for usage and integration, based on well-known standard or APIs, facilitating:

● their exploitation from user communities willing to create new scientific services that could

rely on well-established and documented interfaces for the integration. An example of

exploitation of EOSC services is when a community creates a new scientific workflow re-

using EOSC federation and common services, like AAI, accounting, Cloud orchestrator

and/or data management solutions.

● the combined usage of EOSC services, indeed the adoption of well-known standards and

interfaces will very likely reduce the cost to integrate services. For example, two accounting

infrastructures can be made easily interoperable if they use the same standard usage record

format, in such case accounting data extracted from them can be merged and presented in

a unique view. Another example is about data processing and data management services

implementing compliant interfaces that enable a jointly usage by a thematic service.

As a consequence, less mature or small scientific communities can leverage on EOSC services for a

series of IT functions and focus on their scientific work, access to scientific services will be open to

new communities thanks to the documented interfaces and new scientific workflows can be created

combining existing applications.

This deliverable focuses on the EOSC Technical Architecture. The work on standard roadmaps

mentioned in the title will be reported on the D10.1 and D10.2 EOSC-hub Technical Roadmap v1

and v2.

The document is organized as follows:

● Section 2 describes the landscape around the work on the EOSC Technical Architecture

definition showing the connection of our work with the EC EOSC implementation roadmap

and the EOSC Governance. Information on the past work on defining the EOSC Technical

Architecture is also provided.

● Section 3 describes EOSC service categories and their organisation into EOSC portfolios as a

basis for defining the architecture.

● Section 4 introduces the concept of end-to-end composition of services and how EOSC-hub

is fostering the interoperability of services.

● Section 5 presents the proposed EOSC Technical Architecture describing a hierarchical

structure and a functional view. A common approach to identify and detail each building

block is depicted.

12

● Section 6 shows how requirements collected by several EOSC use cases are driving this work.

● Section 7 maps our outcomes with the objectives of the EOSC Architecture WG.

● Sections 8 and 9 present examples of EOSC technical specification for federation and

common services.

● Finally, section 10 draws conclusions and describes next steps.

13

2 Landscape

This section describes the landscape around the work on the EOSC Technical Architecture definition

showing the connection of this EOSC-hub effort with the EC EOSC implementation roadmap and the

EOSC Governance.

Furthermore, a brief analysis of the past work on this topic is presented, notably the contribution

for the definition of the EOSC Architecture of the EOSCpilot project.

2.1 EC Implementation Roadmap

In March 2018, the European Commission released a Commission Staff Working Document on the

implementation roadmap for the European Open Science Cloud (EOSC)6 where a model was

proposed that describes a pan-European federation of data infrastructures built around a federating

core and providing access to a wide range of publicly funded services supplied at national, regional

and institutional levels, and to complementary commercial services. The model includes six actions

lines: (a) architecture, (b) data, (c) services, (d) access and interfaces, (e) rules and (f) governance .

Figure 1. The six action lines of the EOSC implementation roadmap.

The Architecture action line, the most relevant for the work described in this document, foresees

the creation of a federation of existing and planned research data infrastructures, adding a soft

overlay to connect them and making them operate as one seamless European research data

infrastructure. The EOSC architecture should comprise a federating core and a variety of federated

research data infrastructures committed to providing services as part of the EOSC offered through

the EOSC hub. Services are categorised in horizontal services, such as a portal, authentication and

authorisation and security services, allowing users to access the computing, data and services of

pan-European and disciplinary research data infrastructures, and in generic (also called common) or

6 Commission Staff Working Document - Implementation roadmap for the European Open Science
Cloud: https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf

https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf

14

thematic services, for data storage, management and analytics, simulation and visualisation,

distributed computing, etc. Furthermore, the document underlines that EOSC services should come

from existing European data infrastructures. The EOSC hub would relay the resources and the

services of data infrastructures funded at EU, national and regional level, and should be accessible

from a central portal (e.g. the EOSC Portal), EOSC would provide a single, coherent access channel

to EOSC services at European level that meets researchers’ needs for data sharing, management and

computing. Finally, it is mentioned that the federation of the services should be gradual and based

on simple guidelines consistent with existing good practices.

A first attempt on defining the EOSC Federating Core is presented in the EOSC-hub briefing paper

“EOSC Federating Core Governance and Sustainability”7, while the organisation of the EOSC services

in portfolios according to the service categories depicted in the Commission Staff Working

Document is described in the EOSC-hub D2.6 “First Service roadmap, service portfolio and service

catalogue”8. Both concepts are shortly summarised in section 3. The work presented in this

document leverages such definitions and builds the technical architecture for EOSC on top of them.

2.2 EOSC Architecture Working Group

The EOSC Governance9, to fully implement its structure, defined five working groups (WGs)10 to

ensure a community-sourced approach to the current challenges of the EOSC:

● Landscape: Mapping of the existing research infrastructures which are candidates to be part

of the EOSC federation;

● FAIR: Implementing the FAIR data principles by defining the corresponding requirements

for the development of EOSC services, in order to foster cross-disciplinary interoperability;

● Architecture: Defining the technical framework required to enable and sustain an evolving

EOSC federation of systems;

● Rules of participation: Designing the Rules of Participation that shall define the rights,

obligations governing EOSC transactions between EOSC users, providers and operators;

● Sustainability: Providing a set of recommendations concerning the implementation of an

operational, scalable and sustainable EOSC federation after 2020.

The activity of the Architecture WG is strictly related to the work EOSC-hub is doing on defining the

EOSC technical architecture. This can be deduced by its main objective11: [the WG] proposes the

technical framework required to enable and sustain an evolving EOSC federation of systems. Such a

technical framework may include standards, APIs and protocols that will facilitate interoperable

services delivered by diverse providers.

7 https://documents.egi.eu/document/3479
8 https://documents.egi.eu/document/3470
9 https://www.eoscsecretariat.eu/eosc-governance
10 https://www.eoscsecretariat.eu/eosc-working-groups
11 https://www.eoscsecretariat.eu/working-groups/architecture-working-group

https://documents.egi.eu/document/3479
https://documents.egi.eu/document/3470
https://www.eoscsecretariat.eu/eosc-governance
https://www.eoscsecretariat.eu/eosc-working-groups
https://www.eoscsecretariat.eu/working-groups/architecture-working-group

15

The need for defining an EOSC interoperability layer to enable the end-to-end composition of

services delivered by various providers is mentioned in the WG mandate. To achieve this objective

the WG is intended to describe and/or define:

● EOSC core services and their interfaces;

● EOSC open source APIs for reuse by thematic services;

● EOSC portal components and federated catalogues of service offerings;

● the EOSC data description standards;

● Standards and best practices necessary to ensure the evolution of EOSC and the widening of

its user base to the industry and the public sectors.

The EOSC-hub work on technical architecture has been shaped with the same objectives in mind;

this is clearly described in section 7 where we mapped the outcomes of our work to the Architecture

WG objectives. Through its representative in the WG, EOSC-hub is expected to propose the EOSC

technical architecture described in this document and the related approach to defining EOSC

standard building blocks (see later for details) to the WG for its adoption in the wider EOSC

environment. EOSC-hub would also like to collaborate with the WG on further refining the proposed

architecture, taking into account requirements and suggestions from the largest possible set of

service providers and user communities.

2.3 Past work on the EOSC Technical Architecture

2.3.1 EOSC Pilot Service Architecture

The EOSCpilot project was the first initiative that worked on the definition of the EOSC technical

architecture. The architecture model described in the deliverable EOSC-Pilot D5.4 Final EOSC Service

Architecture12 is based on 47 classes of services needed to develop and operate a system suitable to

support the EOSC mission and goal. These classes of services were organised in architecture from

both a user and a functional perspective.

In the functional architecture, services were split into five categories:

● Front-end services, for implementing the part of the overall service with which users will

interact directly, namely portals or APIs;

● Security & Trust, aimed at guaranteeing that the overall system (and the services) operate

securely and according to standards;

● Open Science, Data Management, Analytics, aimed at providing their users with user- and

open-science-friendly facilities, enabling users to focus on science tasks;

● EOSC System Governance & Management, dedicated to supporting the operation and

management of the overall EOSC System;

● Compute & Cloud Platforms, offering generalist resources like virtual machines and

containers as well as network transport connectivity. In addition, all the platforms and

software that do not belong to the other categories falls here.

The following figure shows an overall view of the function architecture proposed by EOSCpilot.

12 https://eoscpilot.eu/content/d54-final-eosc-service-architecture

https://eoscpilot.eu/content/d54-final-eosc-service-architecture

16

Figure 2. EOSCpilot - proposed EOSC function architecture

There are many similarities between the EOSCpilot functional architecture, and the work described

in this document. Indeed, the EOSC technical architecture described in the next sections is also

based on a classification of the services according to their functions, like the one proposed by

EOSCpilot. Leveraging on the EOSCpilot experience, EOSC-hub refined the service classification, also

taking into account the Commission Staff Working Document on the implementation roadmap for

the EOSC, and went further ahead:

1. clarifying the interactions between the different service classes (the first level on the

hierarchy in the proposed EOSC technical architecture).

2. defining an approach to create EOSC technical specifications and interoperability guidelines

for each service/feature offered by EOSC.

3. proposing EOSC technical specifications and interoperability guidelines for key EOSC

services/features.

2.3.2 EOSC-hub Technical Architecture v1

The first EOSC-hub deliverable on EOSC technical architecture13 established the groundwork for the

work described in this document. It identified the EOSC service types and their relationships and

introduced the concept of end-to-end compositions of services describing the effort of the project

on fostering the service interoperability both promoting the adoption of well-known standard and

with ad-hoc integration activities driven by user requirements.

The document also presented the procedures to extend the EOSC service offer, federating/on

boarding new services, and a deep analysis on the main standards, APIs and protocols used by the

13 EOSC-hub D10.3 Technical Architecture v1: https://documents.egi.eu/public/ShowDocument?docid=3417

https://documents.egi.eu/public/ShowDocument?docid=3417

17

services belonging to a specific technical area. Such analysis was a needed preparatory phase to

start the definition of the EOSC technical specifications.

The work presented in this document further analysed the concept of end-to-end compositions of

services and built architecture that, from one side, leverages on the defined EOSC service types and

relationships, and, from the other side, fosters service interoperability providing specifications and

guidelines to develop and integrate services.

18

3 The EOSC Portfolios and the EOSC Federating Core

The proposed EOSC Technical Architecture is based on the different classes of EOSC services and on

their interactions. Then, an introduction on such service categories and on their functions and

relationships is necessary before describing the architecture.

As depicted in Figure 3, EOSC services are organised in two service portfolios:

● EOSC Service Portfolio: the external services which EOSC-hub either provides from its

partners or onboards from the community to contribute to the larger portfolio of

researcher-benefitting services within EOSC. The EOSC Service Portfolio contains:

○ Thematic services: community-specific capabilities including research core data,

data products, scientific software, and pipelines. Examples of thematic services are

data resources and software tools to access, study and compare the data; data

brokering services tailored to the needs of specific scientific communities;

○ Common services: they provide generic capabilities usable by any science discipline

each supporting aspects of the data lifecycle from creation to processing, analysis,

preservation, access and reuse. Examples of services belonging to this category are

multi-disciplinary services for data discovery, processing, workflow management

and orchestration, data management, etc.

● Hub Portfolio: the internal services contributing to the federating core of EOSC, both for

internal operation of the EOSC Hub and to offer as components to be integrated into the

services of the EOSC Service Portfolio. They enable the other EOSC elements to deliver

(greater) value to researchers across Europe. They can be further split in

○ Access-enabling services: delivering features allowing customers to easily exploit

EOSC resources such as discovery, ordering and workflow enabling services

○ Federation services: needed to operate the EOSC e.g. a common helpdesk,

accounting information gathering, monitoring

Figure 3. EOSC Service Portfolios and EOSC Federating Core

19

Thematic services can be integrated with the services in the Hub portfolio to facilitate the users’

access (e.g. the EOSC Portal and Marketplace) or to avoid re-implementing basic features, like

authentication and authorisation, accounting, monitoring, etc. They can also adopt common

services that already address some of their technical needs. Common services can also leverage on

services of the Hub portfolio to deliver some of their functions. The integration of thematic,

common, access enabling, and federation services can be fostered through a large adoption of open

and standard interfaces.

The Hub Portfolio is one of the key elements of the EOSC Federating Core together with the

Compliance framework - made of Rules of Participation, EOSC Service Management System and

other policies - and the Shared resources, a set of generic data processing and managing services,

commodity services, compute and storage resources and public good data managed and offered

centrally by EOSC. More information about the EOSC Federating Core and the EOSC service

portfolios are available in the EOSC-hub briefing paper “EOSC Federating Core Governance and

Sustainability”14 and in the EOSC-hub D2.6 “First Service roadmap, service portfolio and service

catalogue”15.

In the context of the Technical Architecture, we then discuss three categories relevant to our

technical work:

● Federation and access enabling services

● Common services

● Thematic Services

Federation and access enabling are key services needed to operate the EOSC (e.g. the EOSC Portal

or the accounting infrastructure). Common services offer add-value features on top of EOSC

resources (computing, storage, etc.) and can be reused by a multitude of other services. Thematic

services implement discipline specific features and are provided directly by scientific communities.

14 https://documents.egi.eu/document/3479
15 https://documents.egi.eu/document/3470

https://documents.egi.eu/document/3479
https://documents.egi.eu/document/3470

20

4 Service Composability

The end-to-end composition of the services can be considered one of the most important added

values provided by EOSC. Indeed, the service composability would allow EOSC service providers and

users to select various services offered by EOSC and compose them according to their needs to

create added-value solutions for research.

Typical service combinations are:

● A thematic service adopts some EOSC federation services to implement basic features (AAI,

monitoring, accounting).

● A thematic service adopts common services that provide features to better exploit compute,

storage and data resources including those offered by distributed infrastructures.

● An EOSC user creates new scientific workflows integrating, for example, a data repository

and some analytics services together.

The adoption of standard interfaces makes some of the services of the EOSC service catalogues

already interoperable, these sub-classes of composable services need to be identified and made

accessible through the EOSC Portal. Furthermore, in response to newly emerging needs from

communities, other services can be made interoperable through integration activities. EOSC should

provide technical guidelines (in terms of suggests EOSC standards and APIs) and technical support

to both integrate services and facilitate the combined usage of (already) interoperable services.

Enabling the service composability would allow to lower the barriers for developers of the thematic

services to reuse common, federation or access enabling services to implement basic features (AAI,

accounting, monitoring, etc.) and exploiting in the best way compute, storage and data resources.

Indeed, they, from one side, can focus on working on increasing the scientific added value of their

services, and from the other side, rely on well-established and EOSC-compliant services for

implementing the basic features. A large part of these reusable services will come from the

experiences of the main European e-infrastructures and other relevant initiatives (such as those

involved in the project, EGI, EUDAT and INDIGO-DataCloud).

4.1 Fostering the service interoperability

Interoperability is a key concept to enable the end-to-end composition of services in EOSC. EOSC-

hub is already working on fostering the interoperability in EOSC in a dual way:

● identifying services that can already work together because they support the same

standards and/or interfaces. An example is shown in Figure 4 where the CREODIAS DATA

HUB16, one of the DIAS platforms funded by the EC for handling Copernicus Data, is working

with the Sentinel Hub17, a tool that uses Copernicus data to create maps. The services are

already interoperable because they both support the OGC WMS standard18. Therefore,

16 https://marketplace.eosc-portal.eu/services/cloudferro-data-collections-catalog
17 https://marketplace.eosc-portal.eu/services/sentinel-hub
18 https://www.opengeospatial.org/standards/wms

https://marketplace.eosc-portal.eu/services/cloudferro-data-collections-catalog
https://marketplace.eosc-portal.eu/services/sentinel-hub
https://www.opengeospatial.org/standards/wms

21

specific integration work is not needed and EOSC should provide technical support to the

community willing to exploit these services in a combined manner.

● integrating federating, common and thematic services according to identified users’

requirements. An example is shown in Figure 5, the DODAS analytics services has been

integrated with the EGI Federated Cloud, to use its cloud resources, and the EGI Check-in

services, to implement the AAI. In such a case, the integration required some development.

The solution made of these integrated services is used by the CMS community. The solution

can be reused by other communities without any further integration work.

Figure 4. Examples of composition of services supporting the same standard (e.g. OGC WMS).

Figure 5. Examples of composition of services obtained through an integration activity.

Both approaches allow identifying and extending the set of services that can work together /can be

composed. These solutions can be offered to all the EOSC users that should be able to recognise

and reuse them, also thanks to the technical support offered by EOSC.

This work to identify and make services interoperable would be easier if EOSC interfaces for

integration, possibly based on well-known standards and API, would have been already available

22

together with clear instructions or procedures to allow services to interact and work together.

Interfaces and instructions to make interoperable a given service or a technical feature can be called

EOSC interoperability guidelines. The full set of such interoperability guidelines can be considered

a valid implementation of the EOSC interoperability layer mentioned in the mandate of the EOSC

Architecture WG. The model of technical architecture presented in section 5 is based on these

concepts and is thought to foster the service interoperability and, then, the end-to-end composition

of services.

The EOSC interoperability guidelines that are being defined in the context of this work will take into

account and will be based on existing community practices, well-known standards and interfaces.

All relevant EOSC stakeholders (communities, e-infrastructures, etc) should be able to describe and

promote their standards and practices for their inclusion in the EOSC guidelines. Adoption of these

guidelines by providers will not be forced, making them mandatory, but should be a natural

consequence of the advantages, for a service, generated by being compliant such as offering access

through well-known interfaces, low cost to interoperate with other EOSC services, etc.

4.2 Federating thematic services in the EOSC

When a provider of a thematic service decides to join the EOSC, it should be able to consult the

EOSC service offer and, consequently, decide (or not) to adopt/integrate EOSC services. EOSC will

present to the provider its service portfolios (the Hub portfolio and the EOSC portfolio) as a sort of

à-la-carte menu from which the provider can, first of all, understand the benefits of adopting a

certain service and, then, can assess the technical feasibility and the related cost of the integration.

This technical assessment will be possible only if the selected EOSC services offer well-established

and documented interfaces for the integration, the EOSC interoperability guidelines. Furthermore,

the integration cost will be very-likely reduced if such interfaces are based on well-known standard

and interfaces.

After the analysis of the EOSC service offer, the provider of the thematic service can decide which

EOSC services to adopt. This choice can be very different for each provider; some providers can

decide to join the EOSC with no integration except listing their services in the service catalogue

and/or marketplace. Others can opt for a tighter integration, adopting services from both the Hub

and EOSC portfolios. For example thematic services can decide to adopt only the Marketplace and

the AAI from the Hub Portfolio, while another thematic service can use a plethora of services from

both portfolios (Marketplace, AAI, Accounting, and Monitoring and Helpdesk from the Hub

Portfolio, a cloud orchestrator and a data management tool from the EOSC Service Portfolio).

23

5 Defining the EOSC Technical Architecture

This section details the process used by EOSC-hub to define the EOSC Technical Architecture. The

architecture presented is a reference architecture where service categories, building blocks and

related interfaces are identified. It focuses on the concepts of service interoperability and

composition introduced in the previous section, fostering the definition and the adoption of EOSC

standards and interfaces. EOSC-hub is proposing an implementation of this reference architecture

as described in section 5.2.

5.1 Reference Architecture

As stated above, the EOSC Technical Architecture presented in this section is reference architecture.

In the field of software architecture or enterprise architecture, reference architecture provides a

template solution for architecture for a particular domain. It includes a common vocabulary with

which to discuss implementations, often with the aim of stressing commonalities. A reference

architecture often consists of a list of functions, some indication of their interfaces (or APIs) and

interactions with each other and with functions located outside of the scope of the reference

architecture19.

Reference architectures can be defined at different levels of abstraction, in the context of EOSC,

EOSC-hub decided to work at the infrastructure/technical level. As part of this work, we are also

defining a common vocabulary that can be used to define both existing services and those joining

EOSC catalogue in the future. The architecture includes functions, interfaces, APIs and standards as

technical concepts, with the final aim of fostering interoperability and, ultimately, service

composability. It is based on a hierarchical structure with three levels. These are:

1. Category (the service categories introduced earlier).

2. Functional categories within the main category.

3. Individual building blocks usable in fulfilling these functions.

An overview is seen in Figure 6.

19 S. Angelov, P. Grefen and D. Greefhorst, "A classification of software reference architectures: Analyzing

their success and effectiveness," 2009 Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture, Cambridge, 2009, pp. 141-150.
doi: 10.1109/WICSA.2009.5290800
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5290800&isnumber=5290660

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5290800&isnumber=5290660

24

Figure 6. Hierarchical structure in the EOSC reference architecture.

The subdivision in categories allows differentiating services according to their function within EOSC:

The top level categories (Federation & Access Enabling, Common and Thematic) have already been

introduced. The second level of the hierarchy introduces the functional categories that groups

technical functions to facilitate their identification. To take an example, within Federation and

Access enabling services, we may see Authentication & Authorisation or Monitoring as functional

categories. In the case of thematic services, the functional categories are identified per scientific

discipline.

Beneath this, we see the individual building blocks that implement technical functions. To continue

the example, within the Authentication & Authorisation functional category, we see the AAI building

block.

The reference architecture described in this section gives flexibility on defining the second and third

level of the hierarchy, functional categories and building blocks. Section 5.2 presents the

implementation of this reference architecture proposed by EOSC-hub where functional categories

and building blocks are started to be defined for each service category.

5.1.1 Approach to define building blocks

EOSC-hub is working on defining the building blocks of the architecture for each service type and

has specified a common approach to complete this task. It foresees the identification of the main

building blocks/technical functions in each service category and, for each of those, defining a

technical specification that includes an high-level architecture, suggested EOSC standards and APIs

25

and interoperability guidelines. This method would allow providers offering services implementing

the technical function of a given building block to be compliant with the related EOSC technical

specification. As a consequence, thanks to the provided guidelines, interoperability between

services offering the same technical function(s) and following the EOSC specifications will be easier

to achieve. Hence sets of services implementing the same building block and compliant with the

EOSC specification can be made able to work together with less effort, to deliver a given technical

function in the EOSC environment. Examples of these service families can be AAI services compliant

with the AARC blueprint architecture and guidelines or monitoring and/or accounting systems able

to exchange/share information and provide integrated views to the EOSC customers and service

providers. This approach is tailored to the varied environment seen in EOSC, where many solutions

to satisfy a given technical requirement already exist.

Furthermore, the definition of EOSC standards and APIs along with related interoperability

guidelines for each of the identified building blocks will foster the end-to-end composition of

services. Being compliant with a specification for a given building block, would allow a service to

interoperate with other services offering the same function (as described above) and, conversely,

building blocks/services offering different technical functions can interoperate thanks to the EOSC

interfaces, described in the technical specification (e.g. it would be easier for a thematic service

integrating a common service if clear interoperability guidelines are available).

EOSC interoperability specifications are not intended to be mandatory but being compliant with

them would be an added value for services. Indeed, they could interoperate with other services with

less effort and reduced cost. Therefore, providers willing to expand their user base by making their

services composable will be inclined to support such specifications.

In this approach, identifying building blocks and the respective technical specifications could be a

complex and long work, so the consortium has agreed to follow an iterative approach, starting from

the functions that are more requested by the EOSC use cases20. Technical specifications, initially

prepared by the technical experts within the EOSC-hub project, should also be iteratively improved,

collecting feedback by external people with expertise in the area and involving them in the

maintenance and evolution of such specifications. The same is true for the list of building blocks:

they will evolve and change in the future, adding/removing functions depending on the user

requirements and on the projects/service providers that may join the EOSC in the future. This will

be an ongoing, continuous activity that should be continued within EOSC after the end of the

project.

20 EOSC-hub is taking into account in this work requirements collected from EOSC Pilot Scientific
Demonstrator (see D5.6 Evaluation Report of service pilots), EOSC-hub Thematic Services (see D7.2
First report on Thematic Service architecture and software integration), EOSC Competence Centers
(see D8.1 Report on progress, achievements and plans of the Competence Centres) and EOSC use
cases identified through the EOSC Portal (see the EOSC-hub Community Requirements Database).

https://eoscpilot.eu/content/d56-evaluation-report-service-pilots
https://documents.egi.eu/document/3412
https://documents.egi.eu/document/3412
https://wiki.eosc-hub.eu/display/EOSC/D8.1+Report+on+progress%2C+achievements+and+plans+of+the+Competence+Centres
https://wiki.eosc-hub.eu/display/EOSC/Community+requirements+DB

26

5.1.2 Technical Specification template

We have defined a template to collect information about each of the identified building blocks and

define a technical specification, regardless of the service category they belong to. It is structured as

follows:

● Introduction: short description of the building block highlighting its main functions.

● High-level Service Architecture: reference architecture of the building block, highlighting the

interfaces towards the other building blocks. It does not refer to any specific service.

● Adopted Standard: list with references of the main adopted standards and protocols/API.

● Interoperability guidelines: describe how services implementing this building block can be

made interoperable.

● Examples of solutions implementing this specification: list of already available services that

are compliant with this specification.

The complete template is available at the following address

https://documents.egi.eu/public/ShowDocument?docid=3529.

5.2 Proposed EOSC Technical Architecture

Figure 7 shows the functional view of the proposed EOSC technical architecture, as implementation

of the reference architecture described in the previous section, where the interactions between

services belonging to different categories are highlighted.

Figure 7.EOSC Technical Architecture - Functional view.

EOSC users can exploit EOSC Thematic and Common services directly or through the GUI or API of

an access enabling services like the EOSC Portal (or other portals and Marketplaces). Thematic

services can leverage Common services for added value features on top of data, compute and

storage resources. Federation tools support all these services providing basic features like

https://documents.egi.eu/public/ShowDocument?docid=3529

27

authentication and authorisation, accounting, monitoring, etc. Pledged shared resources centrally

managed by EOSC, including both commodity services and service capacity, are part of the

Resources and complement other EOSC resources directly managed by other service providers.

This functional view will be better detailed in the following sections of the document with

information on the already identified and defined building blocks per service category.

5.2.1 EOSC Access Enabling and Federation services

In the Access Enabling and Federation service categories, a building block is any key access-enabling

and federation function needed to operate the EOSC. Services offering these features according to

the EOSC specification could be onboarded on the Hub service portfolio described in section 3.

We already identified an initial list of building blocks for this category, leveraging the experiences

from some of the largest European e-infrastructures that are involved in the project. In this initial

phase, we have a one-to-one mapping between functional categories and building blocks, this may

change in the future.

This list is detailed in the table below.

Functional
categories/Building

blocks

Short description

EOSC Portal The EOSC Portal provides a European-level delivery channel, connecting
the demand-side (the EOSC Customers) and the supply-side (the EOSC
Providers) to allow researchers to conduct their work in a collaborative,
open and cost-efficient way for the benefit of society and the public at
large. In particular it delivers the following functions:

● Enable different kinds of users, with different skills and interests,
to discover, access, use and reuse a broad spectrum of EOSC
Resources (services, datasets, software, support, training,
consultancy, etc.) for advanced data-driven research

● Support interdisciplinary research and facilitate Resource
discovery and access at the institutional and inter-institutional
level

● Allow researchers and institutions to focus on value creation
through sharing and reuse as opposed to duplicating Resources
and increase excellence of research and European
competitiveness

● Improve the provisioning of access to integrated and
composable products and services from the EOSC Catalogue

● Facilitate the composition of services and products to support
multi-disciplinary science for example with high-level
community-specific interfaces for running workflows involving
EOSC services

● Help Providers gain additional insight into potential User groups
outside their traditional constituencies

● Give Providers the possibility to offer Resources under
homogeneous terms of use, acceptable use policies, and in

28

different configuration options, so that Users are guided in the
choice.

Use case. The Portal is particularly relevant to support on-demand
access to EOSC through Business-to-User (B2U) and Business-to-Business
(B2B) transactions.

● B2U is applicable for consumer-oriented Resources appealing to
a large potential User pool. B2U transactions will address the
digital needs of individual researchers and short- and medium-
term research projects. Because of the potential large user base,
B2U transactions will be most suitable for those Resources
supporting automated or semi-automated provisioning, a short
acquisition process, requiring a low-level of specialisation, and
which can be easily compared and chosen without requiring
expert support.

● On the other hand, B2B applies predominantly to the acquisition
of bespoke solutions and/or of large quantities of EOSC
Resources involving potentially multiple Providers. B2B suits the
needs of research performing organisations and research
infrastructures which need to cater for the long-term needs of a
large pool of end users.

The EOSC Portal Concept 2.021 provides extensive information on
potential use cases and a participatory model for resource providers,
which are provided with the choice of selecting different EOSC
participation levels.

AAI The EOSC AAI aims to enable seamless access to multiple research data
and services in EOSC in a secure and user-friendly way. It also provides
authorisation management for access control. It is based on the AARC
blueprint architecture.
The EOSC AAI follows the architectural and policy recommendations
defined in the AARC project22. As such, it enables interoperability across
different Service Provider(SP)-Identity Provider(IdP)-Proxy services, each
of which acts as a bridge between the community-managed proxies
(termed Community AAIs) managing the researchers' identity and the
generic services offered by Research Infrastructures and e-
Infrastructures (termed R/e-Infrastructures or Infrastructures). This is
the “community-first” approach to the AARC Blueprint Architecture23,
which enables researchers to sign in with their community identity via
their Community AAI. Community-specific services are connected to a
single Community AAI, while Infrastructure Services are connected to a
single Infrastructure Proxy. Lastly, generic services may be connected to
more than one Community AAI. Each Community AAI in turn serves as a
bridge between external identity providers and the proxies to the e-
infrastructure services. Specifically, Community AAIs connect to
eduGAIN as service providers but act as identity providers from the

21 https://wiki.eosc-hub.eu/display/EOSC/EOSC+Portal
22 https://aarc-community.org
23 https://aarc-project.eu/guidelines/aarc-g045/

https://wiki.eosc-hub.eu/display/EOSC/EOSC+Portal
https://aarc-community.org/
https://aarc-project.eu/guidelines/aarc-g045/

29

services point of view, thereby allowing users to use their credentials
from their home organisations. Complementary to this, users without
an account on a federated institutional Identity Provider are still able to
use social media or other external authentication providers for accessing
services.
Research communities can leverage the EOSC AAI services for managing
their users and their respective roles and other authorisation-related
information. At the same time, the adoption of standards and open
technologies, including SAML 2.0, OpenID Connect, OAuth 2.0 and
X.509v3, facilitates interoperability and integration with the existing
AAIs of other e-Infrastructures and research communities.
Use Cases. Access to all EOSC shared resources and access enabling
services (e.g. the Portal, the Helpdesk, EOSC data and compute and
storage resource tier) will require federated authentication and
authorisation.

Helpdesk The helpdesk is the tool that supports Incident and Service Request
Management to restore normal/agreed service operation within the
agreed time after the occurrence of an incident, and to respond to user
service requests. The service works as a unified ticketing system, by
connecting individual providers’ helpdesks to the central helpdesk
instance, offering a standalone service interface.
Use case. The helpdesk tool is necessary to support Incident and Service
Request Management of the resources provided by EOSC. The helpdesk
can be implemented as a distributed platform linking together the
helpdesks of suppliers offering resources to EOSC. The linking of existing
helpdesks allows streamlining of support processes involving multiple
suppliers, and in particular facilitates the work of the support teams that,
through linking, are able to use existing in-house tools.

Monitoring Monitoring provides the capability to check the status of service end-
point interfaces and aggregate such information for the production of
service reports. In particular, it should provide a scalable framework for
monitoring the status, availability and reliability of endpoints. It provides
monitoring of services, visualisation of their status, dashboard
interfacing, notification and generation of availability and reliability
reports. Third parties can gather monitoring data from the system
through a complete API.
Use case. Monitoring information supports Service Report
Management, and is consumed to produce Service Reports, i.e. the
documents that provide the details of the performance of a service
against the service targets defined in service level agreements (SLAs) –
often based on key performance indicators (KPIs). Typical users are the
EOSC service suppliers.

Accounting Accounting is about collecting, aggregating, storing and displaying EOSC
resource usage data produced by the providers participating in EOSC, for
example from the providers of Shared Resources. It gathers usage
information from the individual resource providers and aggregates it

30

centrally in a secure, GDPR-compliant manner. Accounting is necessary
for providing control over resource consumption by the funders and
reduces the overhead of each separate resource provider defining
accounting information models, architecture and setup. Accounting is a
key service of the EOSC federating core that will support its business
models and provides transparency on which resources are being used.
The correlation of usage data to service identifiers, scientific product
identifiers and user identifiers, supports the development of metrics that
relate scientific impact to the extent a researcher and/or project has
been embracing open science practices.
Use case. Accounting of resource usage is required for any EOSC
customers (e.g. platform operators and research infrastructure
managers) to enable aggregated information on usage of scientific
products and services used from the EOSC portfolio.

Federated
Configuration
Management
DataBase (CMDB)

A configuration database is a database used by an organisation to store
information about hardware and software assets (commonly referred to
as Configuration Items). This database acts as a data warehouse for the
organisation and also stores information regarding the relationship
between its assets. The CMDB provides a means of understanding the
organisation's critical assets and their relationships. At a federation or
EOSC-level, it is a database drawing selected configuration information
from provider CMDBs, which is needed at the EOSC or federation level.
Use case. The availability of an EOSC CMDB is relevant to EOSC shared
resource suppliers and is requested by the IT configuration management
process. It allows the management of the provision of services owned
and managed by the EOSC governance. It is envisaged that the
management of resources published in EOSC just for the purpose of
improving their discoverability, will be delegated to the respective
providers and will not be registered in an EOSC CMDB.

Order management Order management is a process allowing the portal operators to handle
orders received through the EOSC Portal. It implements interfaces
towards service provider order management processes to support
orders that should not be centrally processed in EOSC.
Use case. Managing orders from the EOSC Portal.

Operations Portal The Operations Portal refers to the set of control dashboards that
support the work of EOSC infrastructure managers in charge of
supervising the overall status, allocation and accessibility of the EOSC
shared resources. It provides central operations management of
federated resources. The Operations Portal offers a portfolio of
management tools to support communications, customer relationship
management, infrastructure oversight, and metrics gathering.
Use case. The Operations Portal can support multiple service
management activities like incident management and order
management if used as a back-office tool of the EOSC Portal.

Service Portfolio The Service Portfolio Management Tool (SPMT) allows lifecycle

31

Management Tool management of the services provided through EOSC. SPMT allows
providers to capture, store and maintain key information about their
services, and to easily publish that data into an EOSC-mandated service
catalogue, such that that hosted on EOSC-Portal.
Use case. The tool is used by providers with one or more services which
they which to deliver through EOSC. It simplifies their management of
information about the services, simplifies delivery of this information to
those managing onboarding to EOSC, and this simplifies the publishing
of these services in a public catalogue.

Collaboration
software & platforms

Tools needed to operate a ‘Hub’ or federating core for EOSC. These
include collaborative documentation and document creation and
management systems, issue management for task tracking and
communication tools to manage remote collaborations.
Use case. Collaborations between EOSC users and/or service providers.

Security monitoring Provide features to monitor the security of the EOSC services and
resources.
Use case. Identify security threats in the EOSC.

Messaging A real-time messaging service allowing to exchange messages between
independent applications.
Use case. Enabling asynchronous communication between EOSC
services.

Software quality
assurance

A tool allowing to deliver quality software for the EOSC consumption.
The software is compiled, validated and distributed following the
Software Provisioning Process (SWPP), where the Quality Criteria (QC)
definition sets the minimum quality requirements for acceptance. The
growing number of software components currently existing to support
EOSC infrastructure favours the adoption of automated solutions instead
of manual-based validation mechanisms.
Use case. Automated validation of software quality.

Technical specifications for all these building blocks are under preparation and will be published for

feedback24 as soon as they are ready. The maturity level of the technical specifications of these

building blocks varies; an example of an already mature specification is that for AAI, which is

described later in the document. We intend to have mature specifications for all the building blocks

of this category by the end of 2019.

The EOSC Portal is as special case within this category. It is currently being further enhanced and

developed by a large collaboration that includes EOSC-hub, OpenAIRE Advance and key partners

from the former eInfraCentral project. More information is available in the EOSC Portal concept

24 Feedback will be collected through a public consultation that will be launched in the EOSC-hub website.

32

paper.25 The outcomes of this collaboration will be adopted by this work to technically specify the

EOSC Portal. Some details about the status of this activity are reported in section 5.4.

5.2.2 EOSC Common services

In the Common services, a building block is a technical function that offers added value on top of

EOSC resources (computing, storage, etc.) and that can be adopted by multiple thematic services .

Examples of building blocks for this category are Infrastructure as a Service (IaaS) Virtual Machine

(VM)/Container management, Cloud Orchestration, metadata management, making scientific

artefacts FAIR, etc. A building block in the Common Services category can be implemented and,

then, offered by one or more common services.

In this category the number of relevant building blocks can be huge, so we must split the work into

sub-areas or functional categories. We used the different technical areas EOSC-hub is working on as

a basic functional division to start the process of identifying the building blocks:

● HTC/HPC Compute

● Cloud Compute (including Containerisation and Orchestration)

● PaaS Solutions

● Data Platforms for Processing

● Data Publishing and Open Data

● Data Preservation/Curation/Provenance

● Metadata Management and Data Discovery

● Workflow management, user interfaces and Data analytics

Other functional categories could be added by other initiatives according to their expertise. For

example, OpenAIRE suggested the addition of a ‘Scholarly Communication’ category and proposed

building blocks for this area during the last EOSC-hub technical workshop in Amsterdam26.

How the work was split into technical functions is shown in the following figure. Within the Common

Services category, a set of functional categories/technical areas where depicted (only four areas are

shown as a sample) to simplify the identification of the building-blocks.

25 https://wiki.eosc-hub.eu/display/EOSC/EOSC+Portal
26 https://indico.egi.eu/indico/event/4675/overview

https://wiki.eosc-hub.eu/display/EOSC/EOSC+Portal
https://indico.egi.eu/indico/event/4675/overview

33

Figure 8. EOSC Technical Architecture. Building blocks per functional category.

For the Common Services, we agreed to prioritise the preparation of the technical specifications for

the building blocks that are more relevant to users according to the use case analysis. The current

list of identified building blocks, organised per technical area, is in the following table.

Functional categories Building blocks

HTC/HPC Compute ● Multitenant job submission
● Multitenant container-based job submission
● HTC / HPC clusters on demand

Cloud Compute (including
Containerisation and Orchestration)

● IaaS: VM Management
● IaaS: Orchestration
● IaaS: Containers

PaaS Solutions ● PaaS Solution for Cloud service automation
and federation of hybrid Cloud resources

Data Platforms for Processing ● Transparent data processing using POSIX in
distributed and hybrid cloud environments
including Docker, Kubernetes and Jupyter
(Notebooks and Hub)

● Data Ingestion and transfer for processing in
hybrid cloud environment

● Metadata Management in processing
workflows

● QoS based data access optimization and tight
integration with preservation services

● Authorization based on attributes from IdP
● Results sharing and experiment repeatability

34

● Distribution of software for the processing
tasks

Data Publishing and Open Data ● Data Repository

Data
Preservation/Curation/Provenance

● Data Preservation
● Tracking of provenance metadata
● Data Curation

Metadata Management and Data
Discovery

● Data Discovery and Access
● Metadata cataloguing and indexing
● Annotation service
● Cloud based IoT Platforms interoperability

Workflow management and user
interfaces and Data analytics

● Portals
● Big data analytics
● ML/DL analytics services

Scholarly Communication ● Data Management Plans
● Digital Preservation
● Overlay platforms: Peer-review
● Anonymization
● Aggregator
● Broker
● Entity Registry
● Metadata validation
● Annotation
● Usage stats
● VRE: RI Services for experiments

Examples of completed technical specification for building blocks belonging to the Common Services

are presented later in this document.

The picture 9 shows how the functional view of the EOSC technical architecture will appear when

the first set of building blocks and the related technical specifications are well defined. Thematic

services could easily exploit building blocks offered by common services through the EOSC standard

interfaces (purple arrows in the figure). Also, common services implementing such building blocks

can be made interoperable in an easier way thanks to the EOSC standard interface (red arrows in

the figure) offering a combined usage to the thematic services. In this scenario, service

composability would be easier to attain, and the cost of integration work will be reduced with

respect to the current situation.

35

Figure 9. EOSC Technical Architecture. Interactions between thematic and common services.

5.2.3 EOSC Thematic services

As previously written, we want to apply the same process for Thematic services, to identify and

create technical specifications for their building blocks. In this category, a building block is a

technical function that is discipline-oriented and that can be reused in multiple services within

one thematic domain.

Discipline oriented building blocks need to be identified and specified by experts of the related

disciplines. Then, EOSC-hub will start the work of detailing this category with the communities

participating in the project. However, community-oriented projects need to be involved to further

enhance this activity.

The following picture shows how the EOSC technical architecture will appear when the first set of

building blocks (and the related technical specifications) for the Thematic Services will have been

identified.

36

Figure 10. EOSC Technical Architecture. Building blocks for thematic services.

5.2.4 EOSC Portal

The EOSC Portal is intended to become the single, coherent access channel to EOSC services at

European level that meets researchers’ needs for data sharing, management and computing

mentioned in European Commission Staff document introduced in section 2. It is currently being

further enhanced and developed by a large collaboration that includes EOSC-hub, OpenAIRE

Advance and key partners of the eInfraCentral project in the context of the EOSC Portal

collaboration agreement (until December 2019). More information is available in the EOSC Portal

concept paper.27 The outcomes of this collaboration will be adopted by this work to technically

specify the EOSC Portal. From 2020, EOSC-hub and OpenAIRE Advance are expected to continue the

collaboration involving the new project that will be funded under the INFRAEOSC-06 “Enhancing the

EOSC portal and connecting thematic clouds” call28.

The following section is an extract of the architecture section of the EOSC Portal concept paper.

5.2.4.1 Architecture

The EOSC Portal concept paper describes the EOSC Portal architecture with a number of internal

components and dependencies from external services.

27 https://wiki.eosc-hub.eu/display/EOSC/EOSC+Portal
28 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-

details/infraeosc-06-2019-2020

https://wiki.eosc-hub.eu/display/EOSC/EOSC+Portal
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/infraeosc-06-2019-2020
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/infraeosc-06-2019-2020

37

Figure 11. Internal components of the EOSC Portal and dependencies on external services

● Internal components

○ EOSC Resource Registry: from an EOSC Customer point of view, browsing, searching,

access and ordering will be possible through the EOSC Resource Registry. According

to the EOSCpilot Glossary 1.029, the EOSC Resource Registry provides the descriptions

of live / ready-to-use EOSC Resources offered by the EOSC System. Resources will

include services and scientific products that are produced by scientists, like data,

software, publications, tools and experiments. These are published for discovery and

reuse with metadata and links to other products via dedicated sources, e.g.

repositories, archives, databases. To facilitate their discovery, cross-discipline or

thematic metadata aggregators are today available and widely used by scientists.

The EOSC Portal will integrate with scientific product catalogues capable of serving

the needs of researchers from different disciplines. Dedicated Registries will be

possible in order to present the EOSC offer to specific Users groups.

○ EOSC Resource Catalogue: from a EOSC Provider point of view, the Catalogue

comprises “the list of all live EOSC Resources that can be requested by EOSC System

Users”. Resources are described by metadata that is either directly inputted after

successful validation by the Provider, or through APIs [...].

○ The My Services Dashboard will allow EOSC users to manage the services they are

ordered and accessed.

○ The Registration & Management Dashboard will provide capabilities supporting the

Provider in the on-boarding and validation procedure, and additional functions for

integrated service management of the contributed Resources within EOSC. The

Additional capabilities for the Providers willing to in that choose a high-level

partnership.

● External dependencies. The EOSC Portal will interact with external services, namely:

○ The EOSC AAI service, conforming to the AARC blueprint architecture and

operational guidelines, supporting: (1) uniform representation of unique Users

29 https://eoscpilot.eu/eosc-glossary

https://eoscpilot.eu/eosc-glossary

38

identifiers, (2) a standardised way of expressing group

membership/role/information and Resource capabilities, (3) non-web browser

based access, (4) delegation, (5) release of mandatory Users attributes according to

the REFEDS research and scholarship entity category, (6) operational security,

incident response and traceability - REFEDS Sirtfi, (7) privacy requirements for

processing personal information following the GEANT Data Protection Code of

Conduct, (8) rules and conditions that govern access to and use of Resources

following the WISE Baseline Acceptable Use Policy, and (9) assurance information

following the REFEDS assurance framework and IGTF/AARC assurance profiles.

○ External catalogues, repositories, databases and archives, providing metadata on

services and other products (e.g. datasets, software, applications). Interoperability

will be enforced with the adoption of the EOSC Catalogue Framework (see the

concept paper for more information).

○ External tools for service management (accounting repositories, helpdesk, order

management tools etc.), which will exchange ticket information, usage information

and order information that are managed externally. Interoperability will be ensured

through a Service Integration and Access Management interoperability framework

that is being developed by the EOSC-hub project.

5.2.5 Architecture governance

Different governance models can be envisaged per the EOSC service typologies embedded in the

architecture. Indeed, the influence of the EOSC governance on defining technical specifications for

the different service types can vary from fully authority for federation and access enabling services

to simple endorsement of the specifications provided by the communities for thematic services,

while a hybrid approach can be foreseen for common services.

Recommendations on the governance models to apply to the identified service categories are

expected from the EOSC Architecture WG.

39

6 Use cases to drive the identification and the

specification of the building blocks

The presented EOSC Technical Architecture foresees the definition of a technical specification for

each of the building blocks identified per service category. It appears clear that the total number of

building blocks can become quite big, and then a way to identify and focus on the most relevant

functions is needed.

The natural way to prioritise the building blocks is taking into account the user requirements. For

this reason, we are using as references the analysis done on a multitude of use cases in the context

of the EOSCpilot and EOSC-hub projects.

All the sources of information we are taking into account are listed in the following table. This list

will be extended at any time according to the suggestions we will receive from other relevant EOSC

stakeholders.

Sources Description References

EOSCpilot Science
Demonstrators

EOSCpilot selected fifteen
science demonstrators,
across different scientific
domains with the purpose
of providing insight on
technical and policy needs,
and cross-infrastructure
integration requirements,
and to get indications on
how the EOSC Service
portfolio should be
structured. Some examples
of communities supported
in the context of this
activity are: Photon and
Neutron, EPOS, PanCancer,
Fusion, WLCG, LOFAR, etc.

D5.6 Evaluation Report of service

pilots30

EOSC-hub Thematic
Services

Mature thematic services
(TRL8 or TRL9) from large
communities federating in
the EOSC and integrating
several generic, federation
and access-enabling
services. Involved
communities are: CLARIN.

D7.2 First report on Thematic Service

architecture and software

integration31

30 https://eoscpilot.eu/content/d56-evaluation-report-service-pilots
31 https://documents.egi.eu/document/3412

https://eoscpilot.eu/content/d56-evaluation-report-service-pilots
https://documents.egi.eu/document/3412

40

CMS, ENES, GEOSS,
OpenCOASTs, WeNMR,
DARIAH, LifeWatch and
several Earth Observation
services (including the
CREODIAS DIAS platform).

EOSC-hub Competence
Centres

Competence Centres
design, integrate and
disseminate new,
community specific
services and service
platforms.
Each Competence Centre
(CC), fosters the use of
advanced digital
capabilities and resources
of EOSC by early adopter
research communities in
order to support data- and
computing-intensive
science.
Competence Centres are
driven by well-established
and mature research
infrastructure or
international scientific
collaborations: ELIXIR,
Fusion, Marine, EISCAT-3D,
EPOS-ORFEUS, LOFAR,
ICOS and Disaster
Mitigation.

D8.1 Report on progress,

achievements and plans of the

Competence Centres32

Use cases identified
through the EOSC Portal

Since the launch of the
EOSC Portal in November
2018, many communities
ordered EOSC services
through the Service
Catalogue and
Marketplace. These
communities were
supported by the EOSC-
hub technical support
activity (T10.3) and the
analysis of their use cases
where stored in the

Community Requirements Database33

32 https://documents.egi.eu/document/3485
33 https://wiki.eosc-hub.eu/display/EOSC/Community+requirements+DB

https://documents.egi.eu/document/3485
https://wiki.eosc-hub.eu/display/EOSC/Community+requirements+DB

41

Community Requirement
Database.

Collected requirements are used to identify the most relevant building blocks but also to properly

shape the related technical specifications. Indeed, user requirements give suggestions on the main

functions a building block should deliver and on the most common integration scenarios. The latter

would allow understanding which (standard/EOSC) interfaces a building block should implement to

satisfy the needs of the largest number of use cases. The following figure shows hypothetical user

requirements for the interoperability guidelines of various building blocks.

Figure 12. User requirements and interoperability guidelines for building blocks.

42

7 Relationship with the EOSC Architecture Working

Group

As described in Section 2, the EOSC-hub work on the EOSC Technical Architecture is intended to

become an important input for the activity of the EOSC Architecture Working Group and it has been

shaped taking into account the WG mandate. As a result, the outputs of our work can become

valuable for the WG and support it in achieving its objectives.

The following table shows the mapping between the Architecture WG sub-objectives and what

EOSC-hub is expected to deliver.

EOSC WG objectives - The WG will describe
and/or define:

Outcome of the EOSC-hub activity on the
EOSC technical architecture

EOSC core services and their interfaces ● Definition of the EOSC Access Enabling
and Federation services and interfaces

EOSC open source APIs for reuse by thematic
services

● Interoperability guidelines for
Common services (EOSC APIs and
standards)

● Interoperability guidelines for
Thematic services (EOSC APIs and
standards)

EOSC portal components and federated
catalogues of service offerings

● Outcomes of the collaboration

between EOSC-hub, OpenAIRE and key

partners from eInfraCentral on the

EOSC Portal design and development

The EOSC data description standards ● To be described in the technical
specification of the metadata
management building block

Standards and best practices necessary to
ensure the evolution of EOSC and the widening
of its user base to the industry and the public
sectors

● Interoperability guidelines for
Common services (EOSC APIs and
standards)

● Interoperability guidelines for
Thematic services (EOSC APIs and
standards)

EOSC-hub would like to establish a fruitful collaboration with the WG to further refine the proposed

architecture taking into account requirements and suggestions from the largest possible set of

service providers and user communities.

43

8 Technical Specifications for Federation services

This section (and the next one) present a complete snapshot of all the currently available technical

specifications for Federation and Common Services proposed by EOSC-hub.

Updated versions of the given technical specifications will be available at https://wiki.eosc-

hub.eu/pages/viewpage.action?pageId=52598376.

8.1 AAI

8.1.1 AAI

The EOSC AAI enables seamless access to research data and services in EOSC in a secure and user-

friendly way.

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

Security
Assertion
Markup
Language
(SAML) 2.0

OASIS standard for exchanging
authentication and authorisation
data between parties.

https://www.oasis-
open.org/standards#samlv2.0

OAuth 2.0 Standard for authorisation that
enables delegated access to server
resources on behalf of a resource
owner

"The OAuth 2.0 Authorization Framework",
RFC 6749, https://www.rfc-
editor.org/info/rfc6749

OpenID
Connect 1.0

Identity layer on top of the OAuth
2.0 protocol. It enables Clients to
verify the identity of the End-User
based on the authentication
performed by an Authorization
Server, as well as to obtain basic
profile information about the End-
User in an interoperable and REST-
like manner

“OpenID Connect Core 1.0”,
https://openid.net/specs/openid-connect-
core-1_0.html

X.509 ITU-T standard for a public key
infrastructure (PKI), also known as
PKIX (PKI X509)

"Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, https://www.rfc-
editor.org/info/rfc5280

https://wiki.eosc-hub.eu/pages/viewpage.action?pageId=52598376
https://wiki.eosc-hub.eu/pages/viewpage.action?pageId=52598376
https://www.oasis-open.org/standards#samlv2.0
https://www.oasis-open.org/standards#samlv2.0
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280

44

"Internet X.509 Public Key Infrastructure
(PKI) Proxy Certificate Profile", RFC 3820,
https://www.rfc-editor.org/info/rfc3820

Lightweight
Directory
Access
Protocol
(LDAP)

Provides access to distributed
directory services that act in
accordance with X.500 data and
service models.

https://tools.ietf.org/html/rfc4511

Protocol/API Short description References

OAuth 2.0 Token
Introspection

Protocol that allows authorised
protected resources to query
the authorisation server for
determining the set of metadata
for a given OAuth2 token,
including its current validity.

https://tools.ietf.org/html/rfc7662

OAuth 2.0 Token
Exchange

Protocol for requesting and
obtaining security tokens from
OAuth 2.0 authorization servers,
including security tokens
employing impersonation and
delegation.

https://tools.ietf.org/id/draft-ietf-oauth-
token-exchange-14.html

OAuth 2.0 Device
Authorization
Grant

Enables OAuth 2.0 clients on
input-constrained devices to
obtain user authorisation for
accessing protected resources
without using an on-device
user-agent.

https://tools.ietf.org/html/draft-ietf-
oauth-device-flow-15

System for Cross-
domain Identity
Management
(SCIM) 2.0

Open API for managing
identities

SCIM: Core Schema, RFC7643,
https://tools.ietf.org/html/rfc7643

SCIM: Protocol, RFC7644,
https://tools.ietf.org/html/rfc7644

SCIM: Definitions, Overview, Concepts,
and Requirements, RFC7642,
https://tools.ietf.org/html/rfc7642

https://www.rfc-editor.org/info/rfc3820
https://tools.ietf.org/html/rfc4511
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/id/draft-ietf-oauth-token-exchange-14.html
https://tools.ietf.org/id/draft-ietf-oauth-token-exchange-14.html
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15
https://tools.ietf.org/html/rfc7643
https://tools.ietf.org/html/rfc7644
https://tools.ietf.org/html/rfc7642

45

High-level Service Architecture

The EOSC AAI follows the architectural and policy recommendations defined in the AARC project.

As such, it enables interoperability across different SP-IdP-Proxy services, each of which acts as a

bridge between the community-managed proxies (termed Community AAIs) managing the

researchers' identity and the generic services offered by Research Infrastructure and e-

Infrastructures (termed R/e-Infrastructures or Infrastructures). This is the “community-first”

approach to the AARC Blueprint Architecture, which enables researchers to sign in with their

community identity via their Community AAI. A high-level view of the EOSC AAI is provided in Figure.

Figure 13: High level architecture diagram of the access to EOSC
resources: A researcher’s perspective following the AARC Blueprint

Architecture.

Community-specific services are connected to a single Community AAI, while Infrastructure Services

are connected to a single Infrastructure Proxy. Lastly, generic services may be connected to more

than one Community AAI. Each Community AAI in turn serves as a bridge between external identity

providers and the proxies to the e-infrastructure services. Specifically, Community AAIs connect to

eduGAIN as service providers but act as identity providers from the services point of view, thereby

allowing users to use their credentials from their home organisations. Complementary to this, users

without an account on a federated institutional Identity Provider are still able to use social media

or other external authentication providers for accessing services.

Research communities can leverage the EOSC AAI services for managing their users and their

respective roles and other authorisation-related information. At the same time, the adoption of

standards and open technologies, including SAML 2.0, OpenID Connect, OAuth 2.0 and X.509v3,

facilitates interoperability and integration with the existing AAIs of other e-Infrastructures and

research communities. As shown in Figure 2, communities can allow different authentication

46

options for their members and, at the same time, enable access to all or a subset of the

Infrastructures. It should be noted that this model also allows users to access resources as members

of their home organisation. Being connected to multiple Community AAIs and the upstream

institutional/social IdPs requires the Infra Proxies to properly support discovery for both

community- and home organisation-based access scenarios.

Figure 14: High level architecture diagram of the AAI architecture for
accessing EOSC resources

Interoperability guidelines

Technical interoperability guidelines

• The attributes used to express user information should follow the REFEDS R&S attribute
bundle, as defined in https://refeds.org/category/research-and-scholarship

• VO/group membership and role information, which is typically used by relying parties for
authorisation purposes, should be expressed according to https://aarc-
project.eu/guidelines/aarc-g002/

• Capabilities, which define the resources or child-resources a user is allowed to access, should
be expressed according to https://aarc-project.eu/guidelines/aarc-g002/

• Affiliation information, including (i) the user’s affiliation within their Home Organisation, such
as a university, research institution or private company, and (ii) affiliation within the
Community, such as cross-organisation collaborations, should be expressed according to
https://aarc-project.eu/guidelines/aarc-g025/

https://refeds.org/category/research-and-scholarship
https://aarc-project.eu/guidelines/aarc-g002/
https://aarc-project.eu/guidelines/aarc-g002/
https://aarc-project.eu/guidelines/aarc-g002/
https://aarc-project.eu/guidelines/aarc-g025/

47

• Assurance information used to express how much relying parties can trust the attribute
assertions about the authenticating user should follow:

o REFEDS Assurance framework (RAF)34

o Guideline on the exchange of specific assurance information35

o Guideline for evaluating the combined assurance of linked identities36
o Guideline Expression of REFEDS RAF assurance components for identities derived

from social media accounts37
o Guidelines for expressing the freshness of affiliation information, as defined in

https://aarc-project.eu/guidelines/aarc-g025/

• OAuth2 Authorisation servers should be able to validate tokens issued by other trusted
Authorisation servers. Extending existing flows, such as the OAuth2 Token Exchange flow38,
will need to be considered for enabling the validation of such externally issued tokens.

Policy interoperability guidelines

For the EOSC AAI, compliance with the GÉANT Data Protection Code of Conduct version 1 (DPCoCo-

v1)39 is implicit, since it reflects the Data Protection Directive and means compliance with applicable

European rules40. To explicitly declare compliance with DPCoCo-v1, the privacy notice of each EOSC

AAI service should include a reference to DPCoCo-v1.

The entities of the EOSC AAI registered with eduGAIN should meet the Sirtfi requirements and

express Sirtfi compliance in their metadata in order to facilitate coordinated response to security

incidents across organisational boundaries.

To reduce the burden on the users and increase the likelihood that they will read the AUP as they

access resources from multiple service and resource providers, the EOSC AAI services should adopt

the WISE Baseline AUP model41.

Examples of solutions implementing this specification

AAI services:

• B2ACCESS - https://www.eudat.eu/services/b2access

• Check-in - https://wiki.egi.eu/wiki/AAI_guide_for_SPs

• eduTEAMS - https://wiki.geant.org/display/eduTEAMS

34 https://wiki.refeds.org/display/ASS/REFEDS+Assurance+Framework+ver+1.0
35 https://aarc-project.eu/guidelines/aarc-g021/
36 https://aarc-project.eu/guidelines/aarc-g031/
37 https://aarc-project.eu/guidelines/aarc-g041/
38 https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-16
39
https://wiki.refeds.org/download/attachments/1606087/GEANT_DP_CoCo_ver1.0.pdf?version=1&modificatio
nDate=1450367740260&api=v2
40 https://aarc-project.eu/guidelines/aarc-g040/
41https://wiki.geant.org/download/attachments/123766285/WISE-SCI-Baseline-AUP-V1.0.1-
draft.pdf?version=1&modificationDate=1557297275149&api=v2

https://aarc-project.eu/guidelines/aarc-g025/
https://www.eudat.eu/services/b2access
https://wiki.egi.eu/wiki/AAI_guide_for_SPs
https://wiki.geant.org/display/eduTEAMS
https://wiki.refeds.org/display/ASS/REFEDS+Assurance+Framework+ver+1.0
https://aarc-project.eu/guidelines/aarc-g021/
https://aarc-project.eu/guidelines/aarc-g031/
https://aarc-project.eu/guidelines/aarc-g041/
https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-16
https://wiki.refeds.org/download/attachments/1606087/GEANT_DP_CoCo_ver1.0.pdf?version=1&modificationDate=1450367740260&api=v2
https://wiki.refeds.org/download/attachments/1606087/GEANT_DP_CoCo_ver1.0.pdf?version=1&modificationDate=1450367740260&api=v2
https://aarc-project.eu/guidelines/aarc-g040/
https://wiki.geant.org/download/attachments/123766285/WISE-SCI-Baseline-AUP-V1.0.1-draft.pdf?version=1&modificationDate=1557297275149&api=v2
https://wiki.geant.org/download/attachments/123766285/WISE-SCI-Baseline-AUP-V1.0.1-draft.pdf?version=1&modificationDate=1557297275149&api=v2

48

• INDIGO-IAM - https://indigo-iam.github.io/docs/v/current/

Identity and Access Management:

• Perun - https://perun-aai.org/documentation/technical-documentation

• Comanage - https://www.internet2.edu/products-services/trust-identity/comanage/

• HEXAA - https://hexaa.eu/

Token Translation Services:

• WaTTS - https://watts-prod.data.kit.edu/docs/user/rsp.html

• MasterPortal -

https://wiki.nikhef.nl/grid/RCAuth.eu_MasterPortal_VOPortal_integration_guide

• RCauth.eu - https://wiki.nikhef.nl/grid/AARC_Pilot_-_RCAuth.eu#Self-Registration

Procedure to integrate a service with the EOSC Hub AAI

• B2ACCESS - https://www.eudat.eu/services/b2access

• Check-in - https://wiki.egi.eu/wiki/AAI_guide_for_SPs

• eduTEAMS - https://wiki.geant.org/display/eduTEAMS

• INDIGO-IAM - https://indigo-iam.github.io/docs/v/current/

• Perun - https://perun-aai.org/documentation/technical-documentation

• WaTTS - https://watts-prod.data.kit.edu/docs/user/rsp.html

• MasterPortal -

https://wiki.nikhef.nl/grid/RCAuth.eu_MasterPortal_VOPortal_integration_guide

• RCauth.eu - https://wiki.nikhef.nl/grid/AARC_Pilot_-_RCAuth.eu#Self-Registration

8.2 Federation Tools

8.2.1 Helpdesk

The EOSC Helpdesk is the entry point and ticketing system/request tracker for issues concerning

with the available EOSC services.

The features of the EOSC Helpdesk can be grouped by two target groups.

Main features offered to the user are:

• Creation of a ticket for any of the EOSC Services (Hub and EOSC Portfolios)

• Display all the tickets created by the owner

• Find a previously created ticket

• Notify the user of answers and changes to the tickets

• Access integrated with the EOSC Portal AAI system

Features offered to the Helpdesk Team should be:

• Notification when a new ticket is created

https://indigo-iam.github.io/docs/v/current/
https://perun-aai.org/documentation/technical-documentation
https://www.internet2.edu/products-services/trust-identity/comanage/
https://hexaa.eu/
https://watts-prod.data.kit.edu/docs/user/rsp.html
https://wiki.nikhef.nl/grid/RCAuth.eu_MasterPortal_VOPortal_integration_guide
https://wiki.nikhef.nl/grid/AARC_Pilot_-_RCAuth.eu#Self-Registration
https://www.eudat.eu/services/b2access
https://wiki.egi.eu/wiki/AAI_guide_for_SPs
https://wiki.geant.org/display/eduTEAMS
https://indigo-iam.github.io/docs/v/current/
https://perun-aai.org/documentation/technical-documentation
https://watts-prod.data.kit.edu/docs/user/rsp.html
https://wiki.nikhef.nl/grid/RCAuth.eu_MasterPortal_VOPortal_integration_guide
https://wiki.nikhef.nl/grid/AARC_Pilot_-_RCAuth.eu#Self-Registration

49

• Classification of the tickets

• Escalation of the tickets

• Creation of a new support unit42 with assignation of an administrator role to specific users

• Management of incident or disruption of Hub services

• Interface for communicating with other service providers ticketing systems

First level support for EOSC integrated services as a service

Interface with a Known Errors Database and with a Change Management Database

Adopted standards

Coherence of information between systems and communication among them need a specified

standard integration protocol.

Protocol/API Short description References

X-GUS protocol
implemented
over SOAP

SOAP method that
allows communication
between two helpdesk
systems.

https://wiki.egi.eu/wiki/GGUS:SOAP_Interface_FAQ

Information about the structure and the semantics of the exchanged messages can be found in the

referenced document.

High-level Service Architecture

The EOSC Helpdesk service, as part of the EOSC Federating Core, works as a unified ticketing system

by managing the requests for different services or resources providers from a common standalone

service.

The EOSC Helpdesk provides a 1st level support for all EOSC services and a dedicated 2nd level

support for services in the EOSC Hub Portfolio (eg: Marketplace, AAI system, Monitoring, ...).

Services of the EOSC Portfolio43 can use EOSC Helpdesk choosing one of the following integration

paths as shown in the figure above:

1 Direct Usage: Use directly the EOSC helpdesk as the ticketing system for the service (”EOSC

Services support team” box in the dashed rectangle in the picture).

2 Ticket Redirection: Use the EOSC helpdesk only as a contact point to redirect the entry request

for the specific service to a mailing list or 2nd level ticketing system (Common and Thematic

42 A support unit allows to identify tickets for a specific service. A dedicated team of supporters can be
associated to a support unit.
43 Services in the EOSC Hub Portfolio support the operations of the EOSC and EOSC Portal. Services of the EOSC
Portfolio are all the other EOSC services. For more details refer to the EOSC-hub D2.6: https://www.eosc-
hub.eu/deliverable/d26-first-service-roadmap-service-portfolio-and-service-catalogue-approved-ec

https://wiki.egi.eu/wiki/GGUS:SOAP_Interface_FAQ
https://www.eosc-hub.eu/deliverable/d26-first-service-roadmap-service-portfolio-and-service-catalogue-approved-ec
https://www.eosc-hub.eu/deliverable/d26-first-service-roadmap-service-portfolio-and-service-catalogue-approved-ec

50

services in the picture). In this case, the EOSC Helpdesk central service would simply redirect by

e-mail the incoming tickets to the external system.

3 Full Integration: Integrate the service ticketing system with the EOSC helpdesk infrastructure to

have full integration of the service Trouble Ticketing System (TTS) with the EOSC helpdesk

(“Services in the EOSC Portfolio with integrated ticketing system” in the picture);

Services in the EOSC Portfolio should directly manage the 2nd level of support providing adequate

human resources independently by the chosen integration path.

Each of the Helpdesk systems has its own database. The Helpdesk databases belonging to the EOSC

Hub services or EOSC Portfolio services directly using the Helpdesk (“Direct usage” integration

path) share the same infrastructure (marked with the dashed rectangle in the graph above). As a

consequence, when the Helpdesk infrastructure is shared, the communication with the central

Helpdesk database is direct.

For services with a Helpdesk in different infrastructures the integration towards EOSC is performed

via interface and established protocols and APIs (in case of x-GUS and RT, the interface is SOAP), as

indicated in the table below and shown as a yellow rectangle in the figure above. In the case a

service maintains its own independent Helpdesk system, the user can directly access the external

Helpdesk system. The Central system receiving tickets for services that chose the “Ticket

redirection” integration path would redirect the incoming tickets by e-mail.

Figure 15: High level architecture diagram of the EOSC Helpdesk

51

Interoperability guidelines

For new services, there are three levels of interoperability corresponding to the three integration

paths described above:

1 Direct Usage: Use directly the EOSC helpdesk as the ticketing system for the service. It implies the

creation of accounts for the service owners and service responsible in order to receive the

request and be able to answer them from the EOSC helpdesk system.

2 Ticket redirection: Use the EOSC helpdesk only as a contact point to redirect the entry request

for the specific service to a mailing list or 2nd level ticketing system, without further integration.

3 Full integration: Integrate the service ticketing system with the EOSC helpdesk infrastructure to

have full integration of the service TTS with the EOSC helpdesk (see next session). For this level

of integration, the new services that should be made interoperable with the EOSC helpdesk will

need to synchronize both endpoints via the interface specified and available at the main service

infrastructure (next session will describe an integration solution through SOAP).

EOSC-hub developed a central helpdesk for EOSC using the XGUS technology. This helpdesk is

currently offered through the EOSC Portal to providers during the service onboarding process. It can

be found at: https://helpdesk.eosc-hub.eu and it is accessible through the EOSC Portal AAI.

XGUS has been used by EOSC-hub to implement the first-level Helpdesk that has been already

integrated to EUDAT (RT) and EGI (GGUS) helpdesks (Full Integration option). New services joining

the EOSC Portal can already use XGUS as helpdesk selecting one of the options described above.

Figure 16: Current deployment of the EOSC Helpdesk

https://helpdesk.eosc-hub.eu/

52

Currently, a service provider can decide to adopt the EOSC Helpdesk during the onboarding process.

The request should be expressed filling in the Service Description Template.

The EOSC Portal onboarding team will register the request and put the service provider in contact

with the Helpdesk team. The first two integration options (Direct Usage and Ticket Redirection of

the EOSC helpdesk) will only require configurations on the central helpdesk. The XGUS support team

will take care to gather the needed information from the service provider and to configure the

central helpdesk accordingly.

If the provider select the third integration option (Full Integration), The SOAP interface provided by

xGUS following the specification available at https://wiki.egi.eu/wiki/GGUS:SOAP_Interface_FAQ

has to be developed.

Integration procedures are detailed in the last section of the document.

Examples of solutions implementing this specification

XGUS has been used by EOSC-hub to implement this specification. Details are available at

https://xgus.scc.kit.edu/.

The EUDAT (RT) Helpdesk (http://helpdesk.eudat.eu/) system is already integrated with the EOSC-

hub Helpdesk using the SOAP interface provided by xGUS. In this case, four RT scripts have been

implemented in order to achieve a full integration:

• Owner change in RT is updated in xGUS

• Priority change in xGUS is updated in RT

• Status and priority changes in xGUS are updated in RT

• Status change in RT is updated in xGUS

The interface is described in the following WSDL, which can be located at: https://train-

ars.ggus.eu/arsys/WSDL/public/train-ars/XGUS_EOSCHub This webservice uses a local

authentication (username and password) in order to accept the communication.

Procedure to integrate a service with the EOSC Hub Helpdesk

The procedure to integrate a service in the EOSC helpdesk is the following, some steps are required

only for the “Use directly the EOSC helpdesk” and “full integration” integration types.

1 Create in the xGUS Helpdesk service the Support Unit for the new service or infrastructure

2 Assign to the Support Unit the contact points to be notified when a request is assigned to the

Support Unit

3 If the service owner/responsible wants to use xGUS as their own ticketing system (Use directly

the EOSC helpdesk integration), it implies the creation of user accounts for the required people

and the grant of the permissions to see and answer any request/incident assigned to their

support unit.

4 Only for the services/infrastructures interested in the full integration, it implies to develop the

required scripts in their own ticketing system to communicate with the xGUS soap interface, for

this point the xGUS responsible will need to create a specific user/password for the

service/infrastructure in order to make the connection.

https://wiki.egi.eu/wiki/GGUS:SOAP_Interface_FAQ
https://xgus.scc.kit.edu/
https://train-ars.ggus.eu/arsys/WSDL/public/train-ars/XGUS_EOSCHub
https://train-ars.ggus.eu/arsys/WSDL/public/train-ars/XGUS_EOSCHub

53

8.2.2 Accounting

The EOSC Accounting service collects, stores, aggregates, and displays usage information of HTC

compute, storage space, cloud VM and data set resources. This usage data is collected from the

Resource Centres of the EOSC infrastructure.

Accounting information is gathered from distributed sensors into a central Accounting Repository

where it is processed to generate summaries that are made available through an Accounting Portal.

Depending on the use case the data may go via intermediate repositories that collate accounting

data for particular regions, infrastructures or communities.

The Accounting Repository has a database backend and needs to ensure the exchange of accounting

information with peer e-Infrastructures. The Accounting Portal receives and stores the resource

centre, user, and user groups (e.g. Virtual Organisation/VO) level aggregated summaries generated

by the Accounting Repository and provides views via a web portal. For example, by grouping

resource centres in a country on specific time intervals a customized view can be generated and

displayed. The databases are organized into resources record database (e.g. CPU, storage, dataset,

etc), a User record database, and a topology database.

The main features of the EOSC Accounting can be grouped by two target groups.

Main features offered to the user are:

• Aggregated views of their usage wherever that usage occurred.

• Views that allow usage to be checked against allocation.

Features for resource providers:

• Provider-centric views of resource usage by users.

• Views that allow comparisons to be made between resource providers within and between

regions and communities.

Adopted standards

Standard Short description References

APEL Grid Job
Usage Record

Standard used within WLCG and EGI
for exchanging grid accounting metrics
for individual grid jobs.

https://wiki.egi.eu/wiki/APEL/Messag
eFormat#Job_Records

APEL Grid
Summary Job
Record

Standard used within WLCG and EGI
for exchanging grid accounting metrics
for aggregations of grid jobs.

https://wiki.egi.eu/wiki/APEL/Messag
eFormat#Summary_Job_Records

Cloud VM Usage
Record

Standard adopted by the EGI
Federated Cloud for exchanging cloud
accounting metrics.

https://wiki.egi.eu/wiki/Federated_Cl
oud_Architecture#Cloud_Usage_Reco
rd

https://wiki.egi.eu/wiki/APEL/MessageFormat#Job_Records
https://wiki.egi.eu/wiki/APEL/MessageFormat#Job_Records
https://wiki.egi.eu/wiki/APEL/MessageFormat#Summary_Job_Records
https://wiki.egi.eu/wiki/APEL/MessageFormat#Summary_Job_Records
https://wiki.egi.eu/wiki/Federated_Cloud_Architecture#Cloud_Usage_Record
https://wiki.egi.eu/wiki/Federated_Cloud_Architecture#Cloud_Usage_Record
https://wiki.egi.eu/wiki/Federated_Cloud_Architecture#Cloud_Usage_Record

54

OGF StAR Open Grid Forum standard for Storage
Accounting Records, used to
exchange storage space usage data.

http://cds.cern.ch/record/1452920/fil
es/GFD.201.pdf

GOCDB Grid
Topology

The GOCDB domain model closely
resembles a subset of the GLUE 2 Grid
model with additional entities.

https://wiki.egi.eu/w/images/d/d3/G
OCDB5_Grid_Topology_Information_
System.pdf

ARGO
Messaging
Service (AMS)

A Publish/Subscribe Service, which
implements the Google PubSub
protocol. It provides an HTTP API that
enables Users/Systems to implement
message-oriented service using the
Publish/Subscribe Model over plain
HTTP.

http://argoeu.github.io/messaging/v1
/

High-level Service Architecture

Describe the architecture (commented diagram) of the building block highlighting the interfaces

towards the other services.

The architecture should be generic. Please, do not refer to specific service.

Figure 17. Components of the EOSC Accounting and their interactions

Resource centres that are providing compute or storage to the EOSC infrastructure have to

implement a collector (a stand-alone script or program, or a built in function of their resource

system) that gathers accounting metrics formatted into a standardized record format (see next

section for details). These metrics are then transferred either via a messaging service or by being

http://cds.cern.ch/record/1452920/files/GFD.201.pdf
http://cds.cern.ch/record/1452920/files/GFD.201.pdf
https://wiki.egi.eu/w/images/d/d3/GOCDB5_Grid_Topology_Information_System.pdf
https://wiki.egi.eu/w/images/d/d3/GOCDB5_Grid_Topology_Information_System.pdf
https://wiki.egi.eu/w/images/d/d3/GOCDB5_Grid_Topology_Information_System.pdf
http://argoeu.github.io/messaging/v1/
http://argoeu.github.io/messaging/v1/

55

retrieved from an API to the Accounting Repository, which stores and processes the data to produce

aggregations that are then sent to the Accounting Portal for display.

The Accounting Portal retrieves topology information on how resource centres relate to national

infrastructures and regions from a configuration management database (CMDB) and community

affiliation from the AAI service to properly organise the accounting data. Information related to

groups or VOs should contain also information about scientific disciplines to allow the portal to

properly classify the resource usage.

EOSC resource centres can either directly publish accounting information to the EOSC central

Accounting Repository or via an intermediate repository that can be related to an infrastructure

(European, regional or thematic etc.). It is up to the infrastructure decide to have its own accounting

infrastructure connected to the EOSC one or directly leverage the EOSC accounting infrastructure.

Figure 18. High-level architecture of the EOSC Accounting

Interoperability guidelines

The following interoperability guidelines should be followed to connect an accounting infrastructure

to the EOSC accounting infrastructure:

• Standard usage records; to be able to merge accounting data we need to have similar

accounting information from the system. The table above lists the standards used.

• Either push to the ARGO Messaging Service (AMS)

(https://argoeu.github.io/guides/messaging/) or provide an agreed HTTP API through which

accounting data can be gathered.

https://argoeu.github.io/guides/messaging/

56

• Topology information should follow GOCDB guidelines

(https://wiki.egi.eu/w/images/d/d3/GOCDB5_Grid_Topology_Information_System.pdf),

which allows other infrastructures (e.g OSG44) to coexist with separate topologies. The

simplest way would be for infrastructures to register in GOCDB45 or even REBUS46, the WLCG

topology platform. If this is not possible, a GOCDB compatible topology should be provided,

with resource centres defined by a definite region, possible subregions and a numeric path

identifier that should be consecutive, non-assigned integers, separated by dots (e.g. 1.2.3).

An interface to extract the topology information should be provided.

• Metrics and units need to have a compliant format, not only in the datatype, but also the

semantics must be commensurable, and the units clear. Before integrating an accounting

infrastructure to the EOSC one, the provider of this infrastructure should send to the EOSC

Accounting team a list of metrics and related descriptions to be published in the central

EOSC Accounting Repository.

• If some of the fields contain URL pointers to metadata, these URLs must be of public access

to unprivileged users, at least in a minimal form that can optionally obscure privileged

information. In this way meaningful linking from the Portal is allowed.

• AAI should express group membership in a standard way following the EOSC Hub AAI

interoperability guidelines (derived from the AARC47 guidelines).

The EOSC Accounting Repository can accept records produced by any service so long as they are in

the correct format and are sent via AMS. Resource providers need to be registered in a configuration

management database (e.g. GOCDB) or be individually authorised to publish via AMS.

Examples of solutions implementing this specification

APEL

APEL is an accounting tool that collects accounting data from sites participating in the EOSC
infrastructure as well as from sites belonging to other organisations that are collaborating with EOSC.
The accounting information is gathered from different collectors into a central accounting repository
where it is processed to generate statistical summaries that are available through the EOSC Accounting
Portal.

44 https://opensciencegrid.org/
45 https://goc.egi.eu/
46 https://wlcg-rebus.cern.ch/apps/topology/
47 https://aarc-project.eu/

https://wiki.egi.eu/w/images/d/d3/GOCDB5_Grid_Topology_Information_System.pdf
https://opensciencegrid.org/
https://goc.egi.eu/
https://wlcg-rebus.cern.ch/apps/topology/
https://aarc-project.eu/
https://opensciencegrid.org/
https://goc.egi.eu/
https://wlcg-rebus.cern.ch/apps/topology/
https://aarc-project.eu/

57

Figure 19. APEL architecture

APEL collects accounting information for compute, cloud and storage resources. Typically a site will
deploy some form of accounting collector which will interact with the underlying resource provider
and produce an accounting record in a supported format which is then sent to the APEL central
repository via the Argo Messaging Service (AMS) and Secure STOMP Messenger (SSM, see
https://github.com/apel/ssm). However, APEL is agnostic to the exact source of accounting data, so it
is possible to set up regional APEL servers which receive the accounting data from national sites before
sending a copy of the information on to the central server.

1. APEL clients (https://github.com/apel/apel) can run an APEL parser to extract data from a
batch system and place it in their client database, or they can use third-party tools to extract
batch or cloud data. This data is then unloaded into a message format suitable for
transmission.

2. APEL clients run a sending SSM to send these messages containing records via the EGI
Message Brokers to the central APEL server. The messages can contain either Job Records or
Summary records. This is configurable in the APEL client.

3. The central APEL server runs an instance of the SSM, which receives these messages and a
“loader” processes the records in the messages and loads them into a MariaDB database.

4. A “summariser” process runs to create summaries of any Job Records received and load them
in a “SuperSummaries” table along with any Summary records. This summariser runs as a
cron job approximately once a day.

5. A database “unloader” process unloads the summary records into the message format to be
sent on by the sending SSM via the EGI Message Brokers to the EGI Accounting Portal.

Accounting Portal

The Accounting Portal receives data from APEL and ultimately from resource centres participating in
the EOSC infrastructure as well as from sites belonging to other organisations that are collaborating
with EOSC. This is crossed with metadata from other sources to offer an integrated view of accounting
data on the Infrastructure.

It is capable of:

https://github.com/apel/ssm
https://github.com/apel/apel

58

• Accounting of CPU time (Normalized or not), Wall Time (Normalized or not), Number of jobs,
and efficiency. Grid, Cloud and Storage support

• Grouping of resource usage by Country/Region, date, user group, usage by country.
• Grouping by infrastructure (e.g. WLCG, OSG, etc.)
• Discipline Views
• Views generated by User group Manager, User group Member, Site Admin or User views

DPMT

The Data Project Management Tool (DPMT) used within EUDAT provides an HTTP API that can be used
to perform queries to retrieve usage metrics. This is done by the Accounting Repository which then
stores the data alongside metrics from other systems. The Accounting Portal then transforms some of
the data to enable it to be displayed in aggregated views.

Procedure to integrate a service with the EOSC Hub Accounting

The integration of a resource centre with the EOSC Accounting infrastructure requires two steps:

1. Probes to produce data in the correct format should be installed in the resource centre. The

EOSC Accounting Repository will accept records formatting to the standards above. Ready-

to-use probes for a large set of resource types are already available

(https://github.com/apel/apel/blob/dev/README.md#apel-parsers).

2. Accounting records should be sent to the Accounting Repository. For sending accounting

records it is recommended to use SSM to handle the interfacing with AMS, but if it is desired.

8.2.3 Monitoring

Monitoring is the key service needed to gain insights into an infrastructure. It needs to be continuous
and on-demand to quickly detect, correlate, and analyze data for a fast reaction to anomalous
behavior. The challenge of this type of monitoring is how to quickly identify and correlate problems
before they affect end-users and ultimately the productivity of the organization. Management teams
can monitor the availability and reliability of the services from a high level view down to individual
system metrics and monitor the conformance of multiple SLAs. Monitoring of services, visualization
of their status, define availability and reliability reports, dashboard interfacing, sending real-time
alerts are some of the key features the Monitoring should support. The dashboard design should
enable easy access and visualisation of data for end-users. APIs should also be supported so as to allow
third parties to gather monitoring data from the system through them.

Some of the main features of a monitoring system:

• Support of multiple entry points (different types of systems can work together)

• Interoperable

• High availability on the different components of the system

• Support of API’s in the full stack so that components are independent in their development
cycles

• Support for Multiple Tenants, Configurations, Metrics and profiles to add flexibility and ease
of customisation.

https://github.com/apel/apel/blob/dev/README.md#apel-parsers

59

Adopted standards

The following table lists the standards recommended in this specification.

Standard Short description References

REST Loosely adhere to the REST paradigm. [REFERENCE]48

SAML2 XML based protocol that is used to securely pass the credentials
information from Identity provider to Service point (usually web
application) that needs it.

[REFERENCE]49

X509 X.509 is an ITU-T standard for a public key infrastructure (PKI),
also known as PKIX (PKI X509)

[REFERENCE]50

Apache
Avro

Data serialization system [REFERENCE]51

JSON API A specification for building apis in JSON format https://jsonapi.org/

Protocol/API Short description References

HTTPS TLS secured HTTP REFERENCE52

HTTP / JMX /
Shell / SQL / Ldap
...

All the plugins should be based on standard protocols or
formats

REFERENCE53

Nagios Plugin API Nagios API provide a reference for the monitoring plugin
developers.

REFERENCE54

48 https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
49 https://wiki.oasis-open.org/security/FrontPage
50 https://www.rfc-editor.org/info/rfc5280
51 http://avro.apache.org/
52 https://tools.ietf.org/html/rfc2818
53 http://software.in2p3.fr/lavoisier/adaptors.html
54 https://nagios-plugins.org/doc/guidelines.html

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://wiki.oasis-open.org/security/FrontPage
https://www.rfc-editor.org/info/rfc5280
http://avro.apache.org/
https://jsonapi.org/
https://tools.ietf.org/html/rfc2818
http://software.in2p3.fr/lavoisier/adaptors.html
https://nagios-plugins.org/doc/guidelines.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://wiki.oasis-open.org/security/FrontPage
https://www.rfc-editor.org/info/rfc5280
http://avro.apache.org/
https://tools.ietf.org/html/rfc2818
http://software.in2p3.fr/lavoisier/adaptors.html
https://nagios-plugins.org/doc/guidelines.html

60

Flink DataStream
API

Used to execute live streaming computational jobs on the Flink
Streaming platform to produce near real-time results for API &
notifications

REFERENCE55

Flink DataSet API Used to execute batch computational jobs on the Flink
Streaming platform to produce status and a/r results for Web
API

REFERENCE56

HDFS API Used to store ingested monitoring data along with
supplementary data (topology, downtimes, weights etc) in
distributed HDFS storage.

REFERENCE57

ARGO API over
REST API

The ARGO Web API provides the Serving Layer of ARGO. It is
comprised of a high performance and scalable data store and a
multi-tenant REST HTTP API, which is used for retrieving the Status,
Availability and Reliability reports and the actual raw metric
results.

REFERENCE58

High-level Service Architecture

The service collects status (metrics) results from one or more monitoring box(es) and delivers daily
and/or monthly availability (A) and reliability (R) results of distributed services. Both status results and
A/R metrics are delivered through a Web UI, with the ability for a user to drill-down from the
availability of a site to individual test results that contributed to the computed figure.

55 https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
56 https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/
57 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
58 http://argoeu.github.io/guides/api/

https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://argoeu.github.io/guides/api/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://argoeu.github.io/guides/api/

61

Figure 20. High level architecture of a Monitoring service

The main components of a monitoring service are depicted in the high-level architecture diagram and
described below.

Monitoring Engine: This service component executes the service checks against the infrastructure and
delivers the metric data (probe check results) to the Messaging Service.
Metric and Profile Management Component: This service component is used in order to define checks
(probes) and associate them to service types. Each grouping of checks and service types forms a
profile.

Computations & Analytics: This component of the system should include computational job
definitions for ingesting data, calculating status and availability/reliability and a management service
to automatically configure, deploy and execute those jobs on a distributed processing engine for
stateful computations. At the same time this component analyzes the monitoring results and send
notification based on a set of rules, to inform the users (operators, NGIs) about the status of their
services.
The result of the computations should be stored in a distributed file system (in a highly fault-tolerant
system). It should provide high throughput access to application data and is suitable for applications
that have large data sets. Apart from the storage of the raw data in a distributed file system, data
should also be stored in a document database designed for ease of development and scaling.

WEB API: Rest-like HTTP API service that provides access to status and availability/reliability results. It
supports token-based authentication and authorization with established roles. Results are provided
in JSON Format.

62

WEB UI: The Web UI is the component used to store, consolidate and “feed” data into the web
application. The global information from the primary and heterogeneous data sources retrieved by
means of the use of the different plugins. The collected information is structured and organized within
configuration files in the service and, finally, made available to the web application without the need
for any further computations.

The resulting data is exposed as XML views through a RESTful web service interface .

This modular architecture is conceived to add easily new data source in this model and use the cached
information if a primary source is unavailable. With the help of this component it is quite easy to add
a new source of information. So this component ensures the interoperability of the portal with other
tools/services. If the service to be integrated uses standard protocols or formats through the use of
existing plugins provided.

Interoperability guidelines

This section presents the main integration and usage use cases for monitoring in EOSC and proposes
ARGO59 interfaces as guidelines to be followed to achieve the interoperability between monitoring
systems in EOSC.

Figure 21. Integration scenarios in the EOSC Monitoring

59 https://argoeu.github.io/

http://www.w3.org/TR/xml/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://argoeu.github.io/

63

Use Case 1: Combine Results of one or more infrastructures in EOSC in a unified UI.

The proposed system should be able to combine the A/R results from different providers /
infrastructures in a unified web view. The general goal of “distributed monitoring” is to allow different
infrastructures with the same or different environment to scale. There are a number of different
options for supporting this. All of them are based on the concept that different sources will publish
status and performance data in a predefined form that is read/scrapped from the core engine of the
monitoring service. The data should also be stamped with their source and timestamp. Every metric
should be prefixed with [source_type], following the metric naming best practices (based on nagios).
Every metric is also labeled with the hostname and service description. These predefined messages
should be sent to the Messaging system which is the service responsible to pass them to the
computations engine which performs the necessary calculations to produce the reports.

How Argo Solves this
Argo Compute engine uses as source the results of the probes sent by two or more monitoring engines
(nagios boxes) via the Argo Messaging Service. Metric data comes in the form of avro files and contains
timestamped status information about the hostname, service and specific checks (metrics) that are
being monitored. A typical item of information in the metric data avro file contains the field listed in
the table below. The compute engine calculates the Availability and Reliability of each service group
based on the instructions and mapping given by the Topology and Metric Aggregation & Threshold
profiles60. This fact allows the compute engine to be flexible enough in order to combine results from
a number of sources and produce reports for almost any combination possible it is therefore able to
produce integrated views that combine the topologies of more than one Service Provider or
Infrastructure Providers.

Name Description Required

hostname The fqdn address of the host being monitored YES

service The name of the specific service being monitored YES

metric The name of the specific metric (check) of the service that is being monitored YES

timestamp Time of the monitoring check YES

60 http://argoeu.github.io/guides/argo-compute-engine/input/

http://argoeu.github.io/guides/argo-compute-engine/input/

64

status Status of the metric during the monitoring check YES

monitoring_host The fqdn of the monitoring agent NO

summary Text containing a summary of the monitoring check NO

message Text containing the detailed system output message of the monitoring check probe NO

tags Array containing optional user defined tags

Use Case 2: Add a Service Provider/Infrastructure to EOSC Monitoring

In order to add support for a new Service Provider or Infrastructure in EOSC Monitoring Service, the
provider should only need to provide the topology of the services to be monitored and the equivalent
metric and aggregation profiles. The system should take care of all the actions required to probe every
endpoint in the topology with the metrics/probes defined and aggregate the results according to the
profiles defined and present them in a Web-UI.

How Argo Solves this
For each new Tenant ARGO uses as topology input the xml feed by EOSC CMBD61s and provides
POEM62, a component to allow management of the necessary profiles that are required to configure
monitoring engines automatically in order to run the necessary probes. The results are then passed
through the Argo Messaging Service to the Argo Compute Engine63 which performs the necessary
calculations to produce the Availability and Reliability of each endpoint, service and service group
defined in the topology according to the Aggregation profiles and present then serve the results via
the ARGO-Web-API64 to be rendered/presented by the WEB-UI65.

Use Case 3: Third-party services exploiting EOSC Monitoring data

Any EOSC service should be able to retrieve and use the status information and metrics computed by
the EOSC Monitoring system. An API should be provided to allow any authorised third-party service
to retrieve such data.

61 EOSC Configuration Management Databases GOCDB (goc.egi.eu) and DPMT (dp.eudat.eu)
62 http://argoeu.github.io/guides/poem/
63 http://argoeu.github.io/guides/argo-compute-engine/
64 http://argoeu.github.io/guides/api/
65 http://argoeu.github.io/guides/webui/

http://argoeu.github.io/guides/poem/
http://argoeu.github.io/guides/argo-compute-engine/
http://argoeu.github.io/guides/api/
http://argoeu.github.io/guides/webui/

65

How Argo Solves this
The ARGO Web API66 comprises a high performance and scalable data store and a multi-tenant REST
HTTP API, which is used for retrieving the Status, Availability and Reliability reports and the actual
raw metric results.

Examples of solutions implementing this specification

ARGO

ARGO is a flexible and scalable framework for monitoring status, availability and reliability of services
provided by infrastructures with medium to high complexity. It can generate multiple reports using
customer defined profiles (e.g. for SLA management, operations etc.) and has built-in multi-tenant
support in the core framework.

ARGO supports flexible deployment models and its modular design enables ARGO to integrate with
external systems (such as CMDBs, Service Catalogs etc.). During the report generation, ARGO can take
into account custom factors such as the importance of a specific service endpoint, scheduled or
unscheduled downtimes etc.

For the Availability & Reliability monitoring, ARGO relies on a modular architecture comprised of
several components described in the next subsections.

The ARGO Monitoring Engine

For status monitoring, ARGO relies on Nagios. All probes developed for ARGO follow the Nagios
conventions and can run on any stock Nagios box. ARGO provides an optional set of addons for the
stock Nagios that provide features such as auto-configuration from external information sources,
publishing results to external Message Brokers etc.

In order to use the new messaging service, the monitoring engine also supports the new AMS
Publisher. The AMS publisher is a new component acting as a bridge from Nagios to ARGO Messaging
system. It is an integral part of software stack running on ARGO monitoring instance and is responsible
for forming and dispatching messages that are results of Nagios tests. Ready and running on devel
infrastructure. It is running as a UNIX daemon and it consists of two subsystems:

• queueing mechanism

• publishing/dispatching part

Messages are cached in local queue with the help of OCSP Nagios calls and each queue is being
monitored by the daemon. After configurable number of accumulated messages, publisher that is
associated to queue sends them to ARGO Messaging system and drains the queue. argo-nagios-ams-
publisher is written in multiprocessing manner so there is support for multiple queue/publish pairs
where for each, new worker process will be spawned.

The ARGO Connectors

66 http://argoeu.github.io/guides/api/

http://argoeu.github.io/guides/api/

66

Through the use of custom connectors, ARGO can connect to multiple external Configuration
Management Databases and Service Catalogs. Already there are connectors for the EGI and EUDAT e-
Infrastructures.

The ARGO Consumer

The ARGO Consumer is ingesting monitoring results in real-time from external Message Brokers. The
consumer is responsible for the initial pre-filtering of the monitoring results and encodes them using
AVRO serialization format before passing to the Compute Engine.

The ARGO Compute Engine

A powerful and scalable analytics engine built on top of Hadoop and HDFS. The Compute Engine is
responsible for the aggregation of the status results and the computation of availability and reliability
of composite services using customer defined algorithms. The reorganization of the Compute Engine
to support stream processing in real time is one of the key new factors. A new streaming layer is
introduced. Monitoring results flow through the AMS, to the streaming layer (in parallel to the HDFS).
The streaming layer is used in order to push raw metric results to the metric result store and to
compute status results and push them to the status store in real-time.

The ARGO Web API

The ARGO Web API provides the Serving Layer of ARGO. It is comprised of a high performance and
scalable datastore and a multi-tenant REST HTTP API, which is used for retrieving the Status,
Availability and Reliability reports and the actual raw metric results.

The ARGO Web UI

The default web UI is based on the Lavoisier Data Aggregation Framework67.

ARGO has been adopted by

• EGI infrastructure

• EUDAT infrastructure

Procedure to integrate a service with the EOSC Hub Monitoring

Follow the steps

1. GGUS ticket at ARGO/SAM EGI Support Unit with:
a. Small description of the integration - use of the service
b. A name for the new project - infrastructure / project / service to monitor

2. The Monitoring team will create a new project into the development infrastructure for
testing.

3. If the request refers to a new service type / probe, then the probe should follow the guidelines
mentioned in the interoperability section68.

67 http://software.in2p3.fr/lavoisier/
68 https://wiki.eosc-hub.eu/display/EOSC/ARGO+Guidelines+for+monitoring+probes

https://github.com/ARGOeu/argo-compute-engine
https://github.com/ARGOeu/argo-compute-engine
http://software.in2p3.fr/lavoisier/
http://software.in2p3.fr/lavoisier/
https://wiki.eosc-hub.eu/display/EOSC/ARGO+Guidelines+for+monitoring+probes

67

8.2.4 Software Quality Assurance

The Software Quality Assurance (SQA) is the process responsible for the overall supervision of the
software development lifecycle ensuring that the required quality level is achieved. The SQA
encompasses all software development processes starting from the definition of requirements,
coding, release, testing and integration.

This technical area covers ways to deliver quality software for EOSC consumption and favours the
adoption of automated solutions over the traditional manual-based validation mechanisms. The
automation allows not only to speed up the development tasks but as well improves the reliability of
the developments “ensuring the fast execution of defined tests at each change in the codebase” and
keeping them aligned with the initial user requirements and design “Fast feedback received at any
development stage - faster release of quality software”.

Adopted standards

The present document follows the well-known practices and standards adopted by the open-source
community.

Standard Short description References

IEEE 730-2014 This standard establishes the
requirements for initiating, planning,
controlling, and executing the Software
Quality Assurance processes of software
development.

https://standards.ieee.org/sta
ndard/730-2014.html

ISO/IEC/IEEE
12207:2017

International Standard - Systems and
software engineering -- Software life
cycle processes - establishing a common
framework for software life cycle
processes

https://standards.ieee.org/sta
ndard/12207-2017.html

Guidelines Short description References

Common SQA Baseline
Criteria for Research
Projects

A set of Common Software Quality
Assurance Baseline Criteria for
Research Projects

White paper for SQA Baseline
for Research projects v3.0

EGI QC 7 7th release of the EGI Quality
Criteria, that is used for the
validation of software products
within EGI’s Software Provisioning
Process

http://egi-qc.github.io/

Semantic Versioning Best practices for handling software https://semver.org/

https://standards.ieee.org/standard/730-2014.html
https://standards.ieee.org/standard/730-2014.html
https://standards.ieee.org/standard/12207-2017.html
https://standards.ieee.org/standard/12207-2017.html
http://digital.csic.es/bitstream/10261/160086/4/CommonSQA-v2.pdf
http://digital.csic.es/bitstream/10261/160086/4/CommonSQA-v2.pdf
http://egi-qc.github.io/
https://semver.org/

68

versions

High-level Service Architecture

The SQA delivers assistance to service providers throughout the software development lifecycle in
order to attain desired quality and timely delivery in the software produced, and consequently,
promote the maturity of the EOSC services.

Even if currently, there are no specific EOSC-hub services that offer support for the assessment of the
software quality requirements range from code review to static and dynamic testing, which includes
both security and interoperability tests. The assessment of compliance with the quality requirements
is implemented using continuous integration (CI) and delivery (CD) pipelines, where successfully
produced artefacts can be made readily available through the EOSC repositories.

A possible architecture for the Integration of sustainable software for quality services into EOSC is
depicted in the following figure:

Interoperability guidelines

The following items make a short description of the topics relevant to EOSC:

69

Code Accessibility:

Following the open source model, the source code shall be open and publicly available through social
coding platforms in order to increase its visibility and foster collaboration.

Licensing:

Licenses must be physically present (e.g. as a LICENSE file) in the root of all the source code
repositories related to the software component.

Versioning:

Semantic versioning is recommended for tagging the new software releases, avoiding any dependency
conflict.

Documentation:

Meaningful and differentiated documentation must be available and maintained for each specific
audience of the given software: user, admin, and developer. It shall be available online (using a
documentation repository) and preferably produced using a markup language (such as Markdown or
reStructuredText). Thus, the documentation is treated as code using a VCS.

Code Workflow:

Software is best managed by means of a version control system (VCS) solution, which facilitates the
adoption of a branching model to conduct the development. Thus, the production version of the
software remains in a working state, while the new features or bugs are added. Moreover, several
versions of the software can be maintained simultaneously, such as long-term support (LTS) versions.

Code metadata:

Software shall be uniquely identified via a persistent identifier so that it can be easily discovered,
reused, citable and preserved. Adding metadata to describe the software (in the code repository) is
the first step towards its identification.

Security:

Security assessment shall be continuously performed on every change in the source code. Tools for
security static (SAST) and dynamic analysis testing (DAST) already cover the most common security
flaws in the code and in the running services.

Code review:

Human oversight of the changes done in the code shall be the last step in the assessment of each new
feature or bug implemented, once the test phase has been completed. The suitability of the changes
implemented, the statements and/or libraries used, and the security review tasks are commonly
associated with code reviews.

70

Examples of solutions implementing this specification

Some software products delivered under EOSC are already compliant with the quality conventions
described in the Interoperability Guidelines section. Examples of such software products and their
respective continuous integration and delivery pipelines are:

• Infrastructure Manager
o https://github.com/indigo-dc/im/blob/master/Jenkinsfile

• udocker
o https://github.com/indigo-dc/udocker/blob/master/Jenkinsfile

• PaaS orchestrator
o https://github.com/indigo-dc/orchestrator/blob/master/Jenkinsfile

• cloud-info-provider
o https://github.com/EGI-Foundation/cloud-info-provider/blob/master/Jenkinsfile

• WaTTs
o https://github.com/indigo-dc/wattson/blob/master/Jenkinsfile

• oidc-agent
o https://github.com/indigo-dc/oidc-agent/blob/master/Jenkinsfile

Procedure to integrate a service with the EOSC Hub Monitoring

Currently, there are no specific EOSC-hub services that offer support for the assessment of the
software quality nevertheless the SQA already provides some ready-to-use continuous integration and
delivery pipelines based on automation services such as Jenkins. To this end, a library with the most
common functionalities needed during the testing and delivery phases is available.

So, a service provider must fulfil the following conditions:

1. Source code must reside on a hosting service repository with version control (e.g. GitHub).

2. Licensing, Documentation and versioning must be publicly accessible.

In addition, service providers should:

3. Deploy an automation service (e.g Jenkins) and adapt pipelines69 in order to make automatic
tests. A library for Jenkins with some common functionalities needed to implement the testing
and delivery phases is already provided70.

69 https://jenkins.io/doc/book/pipeline/
70 https://github.com/indigo-dc/jenkins-pipeline-library

https://github.com/indigo-dc/im/blob/master/Jenkinsfile
https://github.com/indigo-dc/udocker/blob/master/Jenkinsfile
https://github.com/indigo-dc/orchestrator/blob/master/Jenkinsfile
https://github.com/EGI-Foundation/cloud-info-provider/blob/master/Jenkinsfile
https://github.com/indigo-dc/wattson/blob/master/Jenkinsfile
https://github.com/indigo-dc/oidc-agent/blob/master/Jenkinsfile
https://jenkins.io/doc/book/pipeline/
https://github.com/indigo-dc/jenkins-pipeline-library

71

8.3 Security

8.3.1 Security Incident Response Trust Framework for Federated Identity (SIRTFI)

As a TCOM area, this specification describes Security, i.e. the standards and specifications for

operational security, or “cybersecurity.” Ultimately, the purpose of security, in this sense, is to

ensure that the infrastructure is trustworthy, and participants are able to carry out their legitimate

work and collaborations, while protecting the infrastructure and data from unauthorised parties.

In order to ensure that participants in e-infrastructures, research infrastructures, and identity

federations (such as those operated by NRENs) can reduce the risk of security incidents, and

collaborate on investigating, managing, and resolving security incidents, it is necessary to have a

shared security operations framework. Specifically, this will cover:

• best practices,

• security contacts,

• processes for assessing severity (and hence urgency),

• traceability of users,

• defining, updating, and tracking users’ acceptance of acceptable use policies.

In addition, the standards cover how the compliance is asserted in a machine-readable way. There

are also constraints on human readable information but the specification on how to implement

these constraints is left to the federation operator and/or participants.

It should also be noted that the wider issue of establishing, maintaining, and restoring trust -

between organisations, communities, and infrastructures - is not covered here.

Adopted standards

The standards listed below are formally issued by REFEDS (Research and Education FEDerationS)

and IGTF (Interoperable Global Trust Federation), respectively. However, both have come out of

AARC2 NA3 work (= policies and harmonisation), and are established on the basis of wide

consultation, not just in Europe.

Standard Short Description References

Security Incident
Response Trust
Framework for
Federated Identity
(SIRTFI)

Best practices for ensuring that
federation participants are capable of
minimising the risk of security incidents
and collaborate on handling them. The
standard applies to both organisations
running IdPs and SPs.

https://refeds.org/sirtfi

Scalable Negotiator for
a Community Trust
Framework in
Federated

Practices for handling and
communicating SIRTFI compliance of
federation participants in proxy-based
federations.

https://www.igtf.net/snctfi/

https://refeds.org/sirtfi
https://www.igtf.net/snctfi/

72

Infrastructures
(SNCTFI) -

A Trust Framework
for Security
Collaboration among
Infrastructures

Operational security requirements on
the infrastructure as a whole, published
by the WISE community [7]. Overlap
with SIRTFI (which covers IdPs and SPs).

https://wise-community.org/wp-

content/uploads/2017/05/WISE-

SCI-V2.0.pdf

High-level Service Architecture

Figure 22: High level architecture diagram of SIRTFI

Interoperability guidelines

The standards specify how SIRFTI compliance should be asserted in SAML-based federation (in the

metadata). SNCTFI is specified to enable proxy-based federations71 to communicate the relevant

attributes (SIRTFI compliance, traceable user identities) in a trustworthy way across proxies.

In addition, there is guidance on activities and practices that are relevant to the implementation of

SIRTFI and SNCTFI. Guidance on a specific topic may be published by different projects or

organisations - sometimes by national cybersecurity organisations - and should not vary

substantially, although some might be more thorough than others. Although these are technically

not standards, most of the guidance listed here is, like standards, based on state of the art and wide

consultations.

In our guidance table, we have endeavoured to find examples of guidance likely to be accepted

across a wide range of infrastructures.

Guideline Short Description Reference

71 Authentication and Authorisation for Research Communities (AARC) https://aarc-project.eu/

https://wise-community.org/wp-content/uploads/2017/05/WISE-SCI-V2.0.pdf
https://wise-community.org/wp-content/uploads/2017/05/WISE-SCI-V2.0.pdf
https://wise-community.org/wp-content/uploads/2017/05/WISE-SCI-V2.0.pdf
https://aarc-project.eu/

73

Computer Security Incident
Handling Guide

Principally focuses on handling
a single incident but also
includes sharing information
with a Computer Emergency
Readiness Team (CERT)

NIST SP800-61 rev 2
DOI:10.6028/NIST.SP.800-61r2

Common Vulnerabilities and
Exposures

The current list of known
vulnerabilities can help
organisations prevent
incidents

https://cve.mitre.org/

Most countries would have national cybersecurity organisations. Organisations would also have

their own policies and processes. There is also cybersecurity professional organisations, both

nationally and internationally72. An example of the latter is (ISC)2, which publishes a code of ethics

of cybersecurity professionals, as well as a certification scheme, CISSP. Also, ENISA has cybersecurity

training73.

It should be added that there are many commercial “solutions” for (usually organisational)

cybersecurity. The state of the art comprises:

• Cybersecurity awareness training for employees;

• Ransomware protection;

• Endpoint protection and security testing; penetration testing (pentesting);

• Assistance with security incident handling from mitigation (phishing exercises, code analysis),

through forensics to reactive (intrusion detection, SIEM, etc.) and to proactive handling (e.g.

threat hunting);

• Virtual Private Networks for access to corporate resources;

• Tools to detect unusual or suspicious activities, e.g. login from an unusual location which

might require multi-factor authentication, or detection of insider threats (“compromised”

employees who access data they shouldn’t).

Note that a security evaluation should include a threat model which should also cover any additional

resources used by the community. These can include, but are not limited to, connecting users to

infrastructures with mobile phones (e.g. for second factor authentication), community-specific edge

devices such as sensor networks that provide data to the community’s research infrastructure, and

external clouds used by the community.

Examples of solutions implementing this specification

EGI

EGI references guidance on SIRTFI to its IdPs74.

72 https://www.enisa.europa.eu/topics/national-cyber-security-strategies
73 https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists
74 https://wiki.egi.eu/wiki/AAI_guide_for_IdPs

https://www.enisa.europa.eu/topics/national-cyber-security-strategies
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists
https://wiki.egi.eu/wiki/AAI_guide_for_IdPs

74

Notably, EGI also runs a Security Vulnerability assessment Group (SVG75, which handles the

vulnerabilities related to software. Led by Dr Linda Cornwall from UKRI-STFC, the group is currently

(Jan. 2020) in the process of establishing a deployment vulnerability group for EOSC.

EUDAT

During the lifetime of the EUDAT2 project, the project’s WP6 specified that participants should

adhere to SIRTFI (the reference does not seem to be publicly available). In particular, the project

maintained a link of security contacts for each organisation, although there was an issue with

keeping the page up to date.

GEANT

From Terena/GEANT, it is worth noting:

• TF-CSIRT76 working group

• The Information Security Management Special Interest Group (SIG-ISM77)

• The WISE78 community which includes SCI79 which published.

• The CSIRT-KIT80 project

ENISA

The European Union Agency for Cybersecurity provides guidance81 on incident reporting, and

extensive guidance on operating CSIRT82 services, and a lot of other relevant information on

cybersecurity.

NRENs

Currently NRENs do not require SIRTFI for their participants, but they support it for organisations

that wish to assert it.

It was noted that when CERN’s eduGain authentication started rejecting IdPs that did not assert

SIRTFI, the uptake of SIRTFI improved.

75 https://wiki.egi.eu/wiki/SVG
76 https://wiki.geant.org/display/TTC/Report+on+TF-CSIRT+Membership
77 https://wiki.geant.org/display/SIGISM/SIG-ISM+Home
78 https://wise-community.org/
79 https://wise-community.org/wp-content/uploads/2017/05/WISE-SCI-V2.0.pdf
80 http://www.csirt-kit.org/
81 https://www.enisa.europa.eu/topics/incident-reporting
82 https://www.enisa.europa.eu/topics/csirt-cert-services

https://wiki.egi.eu/wiki/SVG
https://wiki.geant.org/display/TTC/Report+on+TF-CSIRT+Membership
https://wiki.geant.org/display/SIGISM/SIG-ISM+Home
https://wise-community.org/
https://wise-community.org/wp-content/uploads/2017/05/WISE-SCI-V2.0.pdf
http://www.csirt-kit.org/
https://www.enisa.europa.eu/topics/incident-reporting
https://www.enisa.europa.eu/topics/csirt-cert-services

75

9 Technical Specifications for Common services

9.1 Data Publishing and Open Data

9.1.1 Digital Repository

A digital repository is an infrastructure component that is able to store, manage and curate Digital

Objects and return their bitstreams when a request is being issued. A digital object (DO) is

represented by a bitstream, is referenced and identified by a persistent identifier and has properties

that are described by metadata. Digital Objects can be aggregated to digital collections. A Digital

Collection is in principle a complex Digital Object which is again identified by a PID and described by

metadata. Metadata contains descriptive, contextual and provenance assertions about the

properties of a DO and/or DC.

This description is based on terms83 defined by the RDA Data Foundation and Terminology Working

Group.

High-level Service Architecture

In Figure 18 you can find a high-level diagram of a digital repository. In the diagram the macro

features of a digital repository have been indicated.

Figure 23: High level architecture diagram of a Digital Repository

Macro Features

Protocols for up-/download and/or to publish of digital objects

To upload/download or to manage digital objects or collections of digital objects in a data publishing

platform a different, a richer protocol is required then a basic data transfer protocol. This is mostly

83 http://hdl.handle.net/11304/5d760a3e-991d-11e5-9bb4-2b0aad496318

http://hdl.handle.net/11304/5d760a3e-991d-11e5-9bb4-2b0aad496318

76

due to the fact that digital objects are more complex, contains more information which needs to be

handled as a basic bitstream

Storing data and preserving bitstreams

A basic feature of a digital repository is to store and preserve bitstreams of digital objects and digital

collections over time. Therefore, the infrastructure on which the bitstreams are stored should be

based on a reliable storage infrastructure in which multiple copies of the bitstreams are stored,

integrity of the data is ensured via checksums and regular checks are run to prevent against bit rot.

De storage infrastructure on which the bitstreams are stored can be implemented in many different

ways and strongly depends on local choices of the digital repository infrastructure provider, the

technology choice and specific requirements to support the digital repository owner use cases, for

example on data volume, number of objects, data organisation. Frequently use storage

infrastructures are RAID storage arrays with tape backups to ensure reliability, hierarchical storage

infrastructures in which data is automatically migrated between different storage layers and in

which multiple copies are maintained, or in an object store in which multiple copies are ensured.

To prevent data loss, digital repository owners should think about storing bitstreams at physical

separated locations. It is difficult to give a minimum distance between the two physical locations;

this strongly depends environmental conditions of the different locations.

Metadata descriptions

Metadata contains descriptive, contextual and provenance assertions about the properties of a

Digital Object or a Collection of Digital Objects. Many communities have defined their own

community-specific metadata schema’s. To support the exchange of metadata for publishing and

harvesting different minimum metadata standards have been defined.

Metadata harvesting

To enlarge the discoverable and findability of scientific artificers, scientific repositories should

enable the harvesting of metadata.

Persistent Identifier

A persistent identifier is a long-lasting ID represented by a string that uniquely identifies a DO and

that is intended to be persistently resolved to meaningful state information about the identified DO.

Different types persistent identifiers for different purposes are available. In this context, persistent

identifiers for the purpose of publishing or to refer to digital objects are depicted.

License

A license is a legal instrument that describes the conditions under which the data can be used and

reused. Different type of licenses can be applied on different type scientific artefact, for example

for publications, research data and/or software.

Search

The search functionality provides an easy way to find and filter digital collections and objects on

basis of certain search criteria. The search criteria are commonly based on specific keywords of the

metadata, words within the metadata description, types of digital objects, etc. The search

77

functionality provided strongly depends on the technology which is used to build the digital

repository. Frequently the search functionality is based on SOLR.

Authentication and Authorisation

In general data owners of the digital collections and objects stored and made available through a

digital repository are registered users of the digital repository and have therefore granted access.

Before a data owner can upload data to the digital repository, he/she must authenticate themselves.

The registration and authentication users involve personal information, the digital repository and

digital repository service provider must comply to the Rules for the protection of personal data

inside and outside of the EU (GDPR)

Data Curation

According to the University of Illinois' Graduate School of Library and Information Science, Data

Curation is defined as the active and on-going management of data through its lifecycle of interest

and usefulness to scholarship, science, and education; curation activities enable data discovery and

retrieval, maintain quality, add value, and provide for re-use over time.

Data Curation can be defined at different levels (e.g. storage media, bitwise, data format, content

and context) and within the different phases of the data life, at creation level, during processing

time and over time while preserving data long term. To be able to comply to the Trust certification

schemes it is required to define and describe the minimum level curation applied within the digital

repository.

Trust Certifications

To show and to provide trust to users and to researchers who want to publish and want to share

their research data to the public (i.e. open access) digital repository providers can certify the digital

repository according to one of the certification frameworks specific for digital repositories.

Adopted Standards

Below a list of common standards, protocols and API’s frequently adopted by data publishing

standards.

Protocols for up-/download and/or to publish of digital objects

Protocol/API Short description References

SWORD SWORD is a lightweight protocol for
depositing content from one location to
another. It stands for Simple Web-
service Offering Repository Deposit and
is a profile of the Atom Publishing
Protocol. SWORD is supported by a
number of digital repository
technologies

http://swordapp.org/

http://swordapp.org/

78

DOIP The Digital Object Interface Protocol is a
core protocol of the Digital Object
Architecture (DO Architecture; or DOA).
The DO Architecture is a logical
extension of the Internet architecture
that addresses the need to support
information management more
generally than just conveying
information in digital form from one
location in the Internet to another.

https://www.dona.net/sites/default/f
iles/2018-11/DOIPv2Spec_1.pdf

FedoraCommons Example of a technology specific API https://wiki.duraspace.org/display/FE
DORA475/RESTful+HTTP+API

DSpace Example of a technology specific API https://wiki.duraspace.org/display/D
SDOC6x/REST+API

B2SHARE Example of a service specific API https://b2share.eudat.eu/help/api

Zenodo Example of a service specific API http://developers.zenodo.org/#rest
-api

Metadata guidelines for metadata harvesting

Minimum metadata guidelines to support metadata harvesting by generic research related

metadata aggregator and search engines.

Standard Short description References

DataCite The DataCite Metadata
Schema is a list of core
metadata properties
chosen for an accurate
and consistent
identification of a
resource for citation
and retrieval purposes,
along with
recommended use
instructions.

https://schema.datacite.org/

OpenAIRE
guidelines
for Data
Archives

The OpenAIRE
Guidelines for Data
Archive Managers 2.0
will provide instruction
for data archive
managers to expose
their metadata in a way

https://guidelines.openaire.eu/en/latest/data/index.html

https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf
https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf
https://wiki.duraspace.org/display/FEDORA475/RESTful+HTTP+API
https://wiki.duraspace.org/display/FEDORA475/RESTful+HTTP+API
https://wiki.duraspace.org/display/DSDOC6x/REST+API
https://wiki.duraspace.org/display/DSDOC6x/REST+API
https://b2share.eudat.eu/help/api
http://developers.zenodo.org/#rest-api
http://developers.zenodo.org/#rest-api
https://schema.datacite.org/
https://guidelines.openaire.eu/en/latest/data/index.html

79

that is compatible with
the OpenAIRE
infrastructure. This is a
platform specific
guideline.

B2FIND
Guidelines

The EUDAT’s guidelines
for the metadata
service B2FIND for data
providers. These
guidelines are intended
to provide information
about the requirements
for successful
integration in B2FIND.
This is a service specific
guideline.

http://b2find.eudat.eu/guidelines/index.html

EDMI A minimum
information metadata
guideline to help users
and services to find and
access datasets reusing
existing data models
and interfaces. EDMI
has been defined in the
EOSCpilot project.

https://eosc-edmi.github.io/

Schema.org Schema.org is a
collaborative,
community activity
with a mission to
create, maintain, and
promote schemas for
structured data on the
Internet, on web pages,
in email messages, and
beyond.

http://schema.org/

Community specific guidelines for metadata

Many communities have defined and maintain metadata standards to be used within their own

community and/or science domain. In the table below you can find a non-exhaustive list of

references to some example communities.

Communities Science
Domain

Short description References

http://b2find.eudat.eu/guidelines/index.html
https://eosc-edmi.github.io/
http://schema.org/

80

ELIXIR,
BBMRI

Life
Sciences

Bioschemas aims to improve the
Findability of data in the life sciences.
It does this by encouraging people in
the life sciences to use Schema.org
markup in their websites so that they
are indexable by search engines and
other services.

https://bioschemas.org/

CLARIN Linguistics The CLARIN Standards Information
System lists language-technology-
related standards that CLARIN centres
are willing to accept and recognize
and visualizes some of their
interdependencies.

https://clarin.ids-
mannheim.de/standards/

ENES-IS Climate Data and metadata standards used
within the ENES Climate community.

https://portal.enes.org/data/data
-metadata-service/standards

Europeana Cultural
Heritage

The Europeana Data Model (EDM) is a
new proposal for structuring the data
that Europeana
will be ingesting, managing and
publishing.

https://pro.europeana.eu/resourc
es/standardization-tools/edm-
documentation

Under auspices of the Research Data Alliance a list of metadata standards in use by communities is

maintained.

Metadata harvesting

Protocol/API Short description References

OAI-PMH The Open Archives Initiative
Protocol for Metadata
Harvesting (OAI-PMH) is a low-
barrier mechanism for
repository interoperability.
Data Providers are repositories
that expose structured
metadata via OAI-PMH. Service
Providers then make OAI-PMH
service requests to harvest that
metadata. OAI-PMH is a set of
six verbs or services that are
invoked within HTTP.

https://www.openarchives.org/pmh/

ResourceSync This ResourceSync specification
describes a synchronization
framework for the web

http://www.openarchives.org/rs/toc

https://bioschemas.org/
https://clarin.ids-mannheim.de/standards/
https://clarin.ids-mannheim.de/standards/
https://portal.enes.org/data/data-metadata-service/standards
https://portal.enes.org/data/data-metadata-service/standards
https://pro.europeana.eu/resources/standardization-tools/edm-documentation
https://pro.europeana.eu/resources/standardization-tools/edm-documentation
https://pro.europeana.eu/resources/standardization-tools/edm-documentation
https://www.openarchives.org/pmh/
http://www.openarchives.org/rs/toc

81

consisting of various
capabilities that allow third-
party systems to remain
synchronized with a server's
evolving resources.

OGC/CSW Domain specific standard from
the Open Geospatial
Consortium. OGC Catalogue
interface standards specify the
interfaces, bindings, and a
framework for defining
application profiles required to
publish and access digital
catalogues of metadata for
geospatial data, services, and
related resource information.

https://www.opengeospatial.org/standards/cat

Persistent Identifier

In the table below you can find a non-exhaustive list of references to some example persistent

identifier types in use.

Standard Short description References

DOI A DOI name is permanently assigned to an
object to provide a resolvable persistent
network link to current information about that
object, including where the object, or
information about it, can be found on the
Internet. While information about an object
can change over time, its DOI name will not
change.

https://www.doi.org/

EPIC EPIC PIDs are based on the Handle system and
can be used to provide persistent references
to digital objects.

https://www.pidconsortium.eu/

ARK ARKs are URLs designed to support long-term
access to information objects, such as digital
objects, physical objects, living beings and
groups and/or intangible objects.

https://n2t.net/e/ark_ids.html

PURL PURLs are Web addresses or Uniform
Resource Locators (URLs) that act as
permanent identifiers in the face of a dynamic
and changing Web infrastructure.

http://www.purlz.org/

https://www.opengeospatial.org/standards/cat
https://www.doi.org/
https://www.pidconsortium.eu/
https://n2t.net/e/ark_ids.html
http://www.purlz.org/

82

Identifiers.org The Identifiers.org Central Registry service
provides a centralized directory of Compact
Identifiers. The service is part of the ELIXIR
infrastructure.

http://identifiers.org/

License

Purpose Short description References

Research
data

Creative Commons licenses provide an easy
way to manage the copyright terms that
attach automatically to all creative material
under copyright. Creative Commons offers a
core suite of six copyright licenses.

https://creativecommons.org/licenses/

Source
code

Creative Common licenses are not
recommended for source code, because
they do not contain specific terms for
distributing source code. For this purpose,
specific licenses are available for
distributing source code, for example GPL,
Apache, BSD, MIT.

https://opensource.org/licenses

Trust Certifications

Standard Short description References

CoreTrustSeal The CoreTrustSeal is the basic
certification level for trusted digital
repositories. Within the CoreTrustSeal
service providers operating a digital
repository must comply with the 16
requirements of the CoreTrustSeal.

https://www.coretrustseal.org/

DIN 31644 DIN 31644 is an extended certification
procedure with higher requirements
compared to CoreTrustSeal.

https://www.din.de/de/mitwirken/norm
enausschuesse/nid/normen/wdc-
beuth:din21:147058907

ISO 16363 ISO 16363:2012 defines a
recommended practice for assessing the
trustworthiness of digital repositories. It
is applicable to the entire range of
digital repositories.

https://www.iso.org/standard/56510.h
tml

http://identifiers.org/
https://creativecommons.org/licenses/
https://opensource.org/licenses
https://www.coretrustseal.org/
https://www.din.de/de/mitwirken/normenausschuesse/nid/normen/wdc-beuth:din21:147058907
https://www.din.de/de/mitwirken/normenausschuesse/nid/normen/wdc-beuth:din21:147058907
https://www.din.de/de/mitwirken/normenausschuesse/nid/normen/wdc-beuth:din21:147058907
https://www.iso.org/standard/56510.html
https://www.iso.org/standard/56510.html

83

Interoperability guidelines

Macro features within a digital repository is locally implemented via the technology used to build

the digital repository or it makes use of external services. When the macro feature is locally

implemented the references are provided within the adopted standards section. When a digital

repository depends for the implementation of the macro feature on external services the

interoperability guidelines are defined by the building blocks on which the external service is based.

Examples of solutions implementing this specification

In the table below, a non-exhaustive list of technologies which are used to build digital repositories

is provided.

Technology References

Fedora http://fedora-commons.org/

Dspace http://www.dspace.org/

Dataverse https://dataverse.org/

Invenio https://invenio-software.org/

B2SHARE https://github.com/EUDAT-B2SHARE

EPrints http://files.eprints.org/

Additional references

COAR Next Generation Repository

The COAR Next Generation Repositories Working Group published on the 28th of November 2017 a

report on the results of this working group, including recommendations for the adoption of new

technologies, standards, and protocols that will help repositories become more integrated into the

web environment and enable them to play a larger role in the scholarly communication ecosystem.

The report provides a definition of the next generation repository and described 11 new behaviours,

as well as technologies, standards and protocols that will facilitate the development of new services

on top of the collective network, including social networking, peer review, notifications, and usage

assessment.

GEDE Repository Topic Group

The RDA Group of European Data Experts (GEDE) has a defined a working group to support

interaction and discussion on the topic of digital repositories. The end result of the working group

should be a report with agreed view on digital repositories among the GEDE experts. A draft version

of this report can be found on the Repository Topic Group wiki space.

http://fedora-commons.org/
http://www.dspace.org/
https://dataverse.org/
https://invenio-software.org/
https://github.com/EUDAT-B2SHARE
http://files.eprints.org/

84

9.2 Metadata Management and Data Discovery

9.2.1 Metadata Cataloguing and Management

Metadata Cataloguing and Indexing comprises the entire metadata ingestion workflow, i.e.

- Metadata harvesting from community repositories

- Metadata mapping on common schema including curation and validation and

- Uploading and indexing of metadata records in the metadata catalogue, to enable Data Discovery

and Access, see related macro feature.

High-level Service Architecture

The technical implementation of metadata cataloguing usually comprises five modules as shown in

the figure below:

In the (Meta)data Provider Module, metadata must be available and harvestable in a known

metadata schema and format. It also should be harvestable and accessible by a standardised

transfer protocol (e.g. OAI-PMH).

For sustainable metadata ingestion synchronous and incremental harvesting should be set up on

the service provider site.

On the service provider site, normalisation, homogenisation and mapping of the specific community

standards onto a generic, common and unified metadata schema should be performed. The

metadata mapping should be adopted to the needs of data provider and should include metadata

validation and curation.

Finally, the mapped records are uploaded into the central metadata catalogue and indexed to allow

faceted search in the discovery portal.

This enables now end users to search and filter datasets via the GUI or by using a command line tool

and then access the found data resources.

85

Figure 24: High level architecture diagram of Data Cataloguing and Management

Adopted Standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

Community
specific
metadata
schemas and
standards

Central, cross-domain Metadata
aggregators collect community
specific formatted metadata. For
instance B2FIND supports
harvesting of multiple metadata
formats (as XML,MarcXML, JSON)
and schemas (e.g. DataCite,
Dublin Core, ISO 19115, CMDI,
DDI and others).

A list of some domain specific metadata
standards can be found at
http://b2find.eudat.eu/guidelines/providing.
html#mdformats

DataCite
Metadata
Schema 4.1.

Common and widely used
Metadata Schema, on which e.g.
OpenAire and EUDAT- B2FIND is
based.

https://schema.datacite.org/meta/kernel-
4.1/
http://b2find.eudat.eu/guidelines/mapping.h
tml#b2fmdschema

http://b2find.eudat.eu/guidelines/providing.html#mdformats
http://b2find.eudat.eu/guidelines/providing.html#mdformats
https://schema.datacite.org/meta/kernel-4.1/
https://schema.datacite.org/meta/kernel-4.1/
http://b2find.eudat.eu/guidelines/mapping.html#b2fmdschema
http://b2find.eudat.eu/guidelines/mapping.html#b2fmdschema

86

Controlled
Vocabulries

E.g. ISO 639-1 codes are a
standardized nomenclature used
to classify languages, or EUDAT-
B2FIND develops a standardised
taxonomy for ‘Resaerch
Disciplines’ , which specifies the
research disciplines

https://en.wikipedia.org/wiki/List_of_ISO_63
9-1_codes
https://cryptpad.fr/pad/#/1/edit/KDecbjauKC
tZclOmZAbbWg/L4aEiGrzJlSbRSXrFutOb0Cd/
http://clara.science/

Protocol/API Short description References

OAI-PMH The Open Archives Initiative
Protocol for Metadata Harvesting
provides an application-
independent interoperability
application to collect metadata
from repositories.

http://www.openarchives.org/OAI/openarchi
vesprotocol.html

ResourceSync This ResourceSync specification
describes a synchronization
framework for the web consisting
of various capabilities that allow
third-party systems to remain
synchronized with a server's
evolving resources.

http://www.openarchives.org/rs/1.1/resourc
esync

REST API’s A full REST API is used to collect
metadata formatted as JSON, e.g.
the referenced REST API is used
to ‘harvest’ from Herbadrop’s
repository

https://helpdesk.eudat.eu/Ticket/Attachmen
t/122586/63597/RESTAPI_HowTo_SearchUse
rGuide_V3.pdf

CSW / OGC Catalogue Service for the Web
(CSW) is used to collect
metadata from
OpenGeoSpatial atalogues
(OGC)

http://www.opengeospatial.org/standards/
cat

Interoperability guidelines

In general the preconditions to publish metadata should be clearly described and stated by the

discovery service provider in ‘Guidelines for data providers’, as in e.g. guidelines of OpenAire

(https://guidelines.openaire.eu/en/latest/data/index.html) or of EUDAT-B2FIND (see

http://b2find.eudat.eu/guidelines). This allows not only research communities, but also generic

data storage repositories and metadata aggregators to make their data searchable in a simple way

by following the guidelines.

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://cryptpad.fr/pad/#/1/edit/KDecbjauKCtZclOmZAbbWg/L4aEiGrzJlSbRSXrFutOb0Cd/
https://cryptpad.fr/pad/#/1/edit/KDecbjauKCtZclOmZAbbWg/L4aEiGrzJlSbRSXrFutOb0Cd/
http://clara.science/
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/rs/1.1/resourcesync
http://www.openarchives.org/rs/1.1/resourcesync
https://helpdesk.eudat.eu/Ticket/Attachment/122586/63597/RESTAPI_HowTo_SearchUserGuide_V3.pdf
https://helpdesk.eudat.eu/Ticket/Attachment/122586/63597/RESTAPI_HowTo_SearchUserGuide_V3.pdf
https://helpdesk.eudat.eu/Ticket/Attachment/122586/63597/RESTAPI_HowTo_SearchUserGuide_V3.pdf
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
https://guidelines.openaire.eu/en/latest/data/index.html
http://b2find.eudat.eu/guidelines

87

Examples of solutions implementing this specification

Examples of cross-domain discovery services using this approach are:

• GoogleDataset Search (https://toolbox.google.com/datasetsearch), which crawls mainly

schema.org , but supports no specific (meta)data curation and validation and does not

consider on open data access (so ‘dark data’ is not necessarily excluded and it does not

conform to FAIR data principles)

• EUDAT-B2FIND (http://b2find.eudat.eu/), the central indexer of EOSC-hub, provides an

interdisciplinary discovery portal for research data with faceted search and comprises

extensive meta(data) mapping, validation and curation in a FAIR manner.

Procedure to integrate a service with the EOSC Hub Metadata Cataloguing and Indexing

To provide metadata to the Metadata Cataloguing and Indexing service, the following preconditions

must be fulfilled:

provider server must be set up (e.g. OAI-PMH provider)

Metadata must be provided in a standardised format and schema and made available and accessible

for harvest requests and some mandatory fields (e.g a title and data identifier) must be provided.

In the next stage, refinement and enrichment of the metadata is done iteratively.

9.2.2 Data Discovery and Access

Data Discovery and Access comprises the ability for end-users to search for data resources and

access the referenced data. This functionality requires and is based on the existence of an indexed

metadata catalogue (see macro feature Metadata Cataloguing and Indexing).

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

DataCite
Metadata
Schema
4.1.

Common and widely used Metadata Schema, on
which as well the B2FIND metadata schema and
faceted search is based on

https://schema.datacite.org/meta/k
ernel-4.1/
http://b2find.eudat.eu/guidelines/
mapping.html#b2fmdschema

ISO 639-1
codes

ISO 639 is a standardized nomenclature used to
classify the search facet ‘Language’

https://en.wikipedia.org/wiki/List_o
f_ISO_639-1_codes

B2FIND
classificati
on
for Discipli
nes (not
yet

Taxonomy for the central B2FIND facet
Discipline, which specifies the research discipline
the data belongs to. This allows filtering and
selecting of datasets according to a multi-
level discipline hierarchy

https://cryptpad.fr/pad/#/1/edit/K
DecbjauKCtZclOmZAbbWg/L4aEiGrz
JlSbRSXrFutOb0Cd/

https://toolbox.google.com/datasetsearch
http://b2find.eudat.eu/
https://schema.datacite.org/meta/kernel-4.1/
https://schema.datacite.org/meta/kernel-4.1/
http://b2find.eudat.eu/guidelines/mapping.html#b2fmdschema
http://b2find.eudat.eu/guidelines/mapping.html#b2fmdschema
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://cryptpad.fr/pad/#/1/edit/KDecbjauKCtZclOmZAbbWg/L4aEiGrzJlSbRSXrFutOb0Cd/
https://cryptpad.fr/pad/#/1/edit/KDecbjauKCtZclOmZAbbWg/L4aEiGrzJlSbRSXrFutOb0Cd/
https://cryptpad.fr/pad/#/1/edit/KDecbjauKCtZclOmZAbbWg/L4aEiGrzJlSbRSXrFutOb0Cd/

88

standardiz
ed)

Protocol/API Short description References

ElasticSearch Elasticsearch is a search engine
based on the Lucene library. It
provides a distributed,
multitenant-capable full-text
search engine with an HTTP web
interface and schema-free JSON
documents.

https://www.elastic.co/products/elasticsearch

CKAN-API CKAN’s Action API is a powerful,
RPC-style API that exposes all of
CKAN’s core features to API
clients.

https://docs.ckan.org/en/ckan-2.7.3/api/

SOLR SOLR is highly reliable, scalable
and fault tolerant, providing
distributed indexing, replication
and load-balanced querying,
automated failover and recovery,
centralized configuration and
more. SOLR powers the search
and navigation features of many
of the world's largest internet
sites.

https://lucene.apache.org/solr/

High-level Service Architecture

The technical implementation of a data discovery and access service enabling searching for and

identifying digital data should comprise the following components:

A discovery portal with an intuitive Graphical User Interface with faceted search and filtering

options.

Command Line Interface allowing embedding discovery in a data processing workflow and machine

readability.

A RESTful Search API with functionalities to identify referenced data collections by persistent

identifiers

A search indexer and search index of a comprehensive metadata catalogue (see macro feature ‘MD

cataloguing’)

https://www.elastic.co/products/elasticsearch
https://docs.ckan.org/en/ckan-2.7.3/api/
https://lucene.apache.org/solr/

89

Figure 25: High level architecture diagram of Data Discovery and Access

Interoperability guidelines

General, how researchers can search for data via the GUI or the CLI is explained in a detailed search

guide of the discovery services, e.g. search guides of DataCite

(https://support.datacite.org/docs/datacite-search-user-documentation) or of EUDAT-B2FIND

(see http://b2find.eudat.eu/help/searchguide.html). Often the CLI of discovery services are used

to perform the first step of complex processing workflows, usually starting with identifying datasets,

which serve as input for following data transfer, processing and storing tasks, executed by other

services. Interoperability guidelines should show how the discovery workflow step can be integrated

in such a processing chains. E.g. the CLI for B2FINd is implemented as python script (retrievable at

https://github.com/EUDAT-B2FIND/md-ingestion/blob/master/searchB2FIND.py).

Examples of solutions implementing this specification

While there are countless domain-specific search portals and also many interdisciplinary discovery

services, we will mention just two examples of cross domain services here:

• Google Dataset Search (https://toolbox.google.com/datasetsearch) allows users to find

records stored on the Web using a simple keyword search. The tool can find information about

records hosted in thousands of repositories across the Web. This makes these records

generally accessible and usable.

https://support.datacite.org/docs/datacite-search-user-documentation
http://b2find.eudat.eu/help/searchguide.html
https://github.com/EUDAT-B2FIND/md-ingestion/blob/master/searchB2FIND.py
https://toolbox.google.com/datasetsearch

90

• EUDAT-B2FIND (http://b2find.eudat.eu/) is a cross-domain discovery service based on

metadata steadily harvested from research data collections from EUDAT data centres and

other repositories covering all possible scientific fields. The service offers faceted browsing

and it also allows, in particular, to filter via the facet ‘Discipline’ discovering data that is stored

through the B2SAFE and B2SHARE services. The B2FIND service includes rich and validated

metadata that is harvested from many different community and domain specific repositories.

Within EOSC-hub EUDTA-B2FIND is intended to get the central search index for research date

within and beyond EOSC-hub. Into this context fall the activities ‘Integration of B2FIND with

B2SAFE and EGI DataHub’ already mentioned in ‘Metadata Cataloguing and Indexing’

Procedure to integrate a service with the EOSC Hub Data Discovery and Access

The usual method to integrate discovery and access of data within other services is to add this

function in a processing chain, which use other services. For example, using B2FIND, to search and

identify datasets, which serve as input for services further down in the chain. The first workflow

step ‘Discovery of input data’ can be implemented as a call of the python script searchB2IND.py with

specified search criteria. A list of PIDs is then returned, which can be used to identify and retrieve

data collections needed for further processing steps.

On the other hand, integration of other services in this context can mean, that the data of the

associated provider are indexed and made searchable by the Discovery Service.

9.3 Cloud Compute, Containers and Orchestration

9.3.1 Cloud IaaS VM Management

Services of Cloud IaaS VM Management provide on-demand API-based access to computing resources
as Virtual Machines that can run user-defined arbitrary software (including operating systems and
applications). Services in this category also allow management of block storage that can be associated
to the VMs and network management to provide connectivity between VMs and external networks.

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

Open Virtualization
Format (OVF)

Packaging format for software solutions based on virtual
systems (VM image format)

OVF 2.1.1

There are several competing APIs for this block, most of them proprietary / closed and not
interoperable. The main standards in the area (OGF OCCI and DMTF CIMI) have little support from
vendors and/or providers and have little use. The table below lists some of the APIs implemented by
IaaS providers, but it’s not meant to be an exhaustive list.

http://b2find.eudat.eu/
https://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.1.pdf
https://occi-wg.org/
https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf

91

Protocol/API Short description References

OpenStack OpenStack is an Open Source cloud operating system
that controls large pools of compute, storage, and
networking resources throughout a datacenter, all
managed and provisioned through APIs with common
authentication mechanisms.

OpenStack API

Amazon EC2/EBS/VPS &
AWS VPN

Amazon Elastic Compute Cloud (EC2), Elastic Block
Storage (EBS), Virtual Private Cloud (VPS) and AWS
Virtual Private Network (AWS VPN) provide
management of Virtual Machines and associated block
storage and network features

AWS EC2 API

Azure Virtual
Machines/Disks/VNet

IaaS VM management services from Microsoft Azure Azure Virtual
Machines API

Google Cloud Compute
Engine

IaaS VM management service from Google Cloud
Platform

Google Cloud
Compute
Engine API

High-level Service Architecture

Figure 26: High level architecture diagram of Cloud IaaS VM Management

IaaS VM Management services allow users to manage VMs that are instantiated from VM images

and can be associated with permanent block storage. The VMs can execute any kind of workload,

including new services or platforms that are accessed by platform users, which may be different

from the IaaS VM Management users that manage the IaaS resources.

https://docs.openstack.org/api/
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines
https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines
https://cloud.google.com/compute/docs/apis
https://cloud.google.com/compute/docs/apis
https://cloud.google.com/compute/docs/apis

92

Interoperability guidelines

Interoperable service in this category must:
• Provide API access for on-demand management of VMs and associated resources. Open

and/or Standard APIs are preferred. Services that provide the capability to manage VMs

through graphical dashboards but limit API access to users cannot be considered

interoperable. See table above for a non-comprehensive list of APIs that may be supported by

the service.

AAI interoperability

• Services should provide access to users authenticated with one of the EOSC-hub AAI federated

identity protocols (OpenID Connect and/or SAML)

Orchestration interoperability

• Services should expose APIs that are supported by the IaaS Orchestrator services of EOSC-hub.

Federation interoperability:

• Services in this category that need to be federated into a cloud federation should provide API-

based access to:

• Management of VM images, i.e. allow to create (upload) and delete VM images from which

VMs can be instantiated.

• Access usage information of individual VMs and block storage so accounting records can be

generated for integration into the EOSC-hub central services.

Examples of solutions implementing this specification Cloud IaaS VM Management

EOSC-hub services:

• EGI Cloud Compute - https://www.egi.eu/services/cloud-compute/

OpenSource implementations:

• OpenStack - https://www.openstack.org/

• OpenNebula - https://opennebula.org/

9.3.2 Cloud IaaS Container Management

Services of Cloud IaaS Container Management provide on-demand API-based management of

container-based applications. These services support the (Automated) Orchestration of container-

based applications which manage the deployment of a complete lifecycle of the containers that

compose an application into a set of computing resources.

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

https://www.egi.eu/services/cloud-compute/
https://www.openstack.org/
https://opennebula.org/

93

Standard Short description References

OCI OCI contains two specifications: the Runtime Specification
(runtime-spec) and the Image Specification (image-spec). The
Runtime Specification outlines how to run a “filesystem
bundle” that is unpacked on disk. At a high-level an OCI
implementation would download an “OCI Image” then unpack
that image into an “OCI Runtime filesystem” bundle. At this
point the “OCI Runtime Bundle” would be run by an “OCI
Runtime”.

OCI

Singularity
Image
Format (SIF)

SIF is the image format used by Singularity SIF reference
implementation

Protocol/API Short description References

Kubernetes Kubernetes (K8s) is an open-source system for automating
deployment, scaling, and management of containerized
applications

kubernetes

Docker
Swarm

Cluster management and orchestration features embedded in the
Docker Engine

Docker
Swarm mode

Mesos Apache Mesos abstracts CPU, memory, storage, and other
compute resources away from machines (physical or virtual),
enabling fault-tolerant and elastic distributed systems to easily be
built and run effectively.

Apache
Mesos

AWS ECS Amazon Elastic Container Service (Amazon ECS) is a highly
scalable, high-performance container orchestration service that
supports Docker containers and allows you to easily run and scale
containerized applications on AWS.

AWS ECS

AWS Fargate AWS Fargate is a compute engine for Amazon ECS that allows you
to run containers without having to manage servers or clusters.

AWS Fargate

High-level Service Architecture

IaaS Container Orchestration services allow users to manage applications that are composed by

containers. The container orchestrator manages a set of bare-metal or IaaS Cloud resources where

the containers are scheduled. The system also manages the containers lifecycle, associated storage

for containers, provides networking among the application containers and exposes those as services

to external applications, and scales up and down the deployments as needed. Other features may

be also provided.

https://www.opencontainers.org/
https://github.com/sylabs/sif
https://github.com/sylabs/sif
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
http://mesos.apache.org/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

94

Figure 27: High level architecture diagram of Cloud IaaS Container Management

Interoperability guidelines

Interoperable service in this category should:

• Support OCI image and runtime specs for container execution.

• Provide access to users authenticated with one of the EOSC-hub AAI federated identity

protocols (OpenID Connect and/or SAML).

If the service can manage underlying IaaS resources automatically, it should support main IaaS VM

Management systems in the EOSC-hub (OpenStack mostly).

There are several non-compatible container orchestrators available, there are no guidelines for the

APIs of those currently.

Examples of solutions implementing this specification

EOSC-hub services:

• EGI Cloud Container Compute

Other services:

• Kubernetes based: AWS EKS, GCP GKE, Azure AKS

• Other: AWS ECS, AWS Fargate

9.3.3 Cloud IaaS Orchestration

Services of Cloud IaaS Orchestration automate the deployment of resources on IaaS clouds. These

tools normally use some sort of domain specific language or script that defines your application

deployment process, that is translated to a set of tasks that interact with the cloud services to start

Virtual Machines, Storage, Networks and other kinds of resources and services where your

application will be installed and run.

https://www.egi.eu/services/cloud-compute/
https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine/
https://docs.microsoft.com/en-us/azure/aks/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

95

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

OASIS
TOSCA

Topology and Orchestration Specification for Cloud Applications
(TOSCA), is an OASIS standard language to describe a topology of cloud-
based web services, their components, relationships, and the processes
that manage them.

OASIS
TOSCA

Protocol/API Short description References

IM Infrastructure Manager is a tool that eases the access and the
usability of IaaS clouds by automating the VMI selection,
deployment, configuration, software installation, monitoring
and update of Virtual Appliances.

IM REST API

Terraform Terraform is a tool for building, changing, and versioning
infrastructure safely and efficiently. Terraform can manage
existing and popular service providers as well as custom in-
house solutions.

Terraform
documentation

Occopus Occopus is a framework that provides automatic features for
configuring and orchestrating distributed applications (so
called virtual infrastructures) on single or multi cloud systems.

Occopus

SlipStream SlipStream is a multi-cloud application management platform. SlipStream API

High-level Service Architecture

Figure 28: High level architecture diagram of Cloud IaaS Orchestration

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://imdocs.readthedocs.io/en/latest/REST.html
https://www.terraform.io/docs/index.html
https://www.terraform.io/docs/index.html
http://occopus.lpds.sztaki.hu/
https://ssapi.sixsq.com/

96

IaaS Orchestration services build from a code-like description of an application the underlying

resources by leveraging IaaS APIs of the target IaaS cloud providers.

Interoperability guidelines

Infrastructure description:

• Interoperable services should support a standard format for the description of the resources

to be managed by the orchestrator. OASIS TOSCA is the most widely adopted standard in this

area.

AAI interoperability

• Services should provide access to users authenticated with one of the EOSC-hub AAI federated

identity protocols (OpenID Connect and/or SAML)

IaaS interoperability

• Services should support APIs listed in the IaaS VM Management macro-feature. At least the

APIs supported by current EOSC-hub services (OpenStack, OpenNebula and OCCI) should be

supported, ideally proprietary APIs should be also supported to avoid vendor lock-in from the

underlying IaaS providers.

Orchestration API

• There is no clear standard or de-facto standard for the orchestration API. No interoperability

guidelines are provided.

Examples of solutions implementing this specification

EOSC-hub services:

• Infrastructure Manager

Other:

• Terraform

• Occopus

• SlipStream

9.4 PaaS solutions

9.4.1 PaaS Orchestration

The PaaS (Platform as a Service) solution adopted in this project allows the users to deploy

virtualised computing infrastructures with complex topologies (such as clusters of virtual machines

or applications packaged as Docker containers) using standardized interfaces based on REST APIs

https://www.grycap.upv.es/im/index.php
https://www.terraform.io/
http://occopus.lpds.sztaki.hu/
https://sixsq.com/products-and-services/slipstream/features

97

and adopting the TOSCA (Topology and Orchestration Specification for Cloud

Applications) templating language for the description of Cloud-based applications.

The PaaS layer features advanced federation and scheduling capabilities ensuring the transparent

access to the different IaaS back-ends including on-premises Cloud Management Frameworks such

as OpenStack and OpenNebula, public Cloud providers such as Amazon Web Services and Microsoft

Azure and, finally, Container Orchestration Platforms such as Apache Mesos and Kubernetes.

The selection of the best cloud provider to fulfill the user request is performed considering criteria

like the user’s SLAs, the services availability and the data location.

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

TOSCA OASIS open standard that defines
the interoperable description of
services and applications hosted on
the cloud and elsewhere; including
their components, relationships,
dependencies, requirements, and
capabilities, thereby enabling
portability and automated
management across cloud
providers regardless of underlying
platform or infrastructure.

http://docs.oasis-open.org/tosca/TOSCA-
Simple-Profile-YAML/v1.2/csprd01/TOSCA-
Simple-Profile-YAML-v1.2-
csprd01.html#_Toc503782167

Oauth2.0
Authorization
Framework

The OAuth 2.0 authorization
framework enables a third-party
application to obtain limited access
to an HTTP service, either on behalf
of a resource owner by
orchestrating an approval
interaction between the resource
owner and the HTTP service, or by
allowing the third-party application
to obtain access on its own behalf.

https://tools.ietf.org/html/rfc6750

REST REST, or REpresentational State
Transfer, is an architectural style
for providing standards between
computer systems on the web,
making it easier for systems to
communicate with each other.
REST-compliant systems, often
called RESTful systems, are
characterized by how they are

https://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/#relwwwrest

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.html#_Toc503782167
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.html#_Toc503782167
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.html#_Toc503782167
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csprd01/TOSCA-Simple-Profile-YAML-v1.2-csprd01.html#_Toc503782167
https://tools.ietf.org/html/rfc6750
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest

98

stateless and separate the concerns
of client and server.

High-level Service Architecture

The high-level reference architecture is depicted in the diagram below.

The architecture can be broken down into the following main categories of components:

• Core services:

o API server, providing REST endpoints to submit and handle the deployment requests;

o Workflow Engine, that manages the deployment workflow;

o Message Bus, providing a way of integrating services loosely and based on

notifications (events).

• Plugins

o Cloud connectors, implementing the interfaces with the relevant Cloud Management

Frameworks.

o Container orchestration connectors, implementing the interfaces that abstract the

interaction with the relevant container orchestration platforms, e.g. Mesos,

Kubernetes.

o HPC integration connectors, implementing the interfaces to interact with the HPC

services; the envisage interaction is based on REST APIs provided by gateway hosted

by the HPC site, e.g. using QCG APIs or SLURM APIs.

o Storage services connectors, implementing the interfaces to interact with the relevant

storage management services; the interaction is based on REST APIs provided by the

storage services themselves.

Moreover, the following dependencies towards integration with the Federation Services are

required:

• EOSC-hub AAI, to ensure the federated access to the services and resources;

• AppDB-IS or AMS (optional): information published by the sites can be used by the PaaS tools

exploiting the already available collectors;

• EOSC-Hub Monitoring (optional): information about the health status of the services can be

usefully exploited by the PaaS orchestrators in order to select the best sites for scheduling the

user requests;

• Marketplace (optional): information collected in the Marketplace can be consumed by the

PaaS tools.

99

Figure 29: High level architecture diagram of the PaaS orchestration

Interoperability guidelines

The adoption of the TOSCA standard can help to reach a good level of interoperability among

different services in this area. However, this is a necessary but not a sufficient condition since the

full interoperability would require the adoption of the same TOSCA custom types (in addition to the

normative ones) and of the same REST API specifications.

Currently there is not an official standard for the PaaS orchestration APIs, but we propose as

reference the APIs implemented by the INDIGO PaaS Orchestrator: https://indigo-

dc.github.io/orchestrator/restdocs/

Examples of solutions implementing this specification

• INDIGO PaaS Orchestrator: https://github.com/indigo-dc/orchestrator

• Infrastructure Manager: https://www.grycap.upv.es/im/index.php

https://indigo-dc.github.io/orchestrator/restdocs/
https://indigo-dc.github.io/orchestrator/restdocs/
https://github.com/indigo-dc/orchestrator
https://www.grycap.upv.es/im/index.php

100

9.5 Workflow Management and User Interfaces and Data Analytics

9.5.1 Marketplace

Marketplace is a dedicated platform where services are presented to the users and made available

to get access to. Is a place where the Service Organisations can define and present to the users

dedicated service offers, users can issue an order for those offers and handle different phases of

the ordering process. Along with SPMT it is meant to support Service Management, and along with

Service Order Management Back Office it provides Service Order Management in EOSC-hub.

Adopted standards

List with references of the main standards and protocols/APIs adopted by this core service

Standard Short description References

eInfraCentral
based EOSC-hub
STD

Service model. Unified approach to
present services in the
Marketplace, based on the MP-
relevant subset of EOSC-hub STD.

https://github.com/eInfraCentral/docs
https://wiki.eosc-
hub.eu/display/EOSC/EOSC+hub+service
+template

AAI user and group
information
attributes

User and group attributes served
by the EOSC AAI (gathering EGI
CheckIn, B2ACCESS, IAM) are
recognised and processed in the
MP.

https://documents.egi.eu/public/Retriev
eFile?docid=3344&version=2&filename=
EOSC-
hub%20D5.1%20final.pdf#%5B%7B%22n
um%22%3A46%2C%22gen%22%3A0%7D
%2C%7B%22name%22%3A%22XYZ%22%
7D%2C69%2C630%2C0%5D

Protocol/A
PI

Short description References

ARGO
Messaging
System -
HTTP API

(Implements the Google PubSub protocol).
MP uses this message-oriented service to
retrieve list of EOSC-hub services along
with their metadata (part of STD) relevant
in the MP scope.

https://argoeu.github.io/guides/messagi
ng/

eInfraCentr
al API -
REST API

Used to retrieve information about
services registered in eInfraCentral
Catalogue

https://github.com/eInfraCentral/docs/b
lob/master/eInfraCentral_APIs_v1.0.pdf

JIRA
webhooks

User-defined callback over HTTP. Used to
retrieve information from JIRA in the
scope of MP Projects (represented by JIRA
Epic) and MP Orders (JIRA tasks)

https://developer.atlassian.com/server/j
ira/platform/webhooks/

https://github.com/eInfraCentral/docs
https://wiki.eosc-hub.eu/display/EOSC/EOSC+hub+service+template
https://wiki.eosc-hub.eu/display/EOSC/EOSC+hub+service+template
https://wiki.eosc-hub.eu/display/EOSC/EOSC+hub+service+template
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://argoeu.github.io/guides/messaging/
https://argoeu.github.io/guides/messaging/
https://github.com/eInfraCentral/docs/blob/master/eInfraCentral_APIs_v1.0.pdf
https://github.com/eInfraCentral/docs/blob/master/eInfraCentral_APIs_v1.0.pdf
https://developer.atlassian.com/server/jira/platform/webhooks/
https://developer.atlassian.com/server/jira/platform/webhooks/

101

JIRA REST
API

Used to create and synchronise
representation of MP Projects and Orders
in JIRA. Data representing Projects and
Orders on the MP end is available in JSON
format.

https://developer.atlassian.com/server/j
ira/platform/rest-apis/

High-level Service Architecture

Figure 30: High level architecture diagram of Marketplace

Interoperability guidelines

For SPMT and Order Management solutions, a dedicated development is needed to achieve the

integration. However, in the future it is planned to have MP API to integrate with SPMT solutions

on one end and JIRA-like solutions on the other (two APIs) with a unified approach to exploit the

core service features.

There is a standard approach to integrate JIRA based Order Management solutions. It requires a

dedicated JIRA instance, allowing webhook integration and information about the configuration of

JIRAs objects (IDs of JIRA ticket fields, ticket statuses, worklows info etc.) in order to configure the

mapping between the MP and JIRA.

Examples of solutions implementing this specification

SPMT solutions:

• EOSC-hub SPMT: AGORA SPMT (https://grnet.github.io/agora-sp)

• eInfracentral Catalogue (https://github.com/eInfraCentral/docs)

https://developer.atlassian.com/server/jira/platform/rest-apis/
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://grnet.github.io/agora-sp
https://github.com/eInfraCentral/docs

102

Order Management solutions:

• JIRA based EOSC-hub Order Management System

(https://docs.google.com/document/d/1o1pu7_3tVHuYmY9AcvZL9PGS-

xIZYa_bcyYCyQQQ5HU/edit#heading=h.amnmdg2nez9w)

AAI solutions:

• EGI CheckIn based EOSC AAI

(https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-

hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%

22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D)

Procedure to integrate a service with the EOSC Hub Marketplace

For SPMT and Order Management solutions a dedicated development was needed to achieve the

integration. However, in the future it is planned to have MP API to integrate with SPMT solutions

on one end and JIRA-like solutions on the other (two APIs) with a unified approach to exploit the

core service features.

For the AAI integration, MP used a defined procedure of EGI CheckIn to integrate SPs/IdPs

(https://wiki.eosc-hub.eu/pages/viewpage.action?pageId=30738897)

https://docs.google.com/document/d/1o1pu7_3tVHuYmY9AcvZL9PGS-xIZYa_bcyYCyQQQ5HU/edit#heading=h.amnmdg2nez9w
https://docs.google.com/document/d/1o1pu7_3tVHuYmY9AcvZL9PGS-xIZYa_bcyYCyQQQ5HU/edit#heading=h.amnmdg2nez9w
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://documents.egi.eu/public/RetrieveFile?docid=3344&version=2&filename=EOSC-hub%20D5.1%20final.pdf#%5B%7B%22num%22%3A46%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C69%2C630%2C0%5D
https://wiki.eosc-hub.eu/pages/viewpage.action?pageId=30738897

103

10 Conclusions and next steps

This deliverable presented the EOSC-hub proposal for the EOSC Technical Architecture that consists

of the definition of a reference architecture, where all the EOSC main functions, interfaces, APIs and

standards are identified. A common approach to identify key technical functions/building blocks for

service category has been defined and started to be applied. As a result, several building blocks have

already been identified and technical specifications are available for some of them.

As a next step, we have started a process to share our approach and collecting feedback. Initially a

webinar was held where this work has been presented, then a formal feedback collection will start

in the next few weeks and we are planning to organise a workshop by the end of this year involving

the largest expected EOSC user groups.

Feedback is also needed on the technical specifications we are defining with the expertise available

within the project. For every specification, we are intending to open a forum with technical experts

from other initiatives with the double aim to improve the specification and find consensus around

it.

Finally, we will liaise with the EOSC Architecture WG to continue this activity taking into account

suggestions and requirements from the EOSC governance and the largest possible set of service

providers and user communities.

