

D2.7 Technical specifications for compute

common services

Lead partner: EGI Foundation

Version: 1

Status: Under E Review

Dissemination
Level:

PUBLIC

Keywords: Technical Architecture, Compute Services

Document Link: https://documents.egi.eu/document/3802

Deliverable Abstract

EGI-ACE builds on the computing e-Infrastructure of the EGI Federation to deliver the
EOSC Compute Platform: an open, data-centric, distributed, hybrid and secure
infrastructure consisting of computing and storage providers and platform services to
support research and open science via data spaces.

The technical architecture of EGI-ACE provides a platform to build and deploy
Thematic Services that can exploit baseline compute and storage resources from
Cloud, HTC and HPC providers via a set of Federated Compute and Data services that
facilitate running the workloads near the data to be analysed. Alongside with user-
oriented services, the Core EGI Services cover the operational aspects of the
federation (authentication and authorization, accounting, monitoring, helpdesk) and
bridge the EGI-ACE services with EOSC Core functionalities.

This document presents the technical specifications of the EOSC Compute Platform
services and components.

https://documents.egi.eu/document/3802

 2

COPYRIGHT NOTICE

This work by parties of the EGI-ACE consortium is licensed under a Creative Commons

Attribution 4.0 International License. (http://creativecommons.org/licenses/by/4.0/).

EGI-ACE receives funding from the European Union's Horizon 2020 research and innovation

programme under grant agreement no. 101017567.

DELIVERY SLIP

 Name Partner/Activity

From: Enol Fernández EGI Foundation / WP2

Moderated by: Sjomara Specht EGI Foundation

Reviewed by: Ignacio Lamata Martinez EGI Foundation

Approved by: SDS

DOCUMENT LOG

Issue Date Comment Author

v.0.1 09/6/2022 Initial ToC proposal E. Fernández (EGI Foundation)
G. Sipos (EGI Foundation)

v.0.2 01/08/2022 Reviewed specifications for services M. Antonacci (INFN),
V. Ardizzone ((EGI Foundation),
P. Bhoumik (ETH Zurich),
J. Caballero (STFC),
M. Caballer (UPV),

A. Calatrava (UPV),
I. Collier (STFC),
R. Cooper (STFC),
E. Fernández (EGI Foundation)

W. Karageorgos (IASA),
B. Kryza (CYFRONET),
N. Liampotis (GRNET),

S. Licehammer (CESNET),
A. López (CSIC),
A. Manzi (EGI.eu),

G. Marchetti (CNRS),
G. Moltó (UPV),
T. Noble (STFC),
V. Tran (IISAS),
P. Pospíšil (CESNET),

D. Spiga (INFN),
Z. Šustr (CESNET),
R. Wartenburger (ETH Zurich)

v.0.3 02/09/2022 Handle reviewers comments A.Manzi (EGI Foundation),

E.Fernández (EGI Foundation)

v.0.4 27/09/2022 Send to SDS

http://creativecommons.org/licenses/by/4.0/

 3

v.1 12/10/2022 Final

TERMINOLOGY

https://confluence.egi.eu/display/EGIG

Terminology/Acronym Definition

AAI Authentication and Authorisation Infrastructure

AI/ML Artificial Intelligence / Machine Learning

API Application Programming Interface

AWS Amazon Web Services

CDMI Cloud Data Management Interface

CI/CD Continuous Integration and Continuous Delivery

CLI Command-Line Interface

DOI Digital Object Identifier

EOSC European Open Science Cloud

GCP Google Cloud Platform

GUI Graphical User Interface

HPC High Performance Computing

HTC High-throughput Computing

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IdP Identity Provider

IM Infrastructure Manager

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

OIDC OpenID Connect

OLA Operational Level Agreement

PaaS Platform as a Service

PID Persistent Identifier

RDF Resource Description Framework

REST Representational State Transfer

SLA Service Level Agreement

SP Service Provider

SSH Secure Shell Protocol

TLS Transport Layer Security

VM Virtual Machine

VMI Virtual Machine Image

VO Virtual Organisation

VPN Virtual Private Network

WMS Workload Manager Service

XML Extensible Markup Language

https://confluence.egi.eu/display/EGIG

 4

Contents

Executive summary ... 6

1 Introduction... 7

1.1. Integration Modes for Resource Providers .. 9

1.2. Document organisation .. 11

2. Core Services ... 12

2.1. EGI Check-in: Authentication and Authorisation ... 12

2.2. Configuration Database .. 15

2.3. Accounting .. 17

2.4. Monitoring ... 18

2.5. Helpdesk ... 20

3. Federated Resource providers .. 22

3.1. Cloud IaaS .. 22

3.1.1. AAI integration ... 23

3.1.2. Application Sharing ... 23

3.1.3. Compute and Data Federation ... 23

3.1.4. Integration with other core services ... 23

3.2. High Throughput Computing .. 24

3.2.1. Grid providers .. 24

3.2.2. Spider ... 25

3.3. High Performance Computing .. 25

4. Federated Compute ... 27

4.1. Workload Manager ... 27

4.2. Infrastructure Manager ... 29

4.3. CernVM-FS ... 31

4.4. AppDB ... 32

4.5. Dynamic DNS ... 33

5. Federated Data .. 36

5.1. DataHub .. 36

5.2. FTS .. 38

5.3. Rucio ... 40

5.4. openRDM .. 42

6. Platforms .. 44

6.1. Notebooks ... 44

 5

6.2. EC3 .. 46

6.3. PaaS Orchestrator .. 49

6.4. DODAS .. 51

6.5. DEEP training facility .. 53

7. Conclusions .. 55

8. References ... 57

 6

Executive summary

EGI-ACE builds on the computing e-Infrastructure of the EGI Federation to deliver the

EOSC1 Compute Platform: an open, data-centric, distributed, hybrid and secure

infrastructure consisting of computing and storage providers and platform services to

support research and open science via data spaces.

The EGI-ACE technical architecture provides a platform to deploy Thematic Services that

can exploit baseline compute and storage resources from Cloud, HTC and HPC providers

via Federated Compute and Data services that facilitate the execution of workloads close to

the data to be analysed. Together with user-oriented services, the Core EGI Services cover

the operational aspects of the Federation (authentication and authorisation, accounting,

monitoring, helpdesk) and bridge the gap between EGI-ACE services and the Core EOSC

functionalities.

This document describes the different layers of the EGI-ACE technical architecture and

details each of the services that compose these layers. It is an updated version of

Deliverable 2.3 [R1], including updated integration modes for providers, details on the

integration of HPC providers and an updated description of the different components as they

have evolved during the project lifetime.

1 European Open Science Cloud. https://eosc-portal.eu/about/eosc

https://eosc-portal.eu/about/eosc

 7

1 Introduction

EGI-ACE delivers the EOSC Compute Platform as a fully integrated compute environment

that federates distributed hybrid compute and storage facilities to support processing and

analytics via a set of services for distributed data and compute access.

The EOSC Compute Platform architecture is organised in functional blocks, as shown in

Figure 1.

Figure 1. EOSC Compute Platform functional block diagram.

At the bottom of the architecture, the Federated Resource Providers deliver a hybrid

infrastructure for hosting research applications and data. Different types of providers are

considered in the EGI-ACE technical architecture:

● IaaS Cloud Providers provide access to Virtual Machine-based computing with

associated Object and Block storage. These deliver a very flexible and customisable

platform where users have complete control over the software and the supporting

compute capacity. This flexibility of the computing platform enables the support of a

variety of workloads: user gateways or portals, interactive computing platforms and

almost any kind of data- and/or compute-intensive workloads.

● HTC and HPC provide access to large, shared computing systems for running

computational jobs at scale. These allow researchers to analyse large datasets and

execute thousands of parallel computing tasks without managing the underlying

infrastructure. HTC is typically oriented towards the execution of many independent

tasks over long times, whereas HPC supports highly optimised applications with

 8

many dependent tasks requiring large amounts of parallel computation together with

a low-latency and high-bandwidth interconnection network.

The Core Services pillar provides the necessary functionality to assist services of all other

areas with the integration into the Federation. These services support the operation of the

EOSC Compute platform and integrate and interoperate with the EOSC Core as it is

developed in EOSC Future2. Examples of Core Services are:

● Configuration Database, which contains detailed information about the whole

infrastructure of the Federation.

● Accounting, which tracks the use of resources over time.

● Monitoring, which oversees the status of resources and provides an insight on their

availability.

● AAI, which is implemented via EGI Check-in3, EGI’s Authentication and

Authorisation service, is a key component of the architecture that enables a single

identity manager to be used across all the layers and services of the EOSC Compute

platform. This effectively ensures a unified mechanism for controlling access

permissions to resources.

● Helpdesk, which provides human support to end-users.

These services are described in more detail in Section 2. Other services are also included

in this area, ranging from other non-technical services, coordination activities such

asOperations Management, and Security and Incident Response.

The Compute Federation services orchestrate the execution of user workloads in the

Federated Resource Providers. These support the exploitation of data locality by moving

computation close to the data and facilitate application portability with the support for a

diverse range of computing platforms (Cloud IaaS, HTC, HPC) and the interaction with

software distribution tools (such as VM images, container images or plain binaries). There

are three services considered in the architecture:

● Hybrid cloud orchestration, for the deployment of custom virtual infrastructure over

multiple IaaS cloud backends;

● Workload Manager, for the scheduling and execution of jobs in the federated

resource providers (both cloud and HTC/HPC); and a

● Software distribution, for making software available at the Federated Resource

Providers (e.g., as VM images).

The Data Federation services support the exposure of discoverable datasets and the

staging of data in and out of the EOSC Compute Platform Cloud. The Federated Data

Management services control the raw storage capacity offered by the Federated Resource

Providers to deliver data products that, by using the Data Transfer service, can be

2 https://eoscfuture.eu/
3 https://www.egi.eu/service/check-in/

https://eoscfuture.eu/
https://www.egi.eu/service/check-in/

 9

transferred between the different EGI-ACE providers and potentially to external data

repositories.

The Platforms service layer provides generic added-value services to exploit the compute

and storage resources of EGI-ACE, which can be easily reused by different communities to

build thematic end-user services. These platforms rely on the existing Compute Federation

and Data Federation services to access the Federated Resource Providers and deliver

Interactive Notebooks as a tool for interactive analysis of data, PaaS Orchestration to

facilitate the deployment of complex applications, AI/ML to support the models and

algorithms required by some scientific fields, and Scalable Big Data Tools that can be

reused in several research disciplines.

Finally, Thematic Services is built on top by combining services from all these areas to

bring simulation, machine learning and data analytics capabilities that are tailored to the

needs of a specific research domain. These data spaces and tools focus on data

exploitation. Each thematic service will have tools adapted to the disciplines they target,

under disparate arbitrary architectures, so they are not covered in this deliverable.

These function blocks depicted in Figure 1 will be discussed in the different sections of this

document.

1.1. Integration Modes for Resource Providers

The EOSC Compute Platform offers a flexible approach to bringing new providers into the

Federation to deliver compute and storage resources:

● Full integration. These providers are fully integrated into the EGI Federation through

the Core Services. It enables the seamless use of multiple clouds for international

communities and empowers EGI to establish and monitor Service Level Agreements

(SLAs) between users and providers. This integration is a well-documented

procedure [R2] that ensures that providers meet all policy and operational

requirements, and that the technical integration is in place.

● AAI Integration. These providers use EGI Check-in for the authentication and

authorisation of federated users, but do not necessarily integrate with the rest of the

Core Services. While these services are not part of the EGI Federation, the hosting

organisation must comply with EGI security requirements to ensure that it will operate

the service in good faith, without deliberately exposing the user to security risks,

without claiming intellectual property on the data owned by the user, and protecting

sensitive data generated by the user’s interaction with the service. EGI Check-in

integration enables use from the compute and data federation layers, but it requires

individual and manual configuration, as these providers cannot be easily discovered.

The lack of certification, monitoring and accounting also prevents the inclusion of

services to support SLAs/OLAs, since the availability and reliability of the providers

cannot be monitored by EGI.

● Application Sharing. Providers joining the application sharing integration mode

make virtualised applications and software packages from EGI available to local

users. These providers integrate with the Software distribution components of the

EOSC Compute Platform.

 10

● Data Sharing. EGI DataHub (see Section 5.1) allows providers to replicate scientific

datasets and expose existing data to the local cloud provider. This integration mode

consists of the deployment of the DataHub components that expose the storage

available locally to the Federation, in logical namespaces where datasets are

available. Similarly, to other providers that are not fully integrated, these providers

cannot be included in the SLAs/OLAs.

Table 1 presents a summary of the different integration options and its features.

Table 1 – Integration modes summary

 Full
Integration

AAI integration Application Sharing Data Sharing

EGI Check-in Yes Yes Optional Optional

Monitoring/
Accounting/
Helpdesk

Yes No No No

AppDB/ CernVM-
FS

Yes Optional Yes Optional

DataHub Yes Optional Optional Yes

SLA/OLAs Yes No No No

A graphical relation of the different integration options and the available services is depicted

in Figure 2: Fully integrated resource providers shown in the centre of the figure are

integrated with EGI Check-in and the rest of EGI Core Services and can be seamlessly used

from the other layers of the EOSC Compute Platform. At the top, the Application Sharing

and Data Sharing providers are depicted, which are integrated with the respective

components of the Compute and Data Federation layer. On the right, the AAI integration

providers are connected to EGI Check-in to allow international users to be authenticated by

their system.

Figure 2. Integration options of the Resource Providers

 11

1.2. Document organisation

The rest of the document is organised as follows:

The main Core Services are described in Section 2, which consist of the Authentication and

Authorisation service (EGI Check-in), the Configuration Database (GOCDB), the

Accounting, the Monitoring, and the HelpDesk (GGUS).

Section 3 provides an overview of the computing and storage services available to the

different research communities, defining the cloud environment and the High Throughput

Compute (HTC) and High Performance Computing (HPC) services.

The federated compute solution is discussed in Section 4, which describes the available

services and tools that support end-users in federated operation. These include tools to

support user job submission to HTC, HPC and cloud providers, virtual infrastructure

deployment and software installation, software distribution and management, and support

for dynamic server addressability.

Similarly, the federated data solution is described in Section 5. This includes solutions for

data management in a federated environment, addressing tasks such as distributed data

sources and transfer of data from one provider to another within the federated infrastructure.

Section 6 describes the platforms, which are additional generic tools to exploit the compute

and storage resources of EGI-ACE.

Finally, Section 7 presents some conclusions.

The relationship between the block diagram in Figure 1 and where each part is covered in

this document is illustrated in Figure 3.

Figure 3. Document organisation

 12

2. Core Services

This section describes the components of the EGI-ACE technical architecture that enable

the operation of the Federation. The Core Services are a vertical pillar that integrates with

all layers and provides uniform access and management of services. These services are

integrated with their EOSC Core equivalents as they become available, allowing EGI-ACE

to be integrated with EOSC.

2.1. EGI Check-in: Authentication and Authorisation

EGI Check-in4 is the authentication, authorisation, and user management service for the EGI

infrastructure. It enables users to access both EGI and third-party services (Web and non-

Web based), using existing credentials managed by the different Identity Providers (IdPs) of

their home organisations. This means that users can authenticate themselves in EGI Check-

in by using the usual “login pages” of their respective institutions.

To enable access through academic Identity Providers, EGI Check-in has been registered

in eduGAIN5 as a Service Provider (SP). Through eduGAIN, EGI and third-party services

connected to EGI Check-in become available to more than 4,500 Universities and Institutes

from 71 National Identity Federations, with little or no administrative involvement.

Compliance with the REFEDS Research and Scholarship (R&S) [R3] entity category, the

GÉANT Data Protection Code of Conduct [R4] and the Sirtfi security framework [R5] ensure

sufficient user attribute release, as well as operational security, incident response and

traceability. Additionally, users without an account on an academic Identity Provider are still

able to authenticate themselves by using providers such as ORCID6, social media (e.g.,

Google, Facebook, LinkedIn, etc) or other external authentication providers. Social media

accounts are typically used for accessing EGI and third-party services that do not require a

substantial level of assurance7 (e.g., services that do not require a strict verification of the

user identity).

The EGI Check-in service enables users to manage their accounts from a single interface,

to link multiple accounts/identities together and to access services based on their roles and

group/Virtual Organisation (VO) membership rights.

The adoption of standards and open technologies by EGI Check-in, including SAML 2.0

[R6], OpenID Connect (OIDC) [R7] and X.509v3 [R8], has facilitated interoperability and

integration with the existing Authentication and Authorisation Infrastructures (AAIs) of other

e-Infrastructures and research communities, such as B2ACCESS8 and eduTEAMS9.

4 https://www.egi.eu/services/check-in/, see also the webinar at https://indico.egi.eu/event/5494/
5 https://edugain.org/
6 https://orcid.org/
7 https://aarc-community.org/guidelines/aarc-i050/
8 https://sp.eudat.eu/catalog/resources/d04af0f5-2253-4ee4-8181-3a5a961ccd49
9 https://eduteams.org/

https://www.egi.eu/services/check-in/
https://indico.egi.eu/event/5494/
https://edugain.org/
https://orcid.org/
https://aarc-community.org/guidelines/aarc-i050/
https://sp.eudat.eu/catalog/resources/d04af0f5-2253-4ee4-8181-3a5a961ccd49
https://eduteams.org/

 13

Figure 4. Check-in architecture

Figure 4 shows the EGI Check-in top-level architecture diagram and its interconnections to

other AAI services, IdPs and tools. The Check-in IdP/SP Proxy component acts as a

Service Provider towards the external Identity Providers and, at the same time, as an Identity

Provider towards the Service Providers (e.g., Applications Database, Cloud providers, etc).

Through the Check-in IdP/SP proxy, users can sign in with the credentials provided by their

respective Identity Provider. This is supported by different authentication and authorisation

standards, such as SAML 2.0, OpenID Connect 1.0 and OAuth 2.0. The proxy also provides

a central Discovery Service (Where Are You From – WAYF) for users to select their preferred

Identity Provider.

 14

The User Enrolment and Group/VO Management component, which is based on the

COmanage Registry10 tool, supports the management of the full life cycle of user accounts

in EGI Check-in. This includes the initial user registration, the acceptance of the terms of

use of the infrastructure, account linking, group and VO management, delegation of

administration of VOs/groups to authorised users and the configuration of custom enrolment

flows for VOs/groups via an intuitive Web interface. Furthermore, the COmanage Registry

enables trusted entities to query VO/group information through LDAP. It also provides a

REST API that allows authorised clients to manage VO/group membership.

Similarly, EGI Check-in also provides identity management capabilities through the Perun11

tool. Users and groups can be managed directly in the tool by the VO manager or by users

themselves following a VO registration flow. Alternatively, Perun can synchronise both users

and groups from an external system (i.e. VOMS [R9] servers), which can be consequently

combined with the aforementioned manual management in Perun itself. All the authorisation

information managed in Perun can be provisioned to other systems. To this end, it supports

a push model, whereby Perun can be configured to provision the information to the services

using standardised mechanisms and customisable connectors. Alternatively, the services

can obtain data from Perun using an API or querying some auxiliary services like LDAP.

Data from Perun are also available through the Check-in IdP/SP proxy component, which

releases them as standardised attributes or claims.

The MasterPortal acts as a caching intermediary service between end-services and the

RCauth Online CA12. It is designed to provide end-services, such as science gateways or

VO Portals, with proxy certificates for their users. The need for an intermediary is two-fold:

(i) It is necessary for a scalable trust model based on a single online CA and, secondly, (ii)

It hides all the complexity of X.509 certificates and key management for the end-services. In

this pure Web flow, the MasterPortal is transparently seen by end-users as a mere ‘redirect’

between the end-service and the RCauth.eu online CA. In addition to providing portals with

proxy certificates, the MasterPortal can also provide end-users with a means to use SSH

key authentication to retrieve proxy certificates at the command line. For this functionality,

the MasterPortal allows users to upload a SSH public key though a dedicated key

management portal.

The Federation Registry component provides a secure Web interface through which

service operators can manage the connection of their EGI Check-in services based on

OpenID Connect and SAML. This Web interface covers the whole service lifecycle: the initial

registration, reconfiguration, and deregistration. Service configurations are deployed by

sending configuration messages to the Federation Registry Deployment Agents running

on the IdP/SP Proxy component. These configuration messages are exchanged

asynchronously through the ARGO Messaging13 service following Google’s Pub/Sub14

protocol.

10 https://www.incommon.org/software/comanage/
11 https://perun-aai.org/
12 https://rcauth.eu/
13 https://argoeu.github.io/guides/messaging/
14 https://cloud.google.com/pubsub/docs

https://www.incommon.org/software/comanage/
https://perun-aai.org/
https://rcauth.eu/
https://argoeu.github.io/guides/messaging/
https://cloud.google.com/pubsub/docs

 15

In summary, there are three different options to federate with EGI Check-in to access EGI

resources and third-party services:

● Research communities can leverage EGI Check-in for managing their users and their

respective roles and other authorisation-related information using either COmanage

Registry or Perun.

● Users can authenticate by using a community-specific Identity Provider, such as

B2ACCESS, eduTEAMS, or any other Community Authentication and Authorisation

service that is compliant with the AARC architectural and policy guidelines15.

● Resource providers can connect to EGI Check-in to share their resources with the

different communities.

2.2. Configuration Database

The EGI Configuration Database (GOCDB)16 is a central registry that records topology

information about all sites and services participating in the EGI infrastructure. The

Configuration Database also provides different rules and grouping mechanisms for filtering

and managing the information associated with the resources. This can include entities such

as operations and resource centres, service endpoints and their downtimes, contact

information and roles of staff responsible for operations at different levels.

The Configuration Database is used by all actors (end-users, site administrators, Resource

infrastructure Provider managers, support teams, and VO managers), by other tools, and by

third party middleware to discover information about the infrastructure topology.

The tool can be accessed in two ways: (i) Through a Web portal, for inserting/editing

information (shown in Figure 5) and (ii) Through a REST style programmatic interface (API),

for querying data in XML. Relationships between different objects are defined using a well

constrained relational schema that closely resembles a subset of the GLUE 2 [R10]

information model. User permissions are controlled by a comprehensive role-based

permissions model.

15 https://aarc-project.eu/guidelines/
16 https://goc.egi.eu/

https://aarc-project.eu/guidelines/
https://goc.egi.eu/

 16

Figure 5. GOCDB web GUI

A flexible tag-cloud mechanism allows objects to be tagged with one or more ‘scope-tags’,

which allows resources to be labelled and grouped into multiple categories without

duplication of information – this is essential to maintain the integrity of topology information

across different infrastructures and projects. Different scope tags can be defined when

necessary. For example, tags can be used to reflect different projects, infrastructure

groupings and sub-projects. Resources can be flexibly ‘filtered-by-tag’ when querying for

data via the Application Programmatic Interface (API). Some tags may be 'reserved',

meaning that they can be used only by some authorised sites and services

Core objects can also be extended by a powerful extensibility mechanism that allows custom

key-value pairs to be added to objects, enabling flexible filtering by custom properties on

these objects when selecting and querying data.

 17

2.3. Accounting

EGI Accounting tracks and reports the use of EGI services, offering insights and control over

resource consumption. EGI Federation members can use it to account for the resource

usage of their own services.

The accounting service collects, stores, aggregates, and displays information about the

consumption of resources for High Throughput Compute jobs, Virtual Machines, and online

storage providers. Providers supporting these types of services can connect their different

service endpoints to the Accounting Service, which is centrally managed and will provide

collected data about the service usage.

Probes and sensors that gather accounting information according to certain data formats

are deployed locally at the service providers. Data are forwarded from the sensors to a

central Accounting Repository where the data are processed to generate various summaries

and views for display in the Accounting Portal17. Depending on the complexity of the

provider, the accounting data may go via intermediate repositories that collate accounting

data for particular regions, sub-infrastructures, or communities. EGI-ACE service providers

can either directly publish accounting information into the EGI Accounting Repository or can

do so via an intermediate repository that serves, for example, a specific region or group of

providers. It is up to the provider (group) to use the central repository directly, or to apply an

intermediary accounting infrastructure and connect it to EGI.

Figure 6. Accounting portal - cloud view.

17 https://accounting.egi.eu/

https://accounting.egi.eu/

 18

The integration of a service with the Accounting Service requires three steps:

1. Registration of the service in the Configuration Database (see Section 2.2),

associating it with a geographical or community entity (e.g. a country or a community-

specific infrastructure).

2. Installation of parsers at the service provider to produce accounting data in the format

expected by the Accounting Repository18. The parser must be specific to the resource

that should be observed from the usage perspective. There are existing parsers

already available for:

a. Grid jobs: https://github.com/apel/apel/tree/dev/apel/parsers

b. VMs: https://github.com/apel/caso

c. Storage systems supported by EGI, such as DPM, dCache, StoRM and EOS

(see Section 3.2.1), which include the parsers as an integral part of their

software releases.

3. Accounting records should be sent to the Accounting Repository (directly or via

intermediate repositories) using APEL SSM19.

The end result of this is the visualisation of information on the service usage (resource

consumption) in the Accounting portal. Information from the different individual services can

also be used to obtain overall resource usage and generate more useful usage statistics, as

shown in the example of Figure 6.

2.4. Monitoring

Monitoring is the mechanism for assessing the state of a service and is a key component

needed to gain insights into an infrastructure. It needs to be continuous and on-demand to

quickly detect, correlate, and analyse data for a fast reaction to anomalous behaviour. The

challenge of this type of monitoring is how to quickly identify and correlate problems before

they affect end-users and, ultimately, the productivity of their organisations. The main

features of a monitoring system are:

● Monitoring of services.

● Reporting on availability and reliability.

● Visualisation of service status.

● Provision of dashboard interfaces.

● Sending real-time alerts.

Management teams, administrators and service owners can monitor service availability and

reliability from a high-level view down to individual system metrics and monitor compliance

with multiple SLAs.

18 Job records format: https://wiki.egi.eu/wiki/APEL/MessageFormat#Job_Records and

https://wiki.egi.eu/wiki/APEL/MessageFormat#Summary_Job_Records;
VM usage record format: https://docs.egi.eu/users/getting-started/architecture/#cloud-usage-record;
GPU usage record format: https://docs.egi.eu/users/getting-started/architecture/#gpu-usage-record;
Storage usage record format: https://www.ogf.org/documents/GFD.201.pdf
19 https://github.com/apel/ssm

https://github.com/apel/apel/tree/dev/apel/parsers
https://github.com/apel/caso
https://wiki.egi.eu/wiki/APEL/MessageFormat#Job_Records
https://wiki.egi.eu/wiki/APEL/MessageFormat#Summary_Job_Records
https://docs.egi.eu/users/getting-started/architecture/#cloud-usage-record
https://docs.egi.eu/users/getting-started/architecture/#gpu-usage-record
https://www.ogf.org/documents/GFD.201.pdf
https://github.com/apel/ssm

 19

Figure 7. ARGO Web dashboard

EGI provides a monitoring service based on the ARGO20 system, which collects status

results from one or more monitoring engines and provides status results together with

monthly availability (A) and reliability (R) results of distributed services. Both status results

and A/R metrics are presented through a Web user interface, shown in Figure 7, which

enables users to drill down from the availability of a site to individual services, to individual

test results that contributed to the computed figure. ARGO is also capable of sending

notifications to service administrators in the event of a failure/warning on one of the

monitored services.

For each service monitored by ARGO, there are a set of probes which implement the specific

tests for the service to check and at the same time mimic the actual end user behaviour

without requiring special privileges or special configurations. These probes are developed

by the service owners as they have the inner knowledge about how the service works and

how to check its correct behaviour. All the probes intended to be used for monitoring must

comply with the ARGO guidelines for monitoring probes [R11].

Figure 8 shows the probe development cycle for any service. ARGO relies on the

Configuration Database as a source for the topology of the infrastructure. Every endpoint

registered in the database will be monitored according to its service type (e.g., IaaS Cloud

provider) using the probe registered in POEM21. POEM is ARGO’s register of services,

20 https://argo.egi.eu/, see also EGI webinar https://indico.egi.eu/event/5496/
21 https://poem.egi.eu/ui/public_probes and https://github.com/ARGOeu/poem-2

https://argo.egi.eu/
https://indico.egi.eu/event/5496/
https://poem.egi.eu/ui/public_probes
https://github.com/ARGOeu/poem-2

 20

repositories, packages and related probes, metric configurations and metric profiles that

instruct ARGO monitoring instances what kind of probes/tests to execute.

Figure 8. ARGO probe development workflow

2.5. Helpdesk

The EGI Helpdesk is a distributed tool with central coordination, which provides the

necessary information and support for troubleshooting products and services. It is

implemented through the GGUS system22, where users can report incidents, bugs, and

request changes by using the Web user interface shown in Figure 9.

To report issues, the user creates a ticket. Once this ticket is submitted, it is forwarded to

the assigned Support Unit (SU) to handle the service support request. The problem is then

analysed by a specialist in the scope of the reported problem and the issue is addressed to

22 https://ggus.eu/

https://ggus.eu/

 21

be resolved expeditiously. Depending on the nature of the ticket, interaction with the user

may be necessary to request additional information or to confirm the adequacy of the

solution.

More information about the EGI Helpdesk can be found in the EGI documentation23.

Figure 9. The GGUS Helpdesk

23 https://docs.egi.eu/internal/helpdesk/

https://docs.egi.eu/internal/helpdesk/

 22

3. Federated Resource providers

This section provides an overview of the baseline computing and storage services that

deliver access to computing and storage resources for communities to run their workloads

on their data.

3.1. Cloud IaaS

Cloud IaaS (Infrastructure as a Service) gives users the ability to deploy and scale Virtual

Machines (VMs) on-demand. It offers computational resources in a secure, isolated

environment managed through an API, without the overhead of managing physical servers.

IaaS supports the following tasks:

● The execution of multiple types of compute- and data-intensive workloads (both

batch and interactive).

● Hosting long-running services, such as Web servers, databases or applications

servers.

● The creation of disposable testing and development environments on VMs. Users

can select specific hardware configurations (CPU, memory, GPU, disk) to run their

virtual machines and run any Operating System with complete control of applications

and system configuration.

EGI integrates IaaS into a multi-national cloud system that pools resources from a

heterogeneous set of providers that deliver an API-controlled service for management of

Virtual Machines, associated Block Storage to enable persistence, and Networks to enable

connectivity of the VMs. From a technical point of view, each resource centre of the

federated infrastructure operates a Cloud Management Framework according to its own

preferences and constraints. The resource centre joins the Federation by integrating this

framework with the different components of the EGI-ACE Core Services and Compute and

Data Federation services, according to the preferred integration mode of the provider.

Support is granted to OpenStack-based providers (any recent version from OpenStack

Mitaka onwards). Complete integration documentation is available at the EGI documentation

pages24.

Beyond the management of VMs, the integration into the EGI Federation brings:

● Common AAI, to allow the use of the same identity across all providers.

● Application sharing, to facilitate the finding of community-specific software from the

providers.

● Monitoring, to ensure Availability and Reliability of providers as agreed in Service

Level Agreements.

● Centralised accounting that collects information on usage in the Federation.

Specific details on Cloud IaaS features are described in more detail in the following sections.

24 https://docs.egi.eu/providers/cloud-compute/openstack/

https://docs.egi.eu/providers/cloud-compute/openstack/

 23

3.1.1. AAI integration

IaaS providers integrated with Check-in allow users to access providers with a single

identity. Providers in the Federation maintain full control of their services and resources and

make authorisation decisions locally by using harmonised user information delivered by

Check-in, which includes the Virtual Organisations (VOs) to which each user belongs.

The integration with Check-in is done via OpenID Connect and builds on the federated

identity features of Keystone25 (OpenStack’s authentication service). EGI provides extensive

documentation on how federated user VOs can be mapped to local OpenStack projects26.

3.1.2. Application Sharing

In a distributed federated IaaS, users need solutions to efficiently manage and distribute

their VM images across multiple resource providers. EGI provides AppDB (described in

Section 4.4) as a catalogue of VM images (VMIs) that can be shared between the different

research communities and can be run across the Federation providers.

AppDB allows representatives of research communities (identified by a VO) to generate a

list of VMIs following the HEPiX image list format27 to which resource centres can subscribe.

This subscription enables the periodic download, conversion, and storage of these images

in the local image repository of the provider. The subscription is implemented with the

support of the Cloudkeeper28 software package, which also supports the automated

synchronisation of images between AppDB and the provider, regardless of the Cloud

Management Framework used (OpenStack, OpenNebula, AWS, etc).

3.1.3. Compute and Data Federation

The Compute Federation services of EGI-ACE (see Section 4) support OpenStack providers

to be manually configured for seamless use by Federation users. Additionally, a piece of

software called the Infrastructure Manager, described in Section 4.2, can be used to deploy

infrastructure on cloud providers that use systems other than OpenStack, such as

OpenNebula, CloudStack, AWS, Azure and GCP.

The Data Federation services of EGI-ACE (see Section 5) are supported by the EGI

DataHub service, which allows providers to make data available to their local users. To

make local data accessible to other EGI providers, the Oneprovider component29, described

in Section 5.1, can be deployed. S3-compliant endpoints are also supported by services

such as the File Transfer Service, described in Section 5.2.

3.1.4. Integration with other core services

In addition to the AAI integration described in Section 3.1.1, providers going through the full

integration mode need to complete the Resource Centre Registration and Certification

procedure (PROC09) [R2] that will result in the creation of new entries in the Configuration

25 https://docs.openstack.org/keystone/latest/admin/federation/introduction.htmln
26 https://docs.egi.eu/providers/cloud-compute/openstack/aai/#keystone-setup
27 https://wiki.appdb.egi.eu/main:faq:vo_image_list_format
28 https://github.com/the-cloudkeeper-project/cloudkeeper
29 https://docs.egi.eu/providers/datahub/oneprovider/

https://docs.openstack.org/keystone/latest/admin/federation/introduction.htmln
https://docs.egi.eu/providers/cloud-compute/openstack/aai/#keystone-setup
https://wiki.appdb.egi.eu/main:faq:vo_image_list_format
https://github.com/the-cloudkeeper-project/cloudkeeper
https://docs.egi.eu/providers/datahub/oneprovider/

 24

Database described in Section 2.2, after meeting all policy, security and quality of service

requirements for joining the EGI Federation. Once registered, endpoints will be automatically

monitored by ARGO (see Section 2.4). Accounting records can be generated at the provider

via cASO30.

3.2. High Throughput Computing

High Throughput Compute (HTC) is a computing paradigm that focuses on the efficient

execution of a large number of loosely-coupled tasks (e.g. data analysis jobs). HTC systems

execute independent tasks that can be individually scheduled on many distributed

computing resources, across multiple administrative boundaries. Users submit these tasks

to the infrastructure as jobs. After a job has been scheduled and executed, the output can

be collected from the service(s) that executed it. The EGI High Throughput Compute31

infrastructure brings together federated providers delivering HTC resources.

There are two different HTC services considered in EGI-ACE: Grid providers, discussed in

Section 3.2.1, and Spider, discussed in Section 3.2.2.

3.2.1. Grid providers

Grid providers deliver a front-end (ARC-CE32 or HTCondor-CE33) for the submission of jobs

to a local batch system (e.g. Slurm34, PBS35, or HTCondor36). These systems rely on X.509

certificate [R8] and VOMS for user authentication and authorisation. Check-in MasterPortal

(see Section 2.1) acts as a bridge to interact with grid providers for users relying on federated

identity mechanisms.

In addition to job-based computing, Grid providers allow files to be stored in a scalable, fault-

tolerant environment and shared with distributed teams. Data can be accessed through

multiple protocols (gridFTP and WebDav/HTTP, XRootD and legacy SRM), and can be

replicated across different providers to increase fault tolerance. The main implementations

supported in EGI’s grid storage are: dCache37, DPM38 , EOS39 and StoRM40.

Grid providers are fully integrated with the Core Services described in Section 2:

Configuration Database, Accounting, Monitoring and Helpdesk. Additionally, they deliver

information about the resources available via the BDII (Berkeley Database Information

Index) service. The BDII relies on LDAP to build a hierarchical structure in which all

participating providers can be easily discovered.

30 https://caso.readthedocs.io
31 https://docs.egi.eu/providers/high-throughput-compute/
32 https://www.nordugrid.org/arc/ce/
33 https://opensciencegrid.org/docs/compute-element/htcondor-ce-overview/
34 https://slurm.schedmd.com/documentation.html
35 https://www.openpbs.org/
36 https://htcondor.org/
37 https://www.dcache.org/
38 https://twiki.cern.ch/twiki/bin/view/DPM/
39 https://eos-web.web.cern.ch/eos-web/
40 https://italiangrid.github.io/storm/

https://caso.readthedocs.io/
https://docs.egi.eu/providers/high-throughput-compute/
https://www.nordugrid.org/arc/ce/
https://opensciencegrid.org/docs/compute-element/htcondor-ce-overview/
https://slurm.schedmd.com/documentation.html
https://www.openpbs.org/
https://htcondor.org/
https://www.dcache.org/
https://twiki.cern.ch/twiki/bin/view/DPM/
https://eos-web.web.cern.ch/eos-web/
https://italiangrid.github.io/storm/

 25

In addition, advanced features are provided by other components described in other sections

of the document. Software distribution for supported communities can be enabled by

deploying CernVM-FS clients at the providers (see Section 4.3). Advanced job meta-

scheduling is handled by the Workload Manager described in Section 4.1, while data transfer

and data management are handled by FTS and Rucio, respectively, which are described in

Sections 5.2 and 5.3.

3.2.2. Spider

Spider41 is a versatile high-throughput data-processing platform for processing large,

structured data sets provided by SURF42, running on top of an internal elastic Cloud. It is a

feature-rich platform that provides users with a batch processing cluster (based on Slurm)

for generic data processing applications, high-performance data access, fast network

connectivity to internal and external data centres, support for containers and Jupyter

notebooks, and many other user-centric features.

Spider is offered as an alternative for grid users looking for a more customisable and easily

accessible system, as the Spider installation shares the same physical data processing

infrastructure as SURF’s Grid-based processing.

In EGI-ACE, Spider is offered as one of the options for the HTC users and is currently going

under integration with the rest of the EGI ecosystem. At the moment of writing, Spider can

be registered in the Configuration Database (Section 2.2), it uses CernVM-FS (Section 4.3)

for sharing software and can interact with Grid storage systems. Further integration will be

provided as the project evolves.

3.3. High Performance Computing

High Performance Computing (HPC) provides highly optimised computing systems that

deliver large amounts of parallel computing power to run applications. Similarly, to HTC, it

offers a managed service where a fully operational environment runs submitted user jobs.

Traditionally, HPC systems are managed in an isolated way and offer limited federation

options. In EGI-ACE, a set of pilots explored the integration of several HPC systems into the

Federation to make them accessible as part of the EOSC Compute Platform.

In most HPC systems, user access is performed via the Secure Shell Protocol (SSH) [R12]

to a set of login nodes where users can interact with the system and submit jobs for their

execution. In most cases, SSH credentials used are locally managed, either usernames and

password or SSH keys based on public-key cryptography [R13]. For the EOSC Compute

Platform, three different access options to these providers are proposed:

● SSH access with OIDC tokens, via ssh-oidc43. This allows SSH access using

federated identity technology, as supported by EGI Check-in. This is the preferred

mechanism, as it minimises the requirements to the users and does not introduce

changes to the traditional mode of operation of HPC centres.

41 http://doc.spider.surfsara.nl/en/latest/Pages/about.html
42 https://www.surf.nl/en/research-it
43 https://github.com/EOSC-synergy/ssh-oidc

http://doc.spider.surfsara.nl/en/latest/Pages/about.html
https://www.surf.nl/en/research-it
https://github.com/EOSC-synergy/ssh-oidc

 26

● Access via HTC-like middleware, where users do not get direct access via SSH, but

a set of middleware components handles user access and the interaction with the

HPC system. Job submission is performed using the same tools as for an HTC

provider, as explained in Section 3.2. While this is the simplest option to implement

for the infrastructure, it is not always possible to implement due to the strict policy

restrictions of HPC systems.

● HPC as a Service. In those providers that offer HPC hardware through IaaS

interfaces, small-scale HPC systems can be deployed to run user workloads. While

IaaS providers rely on hypervisors44 to create Virtual Machines, specialised hardware

such as GPU accelerators and low-latency networks such as Infiniband can be

configured as PCI Passthrough devices without major performance overheads.

Integration for these providers would follow the Cloud IaaS model discussed in

Section 3.1. Orchestration tools like the Elastic Cloud Computing Cluster discussed

in Section 6.2 can create elastic virtual clusters on these providers. This approach

enables a highly flexible and customisable environment while providing access to

HPC features.

Integration with the core services depends on the access mode used for the specific HPC

provider and are summarised in Table 2 (refer to D7.3 [R14] for full details).

Table 2 – HPC integration with core services

 ssh access HTC access HPC as a Service

Check-in ssh-oidc X.509 certificates via
Check-in’s
MasterPortal

OpenStack integration with
Check-in

Configuration
Database

edu.kit.ssh_oidc
service type

HTC service types
(e.g., HTCondor)

OpenStack service types
(e.g., nova)

Accounting Reuse HTC accounting Reuse HTC accounting Reuse OpenStack
accounting

Monitoring New dedicated probe
for ssh-oidc

Reuse HTC monitoring Reuse OpenStack
monitoring

Helpdesk Provider registered in EGI Helpdesk

44 Software that manages and runs Virtual Machines

 27

4. Federated Compute

The Federated Compute subsystem in EGI-ACE facilitates the use of the underlying

computing infrastructure in a homogeneous way, so that users can execute their workloads

across the available resource providers in a portable way. This is supported by the fo llowing

services:

● The Workload Manager, powered by DIRAC, supports scalable job submission

across HTC, HPC and Cloud providers. The Workload Manager takes care of

scheduling the user tasks into the most appropriate resources. DIRAC is described

in Section 4.1.

● The Infrastructure Manager (IM) provides IaaS cloud orchestration by automating

the deployment of virtual infrastructure across multiple cloud providers, including

public ones, such as AWS, Google Cloud and Azure, amongst others. IM supports

hybrid deployments and uses a single description language for all supported

backends, thus making applications cloud agnostic. It also provides support with

software installation, such as Kubernetes clusters, MinIO and many other tools. IM

is described in Section 4.2.

● CernVM-FS and AppDB support the efficient distribution of software in the

federation, so users can just access software from any provider of the infrastructure.

They are discussed in Sections 4.3 and 4.4 respectively.

● DynamicDNS provides a federation-wide DNS hostname registration service, so

users can use memorable names instead of IP addresses for interacting with the

virtual infrastructure deployed in the Federation. The service provides tools to

dynamically redirect users to the correct virtual machine even when its IP address

has changed, which can be a common event in fast-changing virtual environments.

The DynamicDNS service is discussed in Section 4.5.

With a few exceptions, most of these services are already integrated (or are in the process

of being integrated) with the Core Services described in Section 2: federated users can login

using Check-in, services are registered in the Configuration Database, are automatically

monitored by ARGO and have support provided through the EGI Helpdesk. The accounting

records for these services are not yet defined, so the integration is not yet in place.

Platform services (described in Section 6) can use Federated Compute to abstract the

details of each provider and simplify the interaction with the infrastructure. IM serves as the

main tool for deploying applications for the EC3 (Elastic Cloud Computing Cluster),

discussed in Section 6.2, and the PaaS Orchestrator, discussed in Section 6.3. Services can

also be used directly by higher-level thematic services, and the Workload Manager is a

service widely used for discipline-specific analytics services that rely on massive submission

of jobs to the infrastructure.

4.1. Workload Manager

The Workload Manager Service (WMS) dispatches user’s computing tasks in an efficient

way while maximising the usage of distributed computational resources. It is built upon the

software from the DIRAC Interware project [R15]. The project provides a complete solution

for communities needing access to heterogeneous computing and storage resources

 28

distributed geographically, integrated in different grid and cloud infrastructures, standalone

computing clusters and supercomputers.

Figure 10. DIRAC Components

Figure 10 illustrates DIRAC components. When user tasks are submitted to the Workload

Manager Service, the service performs reservation of computing resources by means of so-

called pilot jobs, which are submitted to various computing centres with appropriate access

protocols. Once deployed on the worker nodes, pilot jobs verify the execution environment

and then request user payloads from DIRAC’s central Task Queue. Altogether, the pilot jobs

and the central Task Queue form a dynamic virtual batch system that overcomes the

heterogeneity of the underlying computing infrastructures.

WMS serves multiple scientific communities with a user-friendly interface, and its

architecture and job management algorithms provide several crucial advantages:

● Efficient user job execution with a low failure rate.

● Efficient enforcement of resource usage policies for large communities.

● Easy extensions via APIs, to address specific needs.

● A development framework and a set of ready-to-use components to build distributed

computing systems of arbitrary complexity.

 29

 Examples of the available functionalities are described in the following use cases:

● The workload scheduling architecture allows for easy addition of new resources in a

way that is transparent to users. It also facilitates the enforcement of usage policies

by defining fine-grained priorities for certain activities. This feature, exploited by the

WeNMR45 collaboration during the COVID pandemic, allowed interested sites to

share resources to contribute to the COVID-related studies, ensuring a high priority

of these studies compared to other regular WeNMR activities.

● The WMS Rest-API may be the submission point of entry for various workflow

engines. For example, the OpenMOLE open-source platform46 offers tools to run,

explore, diagnose and optimise a numerical model. Singulari ty jobs prepared with

the help of the platform GUI are sent through the DIRAC API to the distributed

computing environments dedicated to the exploration of simulation models.

● The DIRAC development framework allows an experiment or a community to

integrate a specific tool as a DIRAC WebApp. For instance, the ConCORDIA

application developed by the ESCAPE collaboration47 provides access to common

simulation tools through a GUI integrated into the WMS framework, allowing the

conception of Singularity images to run CORSIKA48 simulations (a simulation of

extensive air showers induced by high energy cosmic rays) on the distributed

computing elements available.

4.2. Infrastructure Manager

The Infrastructure Manager (IM) [R16] is a tool that orchestrates the deployment of complex

and customised virtual infrastructures on multiple back-ends. The IM automates the

deployment, configuration, software installation, monitoring and update of virtual

infrastructures. It supports a wide variety of back-ends, including both public IaaS clouds

(Amazon Web Services, Microsoft Azure, etc.), on-premises Cloud Management Platforms

(OpenNebula, OpenStack, etc.), federated platforms (EGI Cloud Compute, Fogbow) and

Container Orchestrators (Kubernetes), thus making user applications cloud agnostic. The

high-level operation of IM is shown in Figure 11. As depicted in the figure, a typical workflow

of IM starts when a user uses the IM Client (Command-Line interface, CLI) or the IM Web

(a Web-based GUI) to define the virtual infrastructure to be deployed. This definition is done

in text-based software templates in RADL (Resource and Application Description Language

[R16], the native language of IM) or TOSCA (an OASIS standard) [R17] formats. These

templates can be created explicitly by the user or automatically (and transparently)

generated by IM GUI. IM will then launch the required VMs on the configured cloud provider

and, once the virtual hardware has been provisioned, install the required software on it. To

support these tasks, SSH connections and Ansible49 are internally used.

45 https://www.wenmr.eu/
46 https://openmole.org/
47 https://projectescape.eu/news/escape-ossr-enhancing-science-through-sharing-software-

benefits-use-cases-post-webinar-report
48 https://www.iap.kit.edu/corsika/
49 A tool for automation of IT tasks. https://www.ansible.com/

https://www.wenmr.eu/
https://openmole.org/
https://projectescape.eu/news/escape-ossr-enhancing-science-through-sharing-software-benefits-use-cases-post-webinar-report
https://projectescape.eu/news/escape-ossr-enhancing-science-through-sharing-software-benefits-use-cases-post-webinar-report
https://www.iap.kit.edu/corsika/
https://www.ansible.com/

 30

Figure 11. IM Architecture

The use of RADL and TOSCA templates facilitates deterministic repeatability of virtual

infrastructure deployments, following an approach called Infrastructure as Code (IaC), which

is widely adopted by the industry. IaC allows the definition of infrastructure and application

architecture as software artefacts, enabling the application of software industry benefits and

advanced tools, such as code version control systems, in the management of virtual

infrastructure.

IM supports the creation and configuration of clusters consisting of multiple machines with

tools such as Hadoop, Slurm, Mesos or Kubernetes, amongst others. Apart from this

provision of virtual computing clusters, IM can complement generic Virtual Machine Images

by installing and configuring additional software on the Virtual Machine instances, such as

MinIO or Galaxy.

The main goal of IM is to provide a set of functions for the effective deployment of all the

required virtual infrastructures to deploy an application or service in a Cloud environment,

either composed by VMs or by Docker containers. IM considers all the aspects related to

the creation and management of virtual infrastructures:

● The software and hardware requirements specification for the users’ applications,

using a simple language that is easy to understand by non-advanced users who just

want to deploy a basic virtual infrastructure, but with enough expressivity so that

advanced users can set all the necessary configuration parameters to have the

infrastructure fully configured.

● The selection of the most suitable Virtual Machine Images (VMI), is based on the

requirements defined by the user.

● The provision of Virtual Machines on a Cloud environment, including public IaaS

clouds (Amazon Web Services, Microsoft Azure, etc.), on-premises Cloud

 31

Management Platforms (OpenNebula, OpenStack, etc.) and Container Orchestrators

(Kubernetes).

● Support for hybrid infrastructures, where nodes are spread across different cloud

providers, enabling Cloud bursting scenarios.

● The contextualisation of the infrastructure at run-time, by installing and configuring

all the required software that may not be available in the pre-configured images

(either VMIs or Docker images).

● The elasticity management, both horizontal (adding and removing nodes) and

vertical (increasing and reducing node capacity).

IM provides both XML-RPC50 and REST APIs to enable high-level components to access its

functionality. These APIs provide a set of functions for clients to create, destroy, and obtain

information about the available infrastructures. It also provides three interfaces:

● im-client, which is a Command-line tool available for scripting and automation.

● im-web, which is a Web-based interface that has all functionality of IM for advanced

users.

● im-dashboard, which is a Web-based interface designed with user experience in

mind, for users who do not need advanced features and can deploy their virtual

infrastructure using the available set of well-tested, predefined TOSCA templates.

More information at https://www.grycap.upv.es/im/ or https://github.com/grycap/im.

4.3. CernVM-FS

The CernVM-File System (CernVM-FS or CVMFS) provides a scalable, reliable, performant,

and low-maintenance software distribution service. It was developed to assist High Energy

Physics (HEP) collaborations deploy software on the worldwide distributed computing

infrastructure used to run data processing applications. CernVM-FS is implemented as a

POSIX read-only file system in user space (a FUSE module). Files and directories are

hosted on standard Web servers and mounted in the universal namespace /cvmfs. Internally,

CernVM-FS uses content-addressable storage and Merkle trees to maintain file data and

meta-data. CernVM-FS uses only outbound HTTP connections, thereby avoiding network

connectivity issues that other network file systems may have when a firewall restricts

inbound traffic. It transfers data and meta-data on demand and verifies data integrity using

cryptographic hashes [R13].

Comprising a repository service (named CernVM-FS Stratum 0), which provides a single

place for users to publish their software, and a global network of replica servers (named

Stratum 1), STFC CernVM-FS provides an easy method to publish software and other

content, making it instantly available on compute resources around the world.

The integration with EGI Check-in is currently under development, so access is done via gsi-

ssh, with X.509 certificates used for authorisation. Communication with EGI Check-in to

retrieve users' information and map them to the right local Unix account will be done by a

PAM module developed by STFC, the Science and Technology Facilities Council, in the UK.

50 http://xmlrpc.com/

https://www.grycap.upv.es/im/
https://github.com/grycap/im
http://xmlrpc.com/

 32

4.4. AppDB

The EGI Applications Database51 (AppDB) is a service that stores and provides public

catalogues of software solutions in the form of native software products and virtual

appliances that can run on EGI infrastructure. A virtual appliance is simply a preconfigured

Virtual Machine image, which has a specific Operating System and relevant software

packages pre-installed. AppDB aims to provide end users with scientific software that is both

easy to find and easy to deploy in a cloud provider. It also aims to facilitate access to the

latest version of scientific software to administrators and VO managers and to monitor

availability as well as security issues related to VM image use. As such, AppDB is involved

in the distribution, deployment, and management process of virtual appliances on the EGI

cloud infrastructure. Its main components are the Virtual Appliance Catalogue, the VO wide

image list catalogue, and the VMCaster subscription service, portrayed in Figure 12 and

described below.

Figure 12. Software distribution components of AppDB

● Virtual Appliance Catalogue: It is a community-driven catalogue containing

information about virtual appliance solutions, which is authored by its members. VM

authors can register their solutions by providing key metadata such as a description,

categorisation data, related organisations, projects, etc. They may also maintain

51 https://appdb.egi.eu

https://appdb.egi.eu/

 33

version-specific information, such as the physical location of each VM version, its

expiration date, resource, and network requirements, supported operating systems /

architectures, and so on. To improve quality-of-service, AppDB automatically

calculates the checksums of VM images for integrity verification and provides a

continuous delivery system that automates the publishing of new VM versions

without manual intervention. Virtual Appliances have an expiration date of maximum

one year, to ensure that any obsolete software which may contain vulnerabilities is

not used in the infrastructure.

● VO wide image list catalogue: Virtual Organisations are linked to a list of virtual

appliances that the VO is allowed to use. To support this, AppDB integrates with EGI

Operation Portal52 to collect information about VOs. VO managers can compose,

publish and reuse particular versions of virtual appliances from the Virtual Appliance

Catalogue for their specific VO. To help keep image lists up to date with the virtual

appliance catalogue, AppDB notifies VO managers about new versions and pending

policy-based expiration of endorsed virtual appliance images.

● VMCaster subscription service: This component provides authorised third parties,

such as EGI cloud providers, with the latest list of virtual appliances assigned to a

VO by the corresponding VO managers. This list is in HEPiX format53 and allows

cloud providers to identify the endorsed virtual appliances of a VO. To retrieve this

information, the cloudkeeper54 software or any other compatible solution can be

used.

To keep the aforementioned components synchronised with the state of the EGI

infrastructure and to keep the distributed information consistent, AppDB has been integrated

with various services of the EGI ecosystem, aggregating and correlating information. This

has resulted in additional services that can be used by third-party services, in addition to

AppDB itself. Such services include the Information System55, which provides cloud

infrastructure information, and the VMOps dashboard56, which allows users to deploy and

manage VMs οn the infrastructure.

4.5. Dynamic DNS

The Domain Name System (DNS) is the mechanism used on the Internet to identify

computers by translating network addresses and human-friendly names. It plays a crucial

and centric role on the Internet and, especially, on the Web. EGI’s Dynamic DNS 57 service

provides a unified, federation-wide dynamic DNS support for VMs in EGI’s Federated Cloud

52 https://operations-portal.egi.eu/
53 https://github.com/hepix-virtualisation/image_list_format_docbook
54 https://github.com/the-cloudkeeper-project/cloudkeeper
55 https://is.appdb.egi.eu/rest/
56 https://dashboard.appdb.egi.eu/vmops
57 https://docs.egi.eu/users/compute/cloud-compute/dynamic-dns/

https://operations-portal.egi.eu/
https://github.com/hepix-virtualisation/image_list_format_docbook
https://github.com/the-cloudkeeper-project/cloudkeeper
https://is.appdb.egi.eu/rest/
https://dashboard.appdb.egi.eu/vmops
https://docs.egi.eu/users/compute/cloud-compute/dynamic-dns/

 34

infrastructure. Users can register their chosen meaningful and memorable DNS hostnames

in given domains (e.g. my-server.vo.fedcloud.eu) linking them to the respective public

network addresses of their servers (e.g. 134.1.2.3). This DNS service is dynamic because it

provides a mechanism for dynamic update of network addresses, so that the network

address of a server can be updated in the DNS service if it changes, without manual

intervention. This is especially useful in a virtual environment, where machines may be

frequently removed and recreated, changing their network addresses but needing to keep

the same DNS hostname to be located.

The architecture of the Dynamic DNS is depicted in Figure 13. The core component of the

service is the NS-update server, which consists of the GUI portal and NS-update engine.

Users can access the Web portal via EGI Check-in and register hostnames in any of the

supported pre-defined domains. After hostname registration, users can assign and update

hostname IP addresses via simple commands. All changes are immediately sent to the

responsible DNS servers, currently located both at IISAS Bratislava (Slovakia) and LIP

Lisbon (Portugal) for high availability. IP changes are refreshed within 60 seconds, so new

and modified DNS entries are visible to users in a short time.

Figure 13. Architecture of Dynamic DNS service.

Some advantages of Dynamic DNS are:

● Simplifies client and server configuration for services hosted in the EGI

Federated Cloud.

● Enables a federated approach in which VMs can be freely moved between

providers, maintaining their names without modifying server or client configurations.

 35

● Facilitates the use of trusted X.509 server certificates, which are typically linked

to DNS names.

● Provides a user-friendly experience, with an extremely simple use that requires

no additional software installation or support from cloud providers, and network

address updates can be performed without special privileges or user credentials.

● It can be easily integrated with other tools and services that manage virtual

infrastructure, such as the Infrastructure Manager, described in Section 4.2, or

Terraform58.

58 https://www.terraform.io/

https://www.terraform.io/

 36

5. Federated Data

The Federata Data Subsystem in EGI-ACE comprises a group of services that provide data

management capabilities to enhance the raw storage capacity delivered by the Federated

Resource Providers. These services are:

● DataHub, a data management solution that enables unified data access to

distributed data. This is discussed in Section 5.1.

● FTS, a system to address the efficient transfer of data within the data providers of

the EGI Federation and is described in Section 5.2.

● Rucio, a data management service for managing large volumes of data from multiple

sites, which is covered in Section 5.3.

● openRDM, which provides advanced data organisation for research projects by

offering an integrated environment with data management and digital lab Notebook

capabilities. This is discussed in Section 5.4.

These federated data services offer APIs and CLIs that integrate with both the Thematic

Services and the Platforms available in EGI-ACE (see Figure 1). For instance, the

Notebooks service described in Section 6.1 is integrated with DataHub to allow users to

access datasets available in the EGI Infrastructure and share outputs amongst them, and

the PaaS orchestrator described in Section 6.3 is integrated with Rucio to optimise the

deployment of applications close to where the data are located.

Similarly, to Federated Compute services, the Federated Data services are integrated with

the Core services described in Section 2, thus allowing Federated Identity access,

Configuration Database, Monitoring and Helpdesk. The accounting records for these

services are not yet defined, so the integration is not yet in place.

5.1. DataHub

EGI DataHub59 is a federated service that allows users to access and share their data from

any location. Data sets can be kept private to the owner of the data, shared with a restricted

number of users, or made publicly available and discoverable via DOI [R18] or PID [R19]

handles.

EGI DataHub is based on Onedata distributed data access and management system60.

Onedata is a globally distributed storage solution, integrating storage services from various

providers using heterogeneous underlying technologies, such as Ceph, S3, GlusterFS,

WebDAV, OpenStack SWIFT, NFS and other POSIX-compliant file systems. It provides

access to clients interfaces based on CDMI [R20], REST API and virtually mounted POSIX

filesystems.

59 https://datahub.egi.eu
60 https://onedata.org

https://datahub.egi.eu/
https://onedata.org/

 37

The main functional components of Onedata include:

● Onezone, the federation and authentication service. EGI DataHub, as a Onezone

instance, provides a single sign-on to a network of connected storage providers. Note

that DataHub is integrated with EGI Check-in (described in Section 2.1).

● Oneprovider, which is the main data management component of Onedata, is

deployed in the data centres and is responsible for provisioning the data and

managing data transfers. The main operation of Oneprovider is shown in Figure 14.

● Oneclient, which provides access to the virtual filesystem on a VM or host directly,

via a FUSE mountpoint.

● OnedataFS, which is a Python library supporting the access to the distributed virtual

filesystem directly from Python applications (e.g., Jupyter Notebook).

Figure 14. Functional components of Onedata

An important aspect of Onedata is that it has a flexible mechanism for storing metadata in

the form of simple key-value pairs, as well as entire metadata documents (currently in JSON

and RDF [R21] formats), which can be attached to data resources and used during indexing

and querying. On top of this metadata mechanism, Onedata allows users to publish their

data as open access content and enables full open data management life cycle management

from ingestion through curation to open access thanks to its support for protocols and

standards for open data, such as OAI-PMH [R22] and handle system integration for

registering DOI [R18] identifiers.

Onedata enables seamless data sharing between users, with strict access control. Users

can share access to individual files as well as spaces by sending automatically generated

 38

access tokens61. Onedata has also built-in support for Let’s Encrypt62 certificates,

encouraging the deployment of secure services with valid X.509 certificates for TLS. Access

control is fine-grained and managed by a set of privileges assigned in the form of access

control lists at user, group, and space level. Users can create groups for collaborating on a

specific space or set of spaces.

All Onedata components have APIs63 defined using the OpenAPI specification [R23],

enabling easy integration and automatic generation of client libraries for most existing

programming languages and frameworks.

The API’s provided by Onedata include:

● Onezone API, to allow control and configuration of local Onezone service

deployments, in particular: management of users, groups, spaces, shares,

providers, services, handles and clusters.

● Oneprovider API, to enable access to data through CDMI- compatible endpoints,

as well as data management related tasks such as data replication.

● Onepanel API, to allow administrators to control deployment of other Onedata

components, modifying their configuration - e.g. adding more nodes or new storage

resources.

For additional information, please refer to Onedata64 and EGI DataHub65 user

documentation.

5.2. FTS

FTS or FTS3 (File transfer System, version 3.0)66 is software for efficient scheduled transfers

of large data sets. It does so by maximising the usage of available network and storage

resources while ensuring that policy limits are respected. FTS3 has the following

components:

● CLI clients, as the main user interface to interact with FTS3.

● A daemon process for submitting data transfer jobs, retrieving status and general VO

and service configuration.

● A daemon process for staging files from tape archives to disk

● A database back-end.

● A message queue daemon which sends monitoring messages to external queue

● A Rest Listener as access points for submitting transfers or administering the service.

61 Typically, a randomly generated string that acts as a temporary password.
62 https://letsencrypt.org/
63 https://onedata.org/#/home/api
64 https://onedata.org/#/home/documentation/doc/user_guide.html
65 https://docs.egi.eu/users/datahub/
66 https://fts.web.cern.ch/fts/, see also EGI webinar https://indico.egi.eu/event/5711/

https://letsencrypt.org/
https://onedata.org/#/home/api
https://onedata.org/#/home/documentation/doc/user_guide.html
https://docs.egi.eu/users/datahub/
https://fts.web.cern.ch/fts/
https://indico.egi.eu/event/5711/

 39

This architecture allows the service to be easily scalable by adding additional resources with

identical configuration into an FTS3 cluster. Figure 15 identifies the main architecture

components of FTS.

Figure 15. FTS3 service architecture

The optimisation algorithm is influenced by both the throughput achieved and the success

rate of the transfers, and automatically adjusts the number of concurrent transfers

accordingly. This allows transfers between two random endpoints to be executed with good

reliability and throughput, with minimal manual intervention. FTS3 also includes a multi-

dimensional scheduler, which ensures fair network data bandwidth between VOs that share

a data link. This default behaviour can be overwritten if necessary, in multiple ways, such as

giving more transfer slots to a particular VO, splitting the allocated slots by a specific

weighting, or prioritising specific transfers to give them a transfer boost.

Some additional features of FTS3 are:

● Multi-protocol support through the Grid File Access Library, version 2 (GFAL

267).

● A REST interface to submit jobs and query their state.

● Third party data copy support, in particular GridFTP68 and XrootD69 and, for

certain storage implementations, HTTP TPC70.

● Session reuse, which is particularly suitable for cases where many small files

are transferred between two endpoints.

● Staging files from tape systems and monitoring of archive to tape operations

67 https://dmc-docs.web.cern.ch/dmc-docs/gfal2/gfal2.html
68 https://gridcf.org/gct-docs/latest/gridftp/key/index.html
69 https://xrootd.slac.stanford.edu/
70 https://twiki.cern.ch/twiki/bin/view/LCG/ThirdPartyCopy

https://dmc-docs.web.cern.ch/dmc-docs/gfal2/gfal2.html
https://gridcf.org/gct-docs/latest/gridftp/key/index.html
https://xrootd.slac.stanford.edu/
https://twiki.cern.ch/twiki/bin/view/LCG/ThirdPartyCopy

 40

● Web monitoring.

The core functionality of the service is extended by the inclusion of WebFTS, a standalone

Web-based interface that provides easy access to FTS3 features for end-users. WebFTS

provides the same multi-protocol support as FTS3, but with a two-panel interface (shown in

Figure 16) through which users can submit and monitor data transfers instead of using the

command-line client, making it a very useful tool for transferring files between Grid and non-

Grid resources.

Figure 16. WebFTS transfer submission interface

Access to FTS3 is currently done through X.509 certificates or proxy71, but OIDC support is

expected to be added, which will allow integration with EGI Check-in.

5.3. Rucio

Rucio72 is a data management piece of software designed to manage large volumes of data

across multiple sites and a variety of storage endpoints. It was developed by ATLAS73 as an

open source project but is now used and developed by a variety of communities inside and

outside of the High Energy Physics field. The Rucio instance at Rutherford Appleton

Laboratory (RAL) can support multiple VOs at the same time, leveraging the power of Rucio

to support the EGI-ACE use cases with a robust and performant data management solution

that is being developed with the future of data and users in mind.

As depicted in Figure 17, a Multi-VO Rucio instance has the following components:

● The Rucio database, which stores the state of the service and the file namespace.

71 See RFC 3820 X.509 Proxy Certificate Profile https://www.ietf.org/rfc/rfc3820.txt
72 https://rucio.cern.ch/, see also EGI webinar https://indico.egi.eu/event/5711/
73 https://atlas.cern/

https://rucio.cern.ch/
https://indico.egi.eu/event/5711/
https://atlas.cern/

 41

● The Rucio server, is implementing the service logic.

● A CLI client, which is the main user interface to interact with Rucio server.

● Daemon processes, implements the connection with the FTS server or directly with

storage systems.

● A tape archive, is used to backup the Rucio database.

Rucio orchestrates the transfer of data according to the rules created by the users. Rucio

moves data by communicating with the FTS instance at STFC (the Science and Technology

Facilities Council in UK, see Section 5.2 for more information about FTS) to transfer the data

between storage endpoints.

Figure 17. Architecture of the Rucio service. Check-in/IAM integration is under development.

Users can access Rucio in two ways:

● Using the Bastion, a VM hosted at RAL.

● Using a containerised client that the user can install on their own machines.

Both systems provide the same CLI interface, but the containerised client allows local

volumes to be mounted for easy uploading and downloading of data. Rucio also has a Web-

based interface, which is planned to be functional within Multi-VO Rucio and will allow users

to manage their data, account, and account properties using a Web interface.

Authentication and authorisation in Multi-VO Rucio can be done by means of X.509

certificates, an X.509 proxy, or the traditional (and less secure) username and password.

Integration with EGI-Check-in (see Section 2.1) is planned by the end of 2022, which will

allow a wider range of users to authenticate with Rucio as a service.

To ensure redundancy and data preservation, Rucio’s database is backed up daily in an

external archive. There are also plans to implement a failover database for faster recovery

from downtime caused by a database outage.

 42

Each VO will inform Rucio of its storage endpoints by configuring them via the admin

interface. Rucio and FTS support a wide range of protocols and endpoints. VOs can

customise the permissions model and the schema for data placement with the use of Rucio

policy packages, which are Python packages written and maintained by the VO. Generic

policy packages are provided with Rucio, which can be reused and adapted by the VO.

Multi-VO Rucio’s goal is to assist EGI communities with its powerful Rucio software as a

service, helping them prepare to use Rucio, registering accounts, configuring storage

endpoints, customising policy packages, and providing a point of contact for troubleshooting

and assistance.

5.4. openRDM

openRDM is a service for storing inventory and datasets associated with the experiments

conducted in a laboratory during a research activity. It implements a digital notebook to

describe the computational experiments and link it with the materials, samples and protocols

stored in the inventory. Additionally, it also allows to perform data analysis (e.g via Jupyter)

and to execute workflows in computing clusters.

The service is based on the openBis Active Research Data Management (ARDM) platform74,

which has been developed over the last twelve years by the Scientific IT Services of

Informatikdienste (ID SIS) at ETH Zurich. ARDM is the process of organising data during an

ongoing research project, consisting of annotation, storage and backup of the data.

Figure 18. openRDM functionalities

As presented in Figure 18, openBIS is a server-client application: the remote server hosts

the database and storage backends that users access from their local machines via a Web

browser. It enables scientists to meet the increasingly demanding requirements of funding

74 https://openbis.ch/

https://openbis.ch/

 43

agencies, journals, and academic institutions to publish data according to the FAIR data

principles – according to which data must be Findable, Accessible, Interoperable and

Reusable75. The system is available in two versions: (i) a specific one for life sciences and

(ii) a generic and customisable one for other scientific disciplines.

The openRDM service consists of the following service components:

● A Preview openBIS server installed and configured on cloud infrastructure, intended

for end-users to learn the service, and eventually plan a deployment on-premises

and/or on a private cloud.

● Consultancy and support for the deployment of openBIS on-premises and/or on a

private cloud.

● User support, including generation of data models, import of data into openBIS and

training in the use of openBIS as a data management platform.

The Preview instance is currently running on the EGI Cloud IaaS, with a fully automated

deployment procedure based on Ansible and integrated with EGI Check-in. Access to this

cloud-based Preview instance is provided for end-user testing and on-boarding. In addition,

consultancy and support are provided for on-premises deployment of the openRDM

platform. In the case of the cloud-based Preview instance, no data backup and retention are

provided.

75 https://www.go-fair.org/fair-principles/

https://www.go-fair.org/fair-principles/

 44

6. Platforms

EGI-ACE platforms offer generic services that are widely used and not discipline-specific,

covering the following functionality:

● Interactive Computing, with a Jupyter-based service that allows users to create live

documents that run on the EGI infrastructure. This is discussed in Section 6.3.

● Scalable deployment of big data tools and clusters, supported by EC3, PaaS

Orchestrator and DODAS, enable the creation of virtual infrastructures on top of IaaS

resources. Each tool has its own levels of abstractions and features, and are

discussed in Sections 6.2, 6.3 and 6.4.

● AI/ML training, with the DEEP training facility service that supports the train-test-

evaluation cycle for prototyping AI models and applications.

As with the Federated Compute and Federated Data areas, these services are partially

integrated with the Core Services described in Section 2. All services integrate with

Federated Identity access, Monitoring, Configuration Database, and Helpdesk. Accounting

(including the definition of new records) is in progress.

6.1. Notebooks

EGI Notebooks76 is a Web-based interactive development environment based on the

JupyterHub77 technology that runs on a cloud provider of EGI-ACE (storage and compute

infrastructures). This environment offers a flexible tool where users can create and share

documents containing live code, equations, narrative text and rich media output (see Figure

19 for an example session). It is accessible to both individual users and members of a Virtual

Organisation. Computing resources are provisioned from providers integrated with the EGI

Federated Cloud. Basic storage capacity is equally provisioned from EGI cloud sites in the

form of IaaS resources, but additional storage can be made available on a case-by-case

basis from a variety of storage capacity providers, including: (i) The Onedata-based EGI

DataHub, (ii) Object storage interfaces exposed by other providers members, and (iii)

Specialised, area-specific dataset providers such as the Sentinels Collaborative Ground

Segment for Earth Observation data.

76 https://notebooks.egi.eu
77 https://jupyter.org

https://notebooks.egi.eu/
https://jupyter.org/

 45

Figure 19. EGI Notebooks interface showing a notebook execution with code and map visualisation.

Users are authorised to use EGI Notebooks through the EGI Check-in service described in

Section 2.1. An essential set of Notebook images is provided universally to all incoming

users, and additional images can be made available on request supporting various

programming languages like Python, Julia, R, Octave or MATLAB. The EGI notebooks

storage is backed-up and restored from a S3 service provided by CESNET. User-defined

environments built on-the-fly is facilitated through the Binder service78, which shares the

underlying infrastructure of EGI Notebooks. Furthermore, Notebook’s full integration with

GitHub and Zenodo allows users to easily engage with the concept of Open Science. This

relation is shown in the EGI Notebooks architecture depicted in Figure 20.

78 https://binder.notebooks.egi.eu

https://binder.notebooks.egi.eu/

 46

Figure 20. EGI Notebooks architecture

6.2. EC3

Elastic Cloud Computing Cluster (EC3)79 is a tool for creating elastic virtual clusters on top

of Infrastructure as a Service (IaaS) providers, either public (such as Amazon Web Services,

Google Cloud or Microsoft Azure) or local (such as OpenNebula and OpenStack). It does so

with a combination of Green computing, Cloud computing and HPC techniques.

By default, EC3 has the capacity to deploy different types of clusters: TORQUE [R24],

SLURM [R25], SGE [R26], HTCondor [R27], Mesos [R28], OSCAR [R29], ECAS [R30],

Nomad80 and Kubernetes. These clusters are self-managed with CLUES [R31], which starts

with a single-node cluster and dynamically deploys additional working nodes to satisfy the

demanded load, measured in the number of jobs at the Local Resource Management

System (LRMS). Working nodes are undeployed when they are idle, which introduces a

cost-efficient approach for Cluster-based computing on top of an IaaS Cloud. EC3 cluster

infrastructures are therefore automatically scaled out (adding new nodes on demand, up to

a maximum size specified by the user) and scaled in (removing existing nodes whenever

idle resources are detected, according to some predefined policies). This creates the illusion

of a real cluster, without requiring an investment beyond actual usage.

79 https://servproject.i3m.upv.es/ec3/
80 https://www.nomadproject.io/

https://servproject.i3m.upv.es/ec3/
https://www.nomadproject.io/

 47

Figure 21 summarises the main EC3 architecture. The deployment of the virtual elastic

cluster consists of two phases:

● The first one involves the creation of a VM in the Cloud to act as the cluster’s front-

end, which is done by a component called the EC3 Launcher using the Infrastructure

Manager described in Section 4.2. Once the front-end and the elasticity manager

(CLUES) have been deployed, the virtual cluster becomes fully autonomous, and

each user will be able to submit jobs to the LRMS, either from the cluster front-end

or from an external node that provides job submission capabilities.

● The second is the automatic management of the cluster size, depending on the

workload and the specified policies. Users have the perception of a cluster with the

maximum number of nodes specified. CLUES monitors the working nodes and

intercepts job submissions before they reach the LRMS, allowing the system to

dynamically manage the cluster size transparently to the LRMS and the user, scaling

in and out according to demand. Just like in the deployment of the front-end, CLUES

internally uses the Infrastructure Manager to support the provisioning of VMs that will

be used as working nodes for the cluster. Once these nodes are available, they are

automatically integrated in the cluster as new available nodes for the LRMS.

Figure 21. EC3 Architecture

 EC3 supports three deployment models, as depicted in Figure 22:

 48

● Basic structure (homogeneous cluster), which is composed of working nodes that

have the same characteristics (in terms of hardware and software). This is the basic

deployment model of EC3, where only one type of working nodes is used.

● Heterogeneous cluster, which allows working nodes with different characteristics

(in terms of hardware and software). This is of particular interest when nodes with

different configuration or hardware specifications must work together in the same

cluster. Working nodes can be assigned to different queues according to their

characteristics.

● Cloud Bursting (Hybrid clusters), which consists of launching nodes in two or more

different Cloud providers, to overcome limitations on user quotas or saturated

resources. When a limit is reached and no more nodes can be deployed inside the

first Cloud Provider, EC3 launches new nodes in a second Cloud provider. Nodes

deployed at different providers are automatically interconnected with VPN or SSH

tunnelling techniques, and can also be different, so that heterogeneous clusters with

cloud bursting capabilities can be deployed and automatically managed with EC3.

Figure 22. EC3 Deployment models

 49

More information regarding EC3 can be found at EC3’s GitHub repository81.

6.3. PaaS Orchestrator

The PaaS Orchestrator82 is the core component of INDIGO PaaS [R32], an abstraction and

federation layer on top of heterogeneous distributed computing environments that

orchestrates and coordinates:

● The provisioning of virtualised compute and storage resources on both private and

public Cloud Management Frameworks, such as OpenStack, OpenNebula, AWS,

etc.

● The deployment of containerised long-running services and batch jobs on Container

Orchestration Platforms such as Apache Mesos [R28] and Kubernetes.

● The submission and monitoring of HPC jobs on HPC sites through a QCG [R33]

gateway.

● The access to storage services to implement data placement, via the Rucio and

DataHub Connector

These communications are illustrated in Figure 23.

Figure 23. PaaS Orchestrator architecture

As depicted in Figure 24, the Orchestrator receives the deployment requests, expressed

through templates written in TOSCA [R17], and coordinates the deployments on the best

available cloud sites. To do so, the Orchestrator implements a complex workflow: it collects

(i) Information on Service Level Agreements (SLAs) signed by providers and the user, (ii)

Monitoring data about the availability of the compute and storage services, and (iii) The

location of the data requested by the user (if any).

81 https://github.com/grycap/ec3.
82 See also EGI webinar https://indico.egi.eu/event/5720/

https://github.com/grycap/ec3
https://indico.egi.eu/event/5720/

 50

Figure 24. Orchestrator deployment workflow

Once the best site has been identified, the Orchestrator starts the actual deployment

workflow through one of its provider plugins:

● The Cloud/IaaS adapter, which implements the interfaces with the relevant Cloud

Management Frameworks through the Infrastructure Manager (described in Section

4.2).

● The Mesos connectors, which implement the interfaces that manage the

interactions with the corresponding cluster framework, Marathon83 (to manage long-

running services) and Chronos84 (to manage batch jobs).

● The Kubernetes adapter, which implements the interfaces for managing

deployments on a Kubernetes cluster.

● The HPC adapter, which implements the interfaces for submitting jobs to HPC sites

through a QCG Gateway.

Figure 25 displays the internal architecture of the PaaS Orchestrator, showing these

available plugins in the lower layer. The top layer shows a REST API available for users to

interact with the platform. A relational database (RDBMS in the figure) is used to store data

about the state of the service.

83 https://mesosphere.github.io/marathon/
84 https://mesos.github.io/chronos/

https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/

 51

Figure 25. PaaS Orchestrator internal architecture

The PaaS Orchestration system provides the following key features:

● Support for deployments that need specialised hardware resources, such as GPUs

and Infiniband.

● Support for hybrid deployments and network orchestration.

● Support for isolated deployments, i.e., hosted on private networks (with no inbound

connection) that can be reached by users via VPN.

● Automatic retry in case of deployment failure or timeout.

● Integration with Hashicorp Vault85 to manage public cloud credentials.

● Support for multiple OIDC Identity Providers.

● Multi-tenancy support.

● RESTful API endpoints for handling deployments.

● Command-line and Web interfaces.

6.4. DODAS

Dynamic On-Demand Analysis Software (DODAS)86 [R34] is a service for running user

analysis code based on batch jobs, via the command-line or a Jupyter-based interface.

DODAS is open-source, can be deployed in production and demanding environments is

highly customisable, and has a modular design that allows users to configure the service to

efficiently address their specific use cases. These modules are called “blocks”. Existing

features of blocks include:

● Deployment and use of an HTCondor cluster over heterogeneous Cloud resources.

● Combination of Jupyter and HTCondor.

● Use of the Jupyter interface for analysis.

● Deployment of Big Data Pre-Post processing facilities.

85 https://www.vaultproject.io/
86 See EGI webinar https://indico.egi.eu/event/5695/

https://www.vaultproject.io/
https://indico.egi.eu/event/5695/

 52

To do so, resource and software provisioning, configuration and management is

transparently conducted for the user. Other DODAS blocks support data management

through caches (to optimise the processing of remote data) and Posix or S3-compatible

storage systems.

DODAS operates on Docker containers orchestrated at the IaaS layer by Kubernetes. When

it is used for batch system processing, it automatically deploys and manages both the

HTCondor central services (treating them as Long Running Services) and the worker nodes,

which can be made automatically and dynamically scalable.

DODAS itself is run on container technology, and it can be easily customised and adapted

to specific needs. Since DODAS interfaces natively with Kubernetes, its building blocks may

also be composed via Kubeapps87, a Web-based dashboard for Kubernetes.

A DODAS key element is the integration of a flexible, standard-based, and federated

Authentication and Authorization system, based on INDIGO-IAM, so it uses OIDC token-

based mechanisms at all levels of the computing and data stacks. From the user’s

perspective, this translates into a greatly simplified single sign-on experience. EGI Check-in

is integrated as an external authentication mechanism of IAM, and IAM is used as an AAI

harmonisation layer, so that Check-in grants access to EGI cloud resources, while the IAM

harmonised identity is used to manage DODAS domain-specific use cases.

Figure 26 highlights the high modularity of the technical implementation of DODAS, which

allows a strong integration with EGI-ACE services: Identity and Access Management

(INDIGO-IAM), PaaS Orchestrator and Infrastructure Manager.

Figure 26. DODAS architecture

87 https://kubeapps.dev/

https://kubeapps.dev/

 53

6.5. DEEP training facility

The DEEP platform was developed in the DEEP-Hybrid-DataCloud project88 and enhanced

with services developed in the EOSC-Synergy project89 and with continuous contributions

from DEEP partners. It offers a complete framework for users, practitioners, and developers

of Artificial Intelligence (AI) with various levels of expertise. The framework allows Machine

Learning and Deep Learning (ML/DL) applications to be transparently trained, shared, and

served, both locally and on hybrid cloud systems, in the context of EOSC. The provided set

of tools and services uses a DevOps approach [R35] to cover the whole ML/DL development

cycle, ranging from model creation, data processing, training, validation, and testing of

models serving as a service (through a serverless architecture), sharing and publication.

Developers of the services can focus on domain-specific challenges, while the DEEP

platform takes care of additional support tasks (AAI, resource management, marketplace,

CI/CD software quality assurance, etc).

The DEEP training facility90 allows AI model prototypes and applications to undergo through

the train-test-evaluation cycle of the ML lifecycle, performing this phase on production-grade

resources required for each of the training steps (see Figure 27). This facility therefore allows

access to the underlying Cloud, HTC and HPC resources exploiting accelerators,

transparently to the user through a user-friendly dashboard.

Figure 27. DEEP training model workflow

Once a model has been initially built, the dashboard allows users to access computing

resources and train it. The dashboard hides the complexity of making a deployment in the

DEEP framework, letting users to easily interact with resources through a simple GUI.

88 https://deep-hybrid-datacloud.eu/
89 https://www.eosc-synergy.eu/
90 https://train.deep-hybrid-datacloud.eu/

https://deep-hybrid-datacloud.eu/
https://www.eosc-synergy.eu/
https://train.deep-hybrid-datacloud.eu/

 54

Similarly, the dashboard allows users to interact with modules hosted at the DEEP Open

Catalogue91, as well as deploy external Docker images hosted in Docker Hub92. For all

deployments, users can select the desired hardware (CPU or GPU), the amount of memory

and other relevant parameters. Another useful feature is the ability to store the history of

previous training sessions, allowing the training status to be monitored directly from the

Dashboard, while tracking the results of experiments.

Figure 28. DEEP marketplace

The training facility relies on modules published on the DEEP Marketplace, shown in Figure

28, so it requires user applications to be installed in a container image and integrated with

the DEEP API93 to expose its functionality. The training facility uses the INDIGO PaaS

Orchestrator described in Section 6.3 to integrate with infrastructure systems (e.g.,

OpenStack, Kubernetes, Mesos or HPC systems).

91 https://marketplace.deep-hybrid-datacloud.eu/
92 A repository for container images. https://hub.docker.com
93 https://docs.deep-hybrid-datacloud.eu/projects/deepaas/en/stable/

https://marketplace.deep-hybrid-datacloud.eu/
https://hub.docker.com/
https://docs.deep-hybrid-datacloud.eu/projects/deepaas/en/stable/

 55

7. Conclusions

EGI-ACE delivers the EOSC Compute Platform following a layered architecture where

Cloud, HTC and HPC resource providers are federated to enable processing and analysis

for all kinds of research needs.

A set of Core Services has been described in Section 2, which provides federated operations

(such as common configuration management, authentication and authorisation

mechanisms, monitoring, accounting, and support) for those providers that participate as full

members of the EGI Federation, becoming an integral part of the services delivered by the

Federation to the EOSC Marketplace. Providers that are not part of the Federation can still

contribute to the EGI-ACE architecture, supporting the different services provided by the

Compute Federation, Data Federation, Platforms and Thematic Service layers, although

their use will not be managed via EGI’s SLA/OLA framework. Providers not fully integrated

in the EGI Federation can rely on common AAI, shared applications, and shared data.

Providers can choose the level of integration that better suits their needs and the

communities they serve.

The offer of compute services of the EOSC Compute Platform has been described in Section

3, and covers different types of applications and use cases: from Virtual Machines with full

user-control to a fully managed distributed platform to run jobs:

Table 3 – Description of EOSC Compute Services

Type Description Use Case

Cloud IaaS Provides access to VM-based
computing with associated
storage. It delivers a customisable
platform where users have
complete control over the software
and the supporting compute
capacity.

The flexibility of the computing platform
enables a variety of workloads: user
gateways or portals, interactive
computing platforms and almost any kind
of data- and/or compute-intensive
workloads.

High
Throughput
Compute

Provides access to large, shared
Grid Computing systems for
running computational jobs at
scale.

Analysis of large datasets in an
“embarrassingly parallel” fashion, i.e. by
splitting the data into small pieces, and
executing thousands, or even more
independent computing tasks
simultaneously, each processing one
piece of data.

High
Performance
Compute

Supports highly optimised
applications that need massively
parallel computing with low
latency and a high bandwidth
interconnection network.

Complex computational problems using
tightly coupled parallel processing:
simulations, analysis of large datasets or
AI/ML workloads. Typically, these
applications rely on MPI94 for supporting
interprocess communication.

94 Message Passing Interface (MPI) https://www.mpi-forum.org/

https://www.mpi-forum.org/

 56

The Federated Compute and the Federated Data services have been discussed in Sections

4 and 5 respectively and support the execution of research workloads by delivering agnostic

ways to run applications on the heterogeneous set of providers. These support both

exploiting data locality, by moving computing near data, and seamless access to remote

data, with replication and caching whenever necessary.

A set of platform-level services has been described in Section 6, which provides further

generic tools to exploit the compute and storage resources of EGI-ACE. These include

Interactive Notebooks, Scalable deployment of big data tools and AI/ML training.

All these layers support the discipline-specific thematic services that bring additional

analytics and data for specific communities.

The compute services of EGI-ACE described in this document contribute to the adoption of

the European Open Science Cloud (EOSC) by European researchers, innovators,

companies, and citizens, serving as a valuable introduction of EOSC capabilities and the

potential advantages that it can bring to advanced research. Researchers can benefit from

a federated and open multi-disciplinary environment that facilitates the publication, search

and reuse of data, tools and services, with the ultimate goal of improving research,

innovation and education.

 57

8. References

No Description/Link

R1 EGI-ACE D2.3 Technical specifications for compute common services

https://documents.egi.eu/document/3816

R2 PROC09 Resource Centre Registration and Certification

https://confluence.egi.eu/display/EGIPP/PROC09+Resource+Centre+Registratio

n+and+Certification

 R3 REFEDS Research and Scholarship (R&S)

 https://refeds.org/category/research-and-scholarship

 R4 GÉANT Data Protection Code of Conduct

 https://www.geant.org/uri/Pages/dataprotection-code-of-conduct.aspx

 R5 A Security Incident Response Trust Framework for Federated Identity (Sirtfi)

Version 2

https://refeds.org/wp-content/uploads/2022/08/Sirtfi-v2.pdf

 R6 Security Assertion Markup Language 2.0 (SAML 2.0)

https://wiki.oasis-open.org/security/FrontPage

R7 OpenID Connect (OIDC)

https://openid.net/connect/

R8 ISO/IEC 9594-8:2020 Open systems interconnection — Part 8: The

Directory: Public-key and attribute certificate frameworks

https://www.iso.org/standard/80325.html

R9 VOMS, an Authorization System for Virtual Organizations. R. Alfieri et al. In

Grid Computing. AxGrids 2003. Lecture Notes in Computer Science, vol 2970.

Springe

DOI: 10.1007/978-3-540-24689-3_5

https://documents.egi.eu/document/3816
https://confluence.egi.eu/display/EGIPP/PROC09+Resource+Centre+Registration+and+Certification
https://confluence.egi.eu/display/EGIPP/PROC09+Resource+Centre+Registration+and+Certification
https://refeds.org/category/research-and-scholarship
https://www.geant.org/uri/Pages/dataprotection-code-of-conduct.aspx
https://refeds.org/wp-content/uploads/2022/08/Sirtfi-v2.pdf
https://wiki.oasis-open.org/security/FrontPage
https://openid.net/connect/
https://www.iso.org/standard/80325.html

 58

R10 GLUE Specification v. 2.0. Edited by S.Andreozzi,

http://www.ogf.org/documents/GFD.147.pdf

R11 ARGO Guidelines for monitoring probes https://argoeu.github.io/argo-

monitoring/docs/monitoring/guidelines

R12 SSH Mastery: OpenSSH, PuTTY, Tunnels and Keys. M. W. Lucas. IT Mastery,

2018. ISBN: 978-1642350029

R13 Serious Cryptography. A Practical Introduction to Modern Encryption. JP

Aumasson. No Starch Press, 2017. ISBN:978-1-59327-826-7

R14 EGI ACE D7.3 HPC integration handbook

https://documents.egi.eu/document/3804 (last accessed: Sept 2022)

R15 The DIRAC interware: current, upcoming and planned capabilities and

technologies. F. Stagni, A. Tsaregorodtsev, A. Sailer, C. Haen. EPJ Web

Conf. 245 03035 (2020)

DOI: 10.1051/epjconf/202024503035

R16 Dynamic Management of Virtual Infrastructures. M. Caballer, I. Blanquer, G.

Moltó, C. de Alfonso, J. Grid Comput., 13, 53–70, (2015).

DOI: 10.1007/s10723-014-9296-5

R17 TOSCA Simple Profile in YAML Version 1.0. Edited by Derek Palma, Matt

Rutkowski, and Thomas Spatzier. 21 December 2016. OASIS Standard.

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/os/TOSCA-

Simple-Profile-YAML-v1.0-os.html

R18 ISO 26324:2022 Digital object identifier system

https://www.iso.org/standard/81599.html

R19 Persistent Identifiers. Davidson, J. (2006). DCC Briefing Papers: Introduction to

Curation. Edinburgh: Digital Curation Centre.

Handle: 1842/3368.

R20 ISO/IEC 17826:2022. Cloud Data Management Interface (CDMI) Version

2.0.0.

https://www.iso.org/standard/83451.html

http://www.ogf.org/documents/GFD.147.pdf
https://argoeu.github.io/argo-monitoring/docs/monitoring/guidelines
https://argoeu.github.io/argo-monitoring/docs/monitoring/guidelines
https://documents.egi.eu/document/3804
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/os/TOSCA-Simple-Profile-YAML-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/os/TOSCA-Simple-Profile-YAML-v1.0-os.html
https://www.iso.org/standard/81599.html
https://www.iso.org/standard/83451.html

 59

R21 Resource Description Framework (RDF) 1.1 Primer. Schreiber G., Raimond
Y. 2014. W3C Recommendation.
http://www.w3.org/TR/rdf11-primer/

R22 The Open Archives Initiative Protocol for Metadata Harvesting. Edited by C.
Lagoze and H. van de Sompel. 2015

https://www.openarchives.org/OAI/openarchivesprotocol.html

R23 OpenAPI Specification v3.1.0. Edited by D. Miller, J. Whitlock, M. Gardiner, M.
Ralphson, R. Ratovsky, U. Sarid. The Linux Foundation 2021.
https://spec.openapis.org/oas/v3.1.0

R24 TORQUE resource manager. Garrick Staples. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing (SC '06). Association for Computing
Machinery, New York, NY, USA, 8–es. 2016
DOI: 10.1145/1188455.1188464

R25 SLURM: Simple Linux Utility for Resource Management. A.B. Yoo, M.A.
Jette, M.A., M. Grondona. Job Scheduling Strategies for Parallel Processing.

JSSPP 2003. Lecture Notes in Computer Science, vol 2862. Springer.
DOI: 10.1007/10968987_3

R26 Sun Grid Engine: Towards Creating a Compute Power Grid. W. Gentzsch.
IEEE International Symposium on Cluster Computing and the Grid, Brisbane,
Australia, 2001 pp. 35.
DOI: 10.1109/CCGRID.2001.923173

R27 Distributed Computing in Practice: The Condor Experience. D. Thain, T.
Tannenbaum and M. Livny, Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pages 323-356, February-April, 2005.
DOI: 10.1002/cpe.938

R28 Apache Mesos Cookbook D. Blomquist, T. Janiszewski. Packt Publishing Ltd,
2017. ISBN: 978-178588-4627

R29 On-Premises Serverless Computing for Event-Driven Data Processing
Applications. A. Pérez, S. Risco, D. M. Naranjo, M. Caballer and G. Moltó, IEEE
12th International Conference on Cloud Computing (CLOUD), 2019, pp. 414-421,
DOI: 10.1109/CLOUD.2019.00073

R30 ENES Climate Analytics Service (ECAS). S. Bendoukha, T. Weigel, S. Fiore,
A. D'Anca, 20th EGU General Assembly, EGU2018, Proceedings from the
conference held 4-13 April, 2018 in Vienna, Austria, p.12549
Bibcode: 2018EGUGA..2012549B

R31 Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware
Physical Infrastructures. C. de Alfonso, M. Caballer, A. Calatrava, et al. J Grid
Computing 17, 191–204 (2019).
DOI: 10.1007/s10723-018-9449-z

http://www.w3.org/TR/rdf11-primer/
https://www.openarchives.org/OAI/openarchivesprotocol.html
https://spec.openapis.org/oas/v3.1.0

 60

R32 INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-
Infrastructures. D. Salomoni, I. Campos, L. Gaido, et al. J Grid Computing 16,
381–408 (2018)
DOI: 10.1007/s10723-018-9453-3

R33 Development of Science Gateways Using QCG -- Lessons Learned from the
Deployment on Large Scale Distributed and HPC Infrastructures. T. Piontek,
et al. J. Grid Comput. 14, 4 (December 2016), 559–573.
DOI: 10.1007/s10723-016-9384-9

R34 DODAS: How to effectively exploit heterogeneous clouds for scientific
computations. D. Spiga et al. International Symposium on Grids and Clouds
2018 in conjunction with Frontiers in Computational Drug Discovery (ISGC 2018
& FCDD) - Virtual Research Environment (VRE)
DOI: 10.22323/1.327.0024.

R35 The DevOps Handbook: How to Create World-Class Agility, Reliability, and
Security in Technology Organizations. G. Kim, P. Debois, J. Willis, J. Humble.
IT Revolution Press 2016. ISBN: 978-1942788003

	Executive summary
	1 Introduction
	1.1. Integration Modes for Resource Providers
	1.2. Document organisation

	2. Core Services
	2.1. EGI Check-in: Authentication and Authorisation
	2.2. Configuration Database
	2.3. Accounting
	2.4. Monitoring
	2.5. Helpdesk

	3. Federated Resource providers
	3.1. Cloud IaaS
	3.1.1. AAI integration
	3.1.2. Application Sharing
	3.1.3. Compute and Data Federation
	3.1.4. Integration with other core services

	3.2. High Throughput Computing
	3.2.1. Grid providers
	3.2.2. Spider

	3.3. High Performance Computing

	4. Federated Compute
	4.1. Workload Manager
	4.2. Infrastructure Manager
	4.3. CernVM-FS
	4.4. AppDB
	4.5. Dynamic DNS

	5. Federated Data
	5.1. DataHub
	5.2. FTS
	5.3. Rucio
	5.4. openRDM

	6. Platforms
	6.1. Notebooks
	6.2. EC3
	6.3. PaaS Orchestrator
	6.4. DODAS
	6.5. DEEP training facility

	7. Conclusions
	8. References

