

EGI-ACE receives funding from the European Union's Horizon 2020 research and

innovation programme under grant agreement no. 101017567.

go.egi.eu/egi-ace

D7.3 Final version HPC integration

Handbook

Lead partner: EGI Foundation

Version: 1

Status: Under EC review

Dissemination
Level:

PUBLIC

Keywords: HPC, EOSC Compute Platform

Document Link: https://documents.egi.eu/document/3804

Deliverable Abstract

The HPC integration handbook describes how HPC systems can be
incorporated into the EOSC Compute Platform delivered by the EGI-ACE
project. This handbook is the result of the piloting activities with use cases and
providers supporting workflows that run on combined Cloud, HTC and HPC
resources. In this document we detail the integration mechanisms used in the
pilots and provide information for providers on how to integrate HPC systems
into the EOSC Compute Platform, and for users on how to use these HPC
systems via EOSC for running container-based workloads.

http://go.egi.eu/egi-ace
https://documents.egi.eu/document/3804

 2

COPYRIGHT NOTICE

This work by parties of the EGI-ACE consortium is licensed under a Creative Commons

Attribution 4.0 International License. (http://creativecommons.org/licenses/by/4.0/).

EGI-ACE receives funding from the European Union's Horizon 2020 research and innovation

programme under grant agreement no. 101017567.

DELIVERY SLIP

 Name Partner/Activity

From: Enol Fernández EGI Foundation/WP7

Moderated by: Sjomara Specht EGI Foundation/WP1

Reviewed by: Marco Rorro
Sebastian Luna-Valero

EGI Foundation
EGI Foundation

Approved by: SDS

DOCUMENT LOG

Issue Date Comment Author

v.0.1 08/07/2022 Full draft - The initial version, M7.3
HPC integration handbook, was
published in Zenodo.

F. Antonio (CMCC)
H. Bayındır (TUBITAK)
I. Díaz (CESGA)
M. Dulea (IFIN-HH)
C. Fernández (CESGA)
E. Fernández (EGI Foundation)
J. Gomes (LIP)
A. Lahiff (UKAEA)
D. Southwick (CERN)
D. Spiga (INFN)
T. Tanin, (IICT-BAS)
G. Sipos (EGI Foundation)

v.0.2 28/07/2022 Incorporate comments from reviewers E. Fernández,
M. Rorro,
S. Luna-Valero

v.0.3 28/07/2022 Send to SDS

v.0.4 01/08/2022 Comments received and included E. Fernández

v.1 01/08/2022 Final

TERMINOLOGY

https://confluence.egi.eu/display/EGIG

http://creativecommons.org/licenses/by/4.0/
https://confluence.egi.eu/display/EGIG

 3

Contents

Executive summary ... 4

1 Introduction... 5

2 Requirements from pilots... 6

2.1 HEP ... 6

2.2 PROMINENCE .. 6

2.3 ELI-NP ... 7

2.4 ENES ... 7

3 Access to HPC Systems .. 10

3.1 SSH with federated identities ... 11

3.1.1 Provisioning and deprovisioning of accounts... 11

3.1.2 OIDC token based ssh access ... 11

3.1.3 ENES SSH-OIDC Scenario .. 12

3.2 HPC as a Service ... 13

3.2.1 HPCaaS for ELI-NP... 14

3.3 Access via middleware / gateways .. 15

3.3.1 ENES JupyterHub Scenario ... 16

3.4 Other integration mechanisms ... 17

4 HPC security guidelines .. 19

5 Operational integration .. 20

5.1 Accounting .. 20

5.2 Monitoring ... 21

5.3 Helpdesk ... 22

6 Data Transfers ... 24

6.1 DataHub .. 24

6.2 Parallel rsync (prsync) .. 25

6.3 rclone ... 25

6.4 Aspera ... 26

6.5 HSCP and UDR .. 26

7 Application support .. 28

7.1 udocker .. 28

8 EOSC Marketplace integration .. 31

9 Conclusions .. 32

 4

Executive summary

The EOSC Compute Platform, delivered by the EGI-ACE project, is a system of federated

compute and storage facilities, complemented by diverse access, data management and

compute platform services. The EOSC Compute Platform is designed to support a wide

range of scientific data processing and analysis use cases, including the hosting of scientific

services and data spaces. The infrastructure layer of the EOSC Compute platform initially

builds on compute cloud, container and High Throughput Compute facilities. During EGI-

ACE this layer was extended with High Performance Computing (HPC) systems, and access

to the federated HPC resources was be demonstrated by Open Science workflows that span

across all EOSC Compute platform continuum.

The HPC integration work in EGI-ACE focused on the following areas:

1. EOSC-compliant federated access management on HPC systems via the EOSC

Portal.

2. Availability and reliability monitoring of federated HPC sites.

3. Integrated usage accounting across HPC, cloud and HTC sites.

4. Access to distributed, federated data from HPC systems.

5. Portable container-based applications for cloud compute, HTC and HPC systems.

These areas were investigated by 4 HPC centres, CESGA (Spain), IICT-BAS (Bulgaria),

LIP/INCD (Portugal), and TUBITAK (Turkey), all members also of the EuroCC project.

The findings will be configured on these sites and will be validated through 4 scientific

workflows:

● Climate research use case from ENES (CMCC, Italy)

● High Energy Physics simulations for the High Luminosity run of the Large Hadron

Collider (CERN) HEP

● Cross platform fusion workflows (UK Atomic Energy Authority) PROMINENCE

● Photon and neutron science use case from the ELI-NP Research Infrastructure (IFIN-

HH, Romania)

Based on this work this document provides an architecture blueprint for HPC providers about

how to provision HPC resources with federated access management, monitoring,

accounting, data and application access mechanisms in EOSC.

Using this blueprint EGI-ACE will engage with external HPC providers to boost the uptake,

and ultimately to increase the presence and accessibility of HPC systems via the EOSC

Portal.

 5

1 Introduction

The EOSC Compute Platform, delivered by the EGI-ACE project, is a system of federated

hybrid compute and storage facilities, research data hosting, processing and analytics tools,

and a set of complementary services for distributed data and compute access to support

processing and analytics for distributed data and compute use cases. The Platform builds

on the existing EGI infrastructure and seeks to expand it towards HPC systems to support

heterogeneous computing workflows through a combined use of HTC, HPC and Cloud.

Under the guidance of four international use cases, the project delivers this architecture

blueprint for the provisioning of HTC and HPC resources with integrated federated access

management, monitoring, and accounting. The blueprint is focused on four areas: (1)

access to HPC systems via policies, solutions and protocols supporting federated identities;

(2) the external publication of HPC usage metrics; (3) the execution of portable container-

based applications in IaaS, HTC and HPC systems, and (4) federated data access from HPC

systems.

This handbook is delivered by the ‘HPC integration’ task members of EGI-ACE:

- 4 HPC providers belonging to National Competence Centres (NCCs) of the EuroCC

project (H2020 project with 50% funding from EuroHPC JU, 50% national funding).

NCCs are the central points of contact for HPC and related technologies in their

country. EGI-ACE includes as providers: CESGA (ES), IICT-BAS (BG), LIP/INCD

(PT), and TUBITAK (TR).

- 4 use case pilots with applications from different disciplines: climate research with a

use case from ENES1; High Energy Physics with a use case looking into the

computational needs of the future High Luminosity run of the Large Hadron Collider

(HL-LHC)2; fusion3 with a platform to run workloads across different computing

infrastructures, and photon and neutron science with a use case from ELI-NP4.

- 1 technology provider (INFN) with broad experience in delivering solutions for HTC,

HPC and cloud computing, which contributed with support for the access to providers

via middleware and the setup of JupyterHub for ENES pilot.

This handbook is organised as follows. First, we will describe the requirements from the use

case pilots included in the HPC integration task (Section 1). Then, the document details the

different options explored for providing access to the available HPC systems and to make

them an integral component of the EOSC Compute Platform covering the access, security

and operational integration (Section 2, 3, and 4). The following two sections cover how users

can transfer data (Section 5) and execute their workflows as containers (Section 6) in the

HPC systems. Finally, conclusions are given.

1 https://is.enes.org/
2 https://home.cern/science/accelerators/high-luminosity-lhc
3 https://marketplace.eosc-portal.eu/services/prominence
4 https://www.eli-np.ro/

https://is.enes.org/
https://home.cern/science/accelerators/high-luminosity-lhc
https://marketplace.eosc-portal.eu/services/prominence
https://www.eli-np.ro/

 6

2 Requirements from pilots

2.1 HEP

The High Luminosity run of the Large Hadron Collider (HL-LHC) in 2027 is expected to

produce 1 Exabyte of physics data for processing, of which, the goal is to demonstrate

processing of 1 Petabyte of physics data in 24 hours through an HPC site. In preparation of

this goal, HEP pilot work has identified requirements in line with the thematic topics

presented in this milestone document.

Due to the large volume of data that must be transferred to and from a participating HPC

site, as well as potentially stored on shared file systems, it is critical that detailed information

covering site connectivity and storage capabilities is published alongside applicable usage

policies governing these services. Physical descriptions of the network and storage

topologies alongside relevant benchmarks demonstrating expected throughput capabilities

greatly aids data-driven workload users of HPC sites. Support of data transfer services

(XrootD, globus, gftp, etc.), their protocols, and expected throughputs, allows better

informed decisions on workload selection and scaling, and reduces potentially invasive

benchmarking.

Currently, HEP workloads are served from CVMFS when available or containerized via

Singularity images. The lack of a clear consensus on a preferred containerization service for

HPC requires communication from site operators on what service(s) they choose to support,

and any affecting permission policies enforced. If compute/worker nodes are restricted to

LAN connectivity, this should be clearly communicated, as this entails intermediate storage

on the shared storage system as an additional step to export/publish results. HEP workloads

are diverse and will be heterogeneous in nature. AAI is detailed in the following sections.

2.2 PROMINENCE

The PROMINENCE5 platform allows users to transparently run containerised workloads,

including individual jobs as well as workflows, across any number of clouds simultaneously.

Users are presented with a simple batch-system style interface available as either a CLI

which can be run anywhere or a REST API. All infrastructure provisioning is handled

automatically and is completely invisible to users.

Integrating PROMINENCE with existing HPC systems would allow users to access a wider

variety of resources and enable users to run multi-node jobs requiring low-latency

interconnects more readily, as such hardware is still rarely available in private research

clouds. Requirements for HPC integration are:

● A minimum of CentOS 7 (or equivalent).

● Support for unprivileged containers, either Singularity or udocker.

● Ideally, outgoing access to the internet on port 443 (https) is required for access to

external storage systems. If outgoing access is only available on login nodes this can

be dealt with but access from the worker nodes is preferred.

5 https://marketplace.eosc-portal.eu/services/prominence

https://marketplace.eosc-portal.eu/services/prominence

 7

● Access via ssh is fine but HTC-like access, e.g., ARC CE or HTCondor CE, could

also be easily supported if available.

● The HPC site's security policies need to allow a single system to be able to submit

jobs on behalf of multiple users. PROMINENCE users are of course not given direct

access to the resources but are able to submit jobs to PROMINENCE using arbitrary

container images running arbitrary commands.

2.3 ELI-NP

The 10 PetaWatts High Power Laser System (HPLS) - commissioned in 2020, and the

Variable Energy Gamma-ray (VEGA) System - under construction, hosted at the Extreme

Light Infrastructure – Nuclear Physics (ELI-NP) facility, will support breakthrough

experiments in laser and nuclear physics whose preparation, optimisation and validation

need intensive HPC simulations. The largest consumers of HPC resources are the particle-

in-cell (PIC) simulations that are essential for predicting the results of the experimental

investigation on ion acceleration and QED effects, laser-to-gamma conversion, for the

development of nuclear detector systems, etc.

ELI-NP pilot is intended to meet in general the HPC user requirements and in particular the

necessity for providing them with reliable PIC computing resources. User access to such

computing resources to run open-source codes such as EPOCH and PIConGPU can be

offered on bare-metal clusters through the AAI described in this document, or on virtual

clusters through the EGI Check-in service. Generally, the virtual HPC clusters are served

through pre-defined, containerized VM images. Efficient workload managers like SLURM

should be provided on virtual clusters too for efficient use of the resource by multiple users.

In order to ensure superior scalability, the bandwidth available for internal communication

should be at least 50 Gb/s. On high-density clusters, Mellanox EDR should be considered.

For fast external data transfers, it is recommended to have internet connectivity of min. 10

Gb/s.

The computational power and the storage capacity required depend strongly on the nature

of the simulated experiment and of the spatio-temporal scale chosen for the simulation. As

a typical example, the running of a 2-dimensional PIC code for investigating gamma-ray

generation and pair production typically requires at least 600 CPU cores. To run a 3-

dimensional code, more than 1000 cores are needed, and the generated data (including the

restart files) are of the order of 1 TB.

The preparation by the provider of the resources for a new PIC computing project requires

close communication with the user for serving appropriate computing environments and

preliminary benchmarks of the chosen software on available resources.

2.4 ENES

In several domains, such as climate science, scientific advances now rely on technologies

and software solutions from both the HPC and Big Data landscapes. However, being able

to efficiently exploit HPC infrastructures for running scientific data analysis is not trivia l. A

 8

unified model that also allows the deployment on HPC of the same services already

exploited in the cloud can pave the way for a wider range of opportunities in the scientific

community, further fuelling the adoption of the HPC as a Service (HPCaaS) paradigm. In

this respect, software containers are good candidates for supporting the portability and

deployment of data analytics frameworks over multiple platforms. Thanks to the

development of container technologies to become more HPC-friendly, thus targeting

unprivileged environments (e.g., udocker, Singularity, Sarus), scientists could exploit the

benefits of this model also on HPC infrastructures.

The ENES pilot aims to address services and usage scenarios relevant to the European

Network for Earth System modelling (ENES) community, which gathers the European

modelling community and supports the dissemination of model results to the climate

research and impact communities. The pilot operates on top of the ENES Climate Analytics

Service (ECAS)6, one of the EOSC-Hub Thematic Services as well as a Compute Service

in the IS-ENES3 project. In the European Open Science Cloud (EOSC) context, ECAS

represents a central component of the ENES Data Space7 set up in the EGI-ACE project

with the aim to provide an open and cloud-enabled data science environment for climate

scientists. In this environment, the Ophidia HPDA framework8 represents a core computing

engine of the ECAS service and it can greatly benefit from the exploitation of HPC resources

for running parallel data analysis applications and workflows.

In such a context, the main goal of the ENES pilot is to explore solutions for the execution

of container-based climate workloads, focusing on simplifying the portability of applications

across the different computing services available to EOSC users. Specifically, in order to

enable a transparent and portable deployment of ECAS on top of the HPC resources made

available in the EGI infrastructure, the pilot targets the use of HPC-friendly unprivileged

containerization solutions (i.e., udocker) for the ECAS core components. Among them, the

Ophidia platform, a JupyterHub instance as an entry point to a data science environment

and other climate community tools and Python Data Science modules are considered. This

will allow climate scientists to easily execute docker-based data analytics and visualisation

jobs on scientific datasets hosted for example on the EGI DataHub9. To this end, the proper

orchestration of container-based jobs for climate applications via HPC batch scheduler (e.g.,

Slurm) will also play an important role in this process. All these requirements have been

taken into consideration for the exploration of a set of potential climate-oriented usage

scenarios over HPC resources. For the ENES pilot two main application scenarios have

been selected that are described in sections below.

Both scenarios have been set up and tested on the resources provided by TUBITAK. Though

some technical difficulties were encountered for the implementation of the pilot use cases,

in terms of proper integration of the different components on the HPC unprivileged

environment. In the long term, the goal is to try to reuse the experience from the pilot to

6 https://marketplace.eosc-portal.eu/services/enes-climate-analytics-service
7 https://enesdataspace.vm.fedcloud.eu
8 https://ophidia.cmcc.it
9 https://www.egi.eu/services/datahub/

https://marketplace.eosc-portal.eu/services/enes-climate-analytics-service
https://enesdataspace.vm.fedcloud.eu/
https://ophidia.cmcc.it/
https://www.egi.eu/services/datahub/

 9

integrate HPC-based services within the context of the ENES Data Space for supporting

extreme-scale scenarios.

 10

3 Access to HPC Systems

Traditionally, access to HPC systems is performed via login nodes where users connect to

with SSH. From those nodes, users can interact with the batch system and submit jobs for

their execution. The SSH credentials are typically locally managed usernames and

password or SSH keys. For EGI-ACE, we tested and deployed new ways of accessing the

providers that leverage federated authentication, so users do not need to manage a new set

of credentials for each of the individual HPC systems. The following mechanisms were

considered for the EGI-ACE pilots:

● SSH access with federated identities: The HPC system login node is configured to

accept federated identities with new technologies like OpenID Connect or by

synchronising SSH keys from a federated identity system like EGI-Check-in. In EGI-

ACE we have piloted the access with SSH-OIDC10 as described below. This access

method minimises the requirements to the users, who just need to get access tokens

from Check-in, and does not introduce disrupting changes to the providers. SSH

access with SSH keys from a federated identity system like EGI Check-in is possible

with the synchronisation of accounts with the federated LDAP registry that include

among other user information, the public keys of the users. This is currently used in

the C-SCALE project for the integration of HPC providers11 and not tested in EGI-

ACE.

● HPC as a Service: Users are presented with APIs to create virtual infrastructures

with HPC capabilities, e.g. specialised hardware like GPU accelerators and low

latency networks like InfiniBand, to run their workloads. Virtualisation may introduce

some extra overhead, although this may be acceptable for a wide number of HPC

needs and bare-metal clusters may be also supported in HPC as a Service offers.

For EGI-ACE the HPC as a Service is provided using OpenStack APIs for the

provisioning of the virtual infrastructure with automated deployment of clusters using

EC3.

● Access via middleware and or gateways: In this case, users do not get direct access

via SSH, but a set of middleware components will handle the user access and the

interaction with the HPC system. For EGI-ACE, we considered the existing HTC

middleware12 for delivering access to the providers. Similarly, to using HTC

middleware, in EGI-ACE we also consider using a web accessible portal (e.g.

Jupyter) that handles the submission of jobs to the HPC cluster and users do not

have direct access to the underlying system. Gateways themselves need privileges

to submit jobs on behalf of the user. Using these middleware or gateways is not

always possible at HPC systems due to policy restrictions.

10 https://github.com/EOSC-synergy/ssh-oidc
11C-SCALE - D3.1 Initial Design of the Compute Federation https://zenodo.org/record/5084884
12 https://docs.egi.eu/users/compute/high-throughput-compute/

https://github.com/EOSC-synergy/ssh-oidc
https://zenodo.org/record/5084884
https://docs.egi.eu/users/compute/high-throughput-compute/

 11

3.1 SSH with federated identities

3.1.1 Provisioning and deprovisioning of accounts

Before a user can access an HPC cluster, a user account needs to be available on the

system. Accounts can be either created ‘on-the-fly’ as the user first accesses the system or

be provisioned via some offline mechanism. The provisioning and deprovisioning of

accounts normally follow strict policies and procedures that are system-specific, thus

providing common solutions may impose undesirable requirements on the individual centres

and clash with local policies and setups. Even without a common approach for the

provisioning of accounts, it can be technically supported with LDAP registries like the one

provided by Check-in13 or using pool accounts as in most grid systems. Besides the

provisioning of the accounts, federated users need to be mapped to these local accounts,

which is determined by the configuration of the access mechanism to the system.

3.1.2 OIDC token based ssh access

OIDC (OpenID Connect) is an identity layer, built on top of OAuth protocol. It allows Clients

to verify the identity of the End-User based on the authentication performed by an

Authorization Server, as well as to obtain basic profile information about the End-User. This

protocol reduces the friction experienced by the End-Users while allowing service providers

to get the information they need relatively quickly and well-defined manner. EGI Check-in is

built on top of the same technology.

With the increasing requirement of accessing HPC systems from cloud environments and

using these systems for fast and distributed processing, the need for using existing

authentication systems for accessing HPC clusters became a necessity.

One of the ways for achieving this interconnection is utilisation of a layer called SSH-OIDC.

SSH-OIDC adds capabilities for authenticating a user over SSH using its OIDC token

obtained from any OpenID Connect identity provider, including EGI Check-in.

SSH-OIDC is a relatively simple to install and administer system which requires installation

on both the client and server system. It creates a side-channel to transfer OIDC related

validation traffic and other side-tasks to be handled during login. This side channel can be

encrypted with TLS for enabling around-the-world, in-the-open secure deployment.

In general, SSH-OIDC has these outstanding features:

● Allows any user to login via any OpenID Connect provider.

○ The HPC provider can still restrict access based on local policies,

membership in a Virtual Organization, or both.

● Creates required users and groups automatically, assigns persistent usernames.

○ Groups users from the same roles under the same groups, allowing

cooperation.

○ Allows username creation schemes to be configured.

13LDAP support in Check-in: https://docs.egi.eu/users/aai/check-in/vos/#ldap

https://docs.egi.eu/users/aai/check-in/vos/#ldap

 12

● Installation of the components does not interfere with normal user authentication

capabilities on either end.

The server side of SSH-OIDC contains two components. A service called motley-cue and

an authentication plug-in called pam-ssh-oidc. The former module handles user mapping

and related tasks, while the latter plugin allows tokens to be passed instead of passwords

and be verified for allowing the user in.

Similarly, the user side of the installation contains two components. A command line tool

mccli for interfacing with motley-cue service on the server side and an oidc-agent tool14 for

obtaining the tokens and managing the accounts (hence tokens) on the client side, including

encryption for increased security. After completing the installation, a user might get its token

from an OpenID Connect provider via the oidc-agent tool and connect to a supporting server

via mccli tool.

Due to evolving nature of the software, an installation guide is not included in this handbook,

however, the following links will provide all the necessary information regarding its

installation and use:

● SSH-OIDC official document repository (GitHub).

● Client quick installation guide (kit.edu).

Since the software is distributed as RPM and DEB packages, installation, and maintenance

of the utilities via standard system management commands is possible, and straightforward.

3.1.3 ENES SSH-OIDC Scenario

The ENES pilot consists of two main application scenarios. The first one consists of the use

of community-based tools for the execution of climate analysis in parallel on large datasets

requiring the use of HPC resources. This scenario targets a set of users with at least some

basic experience with the HPC environment. From a technology perspective, it aims at

understanding how federated authentication solutions and data analytics services from the

cloud ecosystem can be also exploited on HPC for climate science. As shown in Figure 1,

the final implementation makes use of: (i) SSH-OIDC as AAI solution (relying on the EGI

Check-in service) for ssh-based authentication and login (see the “OIDC token based ssh

access” paragraph under the “Access - Authentication and Authorization” section), (ii)

udocker for packing the whole set of community-based data analytics tools (i.e., Ophidia)

and supporting parallel execution via the slurm resource manager provided by the HPC

system (see the related section under “Application support”) and (iii) services to enable a

federated data access (i.e., the EGI DataHub service based on the Onedata technology, see

the “DataHub” paragraph under the “Data Transfers” section) to a collection of datasets.

14 https://github.com/indigo-dc/oidc-agent

https://github.com/EOSC-synergy/ssh-oidc
http://ssh-oidc-demo.data.kit.edu/
https://github.com/indigo-dc/oidc-agent

 13

Figure 1: ENES pilot - First scenario

3.2 HPC as a Service

EGI operates a federated IaaS cloud that allows users to create virtual infrastructures for

running their workloads. Although these rely on hypervisors to create Virtual Machines,

specialised hardware like GPU accelerators and low latency networks like InfiniBand can be

configured as PCI Passthrough devices without any significant performance overhead thus

enabling the execution of certain HPC workloads.

Compared to HPC on bare-metal clusters, the HPCaaS solution offers well-known cost-

efficiency, flexibility and resource scaling advantages, users can benefit from the OS and

flavours of choice for implementing the infrastructure that best suits their applications, while

admins don’t need to install MPI software on hosts and can easily migrate VMs between

hosts in case of scheduled interruptions. Moreover, virtualization allows the construction of

various testing environments for optimising the resource configurations of parallel

applications.

Such advantages make HPCaaS widely adopted by commercial cloud providers, despite

some drawbacks, such as the consumption of a small fraction of resources by hypervisors

and the inherent influence of the overhead due to virtualization on the applications’ runtime

and scalability.

Because the construction of virtual clusters by administrators of HPC clusters is not often a

possibility, it is necessary to provide HPC users with automatic means of generating MPI

clusters that offer familiar compute environments and resource management systems.

 14

EC3 (Elastic Cloud Compute Cluster)15 provides a tool to create elastic virtual clusters on

an Infrastructure as a Service (IaaS), including support for SLURM or similar job

management systems found in HPC systems. This approach allows for a very flexible and

customizable environment for executing the user applications with complete control on the

operating system and applications available and the associated hardware to each of the

virtual nodes, while keeping similar interfaces as those available in the HPC centres.

HPCaaS is particularly useful for testing and optimising HPC applications in various

environments because the migration of the applications between the bare-metal and the

cloud clusters is straightforward as long as these two share the same Linux flavour and MPI

version.

When providing HPC by using IaaS clusters it is essential to ensure appropriate performance

conditions of the infrastructure are met. Even if virtual clusters with any OpenStack flavour

can be deployed, better HPC performance of an application is achieved with fewer VMs per

node, best would be achieved with only one VM per node using all the resources available.

As in the case of bare-metal HPC clusters, resource fragmentation leads to poorer

performance. The performance of any virtual cluster strongly depends on both host

infrastructure and virtualization method. For this reason, it is recommended to build HPCaaS

using an efficient hypervisor and an optimised HPC-ready OpenStack cluster (preferably

homogenous and with low latency interconnect) coupled with a parallel file system (for

applications which require that).

3.2.1 HPCaaS for ELI-NP

Motivated by the need for providing a versatile computing environment for HPC simulations

at ELI-NP, an exploratory study on possible HPCaaS solutions implementable in the EGI

infrastructure has been conducted.

The study was focused on the implementation of virtual clusters on OpenStack with MPI

capabilities and low latency interconnects, and the investigation of the scaling performances

of the EPOCH code16 when running on this infrastructure.

Virtual clusters were deployed by using the InfiniBand (IB) Single Root I/O Virtualization

(SR-IOV) interfaces and creating Virtual Functions on the compute nodes, for which a script

was developed. Ubuntu-based flavour VMs were configured using Mellanox OFED

(OpenFabrics Enterprise Distribution) with OpenMPI. These were utilised for conducting

benchmarks on CLOUDIFIN OpenStack site, with KVM hypervisor, and the results were

compared to those of similar tests performed with EPOCH on the bare-metal host cluster

and FinisTerrae III supercomputer at CESGA.

It was found that the mean run time for the virtualized system is longer than in its bare-metal

version by less than 4% in the case of a single VM (with 40 cores) and by less than 10% in

the case of interconnected VMs. Also, when more than one VMs are considered (that is

15 J. of Computer and System Science 79 (2013) 1341-1351
16 Extendable PIC (Particle in Cell) Open Collaboration, T D Arber et al 2015 Plasma Phys. Control.

Fusion 57 113001

 15

when the data is not written locally), data transfers through NFS protocol hinders scaling

when the number of VMs increases.

Performance improvements could be obtained by using a Type 1 hypervisor, such as

VMware, for decreasing packet latency, or/and a parallel file system that scales well (e.g.,

Lustre, which significantly improved the results of bare-metal tests on FinisTerrae III),

instead of NFS. Alternative solutions may consider the implementation of containerization

over an HPC infrastructure, or the use of the OpenStack Ironic service to initialise hosts

starting from a VM image which contains the OS and, e.g., udocker.

For the automation of the deployment of virtual clusters an instance of EC3 was installed on

a VM as a new extension service of CLOUDIFIN. Because currently, EC3 works with

Ethernet network devices only, in order to implement InfiniBand support on the cluster to be

generated, two strategies are possible: 1) using the Ethernet support on IB devices for

getting network bandwidth higher than Ethernet; 2) Programming a separate tool for

attaching IB interfaces to VMs and using Ansible rules in EC3 for cluster reconfiguration.

In implementing the first method, the IB network devices (ConnectX-4 or newer) were

configured as Ethernet port type on hosts. Successful node-to-node tests were performed

between the OpenStack controller and one compute node running several VMs, the speed

being downgraded from FDR (56 Gbps) to QDR (40 Gbps). For multiple compute nodes an

IB switch that can use the Ethernet Mode is required. The drawbacks are that this feature

can be provided on the previous generation of IB switches only under a paid license, and

the initial IB speed is downgraded. Moreover, this would be a temporary solution, as NVIDIA

currently offers two separate production lines of switches, for Ethernet and IB, respectively.

For implementing the second solution, a tool has been developed in Python that uses the

libvirt module. The tool, which works independently of EC3, is attaching the Virtual Functions

of the IB network device to any new virtual machine. After this is done, the virtual cluster

should be reconfigured using Ansible rules.

3.3 Access via middleware / gateways

The goal of this integration option is to allow the exploitation of processing resources

available in an existing HPC cluster by community specific workload management systems

or gateways external to the HPC itself. This means that we expect that externally submitted

jobs need to run on HPC resources. A typical workflow is the one where experiment specific

pilot jobs reach the HPC resource and call back the Experiments Workload Management

Systems and receive payloads, which are executed inside a runtime environment.

In this scenario the HTCondorCE can represent an HPC edge node with access to the

external IP ranges that can be carefully defined upfront. The edge node has the role then to

submit to the internal batch system. The latter is a key aspect and here HTCondor represents

a suitable solution because it natively supports the compatibility with server batch

middleware among which SLURM which is popular between HPC centres.

Since one of the objectives of the work is to allow the exploitation of processing resources

available in HPC clusters, e.g., by single-node (multicore) or single-core HTC jobs for data

processing, it is natural to rely on the job router daemon capability natively built-in by

HTCondor which is the key feature which allows translating HTC submitted jobs into the

 16

internal batch. This provides the ability to transform vanilla jobs to the “slurm” batch type,

thus allowing HTCondor to interface with Slurm and therefore supporting a mixing of HPC

and HTC resources. Another key feature of the job routing daemon is to allow both automatic

transformations as well as custom policies. Last but not least, this grants a high level of

flexibility since, for example, one could use any python based script for the implementation

of a custom policy.

Another key aspect is that using such an HTCondor based approach opens the possibility

even to the federation of distributed providers (either HPC or not) building a pool of

heterogeneous resources.

Another approach, still HTCondor based, has been developed and tested in order to provide

a simplified and lightweight strategy. It can be considered an extension of the above scenario

which aims to further reduce the requirements for the site. The simplified integration strategy

is based on the idea that HPC resource provisioning can be decoupled from the presence

of HTCondor edge service. In other words, one can implement a pluggable lightweight

service that takes care to submit slurm jobs properly configured to start an HTCondor startd

daemon. The latter can be configured to connect back to any external pool federating then

the provided resource. In this case routing and matching, rules will be managed at the level

of the main HTCondor pool where the resources are supposed to connect back. Daemon

services authenticate via HTCondor Tokens which allow the main pool the full control to

possibly revoke credentials.

In the end the minimal requirement for HPC centres can be offering the possibility to deploy

an edge service. In the very minimal scenario, this can be any login node (preferably a

dedicated node) where a script/cron job can run “forever”.

An additional plus would be:

- Outbound connectivity from the nodes. While solutions to overcome lack of outbound

connectivity have been studied, the impact on performance would be not negligible.

- CVMFS for making software easily available at the HPC centre.

- singularity/udocker for the execution of software packaged as containers without

extra privileges.

3.3.1 ENES JupyterHub Scenario

The second scenario of the ENES pilot targets the use of a Jupyter-based Python

environment on top of a HPC infrastructure for the execution of complex climate analysis in

the form of Notebooks. With respect to the first one, this scenario supports less experienced

users which do not need direct access to HPC facilities but only to their computing power

for the execution of notebooks. Moreover, this scenario aims to demonstrate how cloud-

based services for data science can be moved transparently to HPC systems.

In this case, a udocker container will host several components such as the Jupyter Notebook

server, the Ophidia centralised components and the Python modules for results post-

processing and visualisation; additionally, multiple udocker worker containers will be

deployed on multiple cluster nodes to enable larger scale parallel data analysis. A single

JupyterHub instance is deployed on a service node integrating the EGI Check-in service to

handle authentication and authorization aspects and provide users with a uniform, secure

 17

and easy way to access the environment. The service node can directly access the HPC

cluster in order to orchestrate the deployment of the containers on the HPC compute nodes

via the slurm batch system. In this regard, a customised version17 of the batchspawner for

Jupyterhub18 has been considered in order to use ssh to submit a slurm job on the HPC

system and then use a SSH tunnel to make JupyterHub able to contact the job running inside

the HPC network. More specifically, a service account has been set up to spawn on the HPC

nodes the udocker containers as jobs on behalf of each authenticated user and then tunnel

the interface back to the JupyterHub instance. In this way, once a user is authenticated, the

batchspawner plugin will connect to the cluster login node and submit a Jupyter Notebook

job and the Ophidia server-side components as well. As soon as the job starts the execution,

it sets up a SSH tunnel with the front-end host so that JupyterHub can proxy the Notebook

interface to the user. This setup allows users to simply access a HPC system via a browser

and exploit all their Python environment and data.

Figure 2: ENES pilot - Second scenario

3.4 Other integration mechanisms

The EGI-ACE pilots covered the integration mechanisms described above, but there are

other possibilities that may be explored in future work:

● HPC as a Service on a Bare-metal. Virtualisation brings certain levels of overhead

which are very critical for some workloads thus they are not suitable for running on

17 https://github.com/DODAS-TS/remote-slurm-

spawner/blob/master/remote_slurm_spawner/remote_slurm_spawner.py#L631
18 https://github.com/jupyterhub/batchspawner

https://github.com/DODAS-TS/remote-slurm-spawner/blob/master/remote_slurm_spawner/remote_slurm_spawner.py#L631
https://github.com/DODAS-TS/remote-slurm-spawner/blob/master/remote_slurm_spawner/remote_slurm_spawner.py#L631
https://github.com/jupyterhub/batchspawner

 18

virtual machines as currently done for the HPC as a Service pilot described above.

Instead, the hosts for deploying the HPC workloads can be created dynamically with

a bare-metal management tool like OpenStack Ironic19

● Delivery of a containerized HPC infrastructure as a Service. This flavour is aimed at

HPC providers and users who want to deploy an HPC cluster from EGI-ACE

validated templates preconfigured with SSH access via OIDC or HTC middleware,

and all the services and tools facilitating the integration with EGI-ACE. The

implementation shall be driven by Ansible and result in an HPC-ready cluster on top

of LXC containers, enforcing isolation from the underlying system without

compromising the performance. Having a containerized HPC cluster on top of a

physical HPC cluster has some advantages – (a) the function of the physical HPC

cluster remains as it is, (b) the containerized HPC Cluster can utilize the entire

resources provided by the physical cluster or their subset, (c) the containerized HCP

cluster can be easily upgraded, (d) it is easy to bring the physical cluster in its initial

state if desired. The deployment of a containerized HPC system includes two stages

– (1) deployment of LXC containers to host the HPC cluster and (2) installation of

HPC components. The first step usually will be performed by the HPC provider,

considering their security concerns. The next step should be essentially the same for

all providers in EGI-ACE. A proof-of-concept will be created for capturing an existing

physical HPC cluster as LXC containers template (performing physical to container

conversion), allowing to backup or replicate the cluster, or to repurpose the hardware

while continuing to use the original HPC system.

19 https://www.openstack.org/use-cases/bare-metal/

https://www.openstack.org/use-cases/bare-metal/

 19

4 HPC security guidelines

The security in the HPC ecosystem should encompass three main categories: data

confidentiality, system integrity and system availability. Security requirements should be

integrated already in the HPC system planning/design, while it will be more difficult to

integrate them later. For the network design, at least the user and management network

should be separated, network topology should be documented well, and it facilitates

debugging in the case of security and other problems. For provisioning and configuration of

the nodes use configuration management tools as they provide consistency and automation

of the service configuration, traceability of configuration changes, efficient change

management, control over running processes and permissions over the files, configuration

backup and documentation. Configuration of the nodes should include OS hardening and

disabling unnecessary services. Use central access and identity management software to

manage and control users' access to services and use a central remote logging service to

store logs. For services that require authentication, implement Multi-Factor Authentication,

if possible, monitor network activity and data access, enable auditing and check the integrity

of the trusted computing base (configuration files, binaries, kernel modules and other critical

files). Define vulnerability handling and incident response procedures.

Further reading:

● AARC Project: https://aarc-project.eu/policies/policy-development-kit/

● WISE: https://wise-community.org/published_documents/

● Service Management System processes:

https://documents.egi.eu/public/ShowDocument?docid=3807

● EGI-CSIRT: https://csirt.egi.eu

https://aarc-project.eu/policies/policy-development-kit/
https://aarc-project.eu/policies/policy-development-kit/
https://wise-community.org/published_documents/
https://wise-community.org/published_documents/
https://documents.egi.eu/public/ShowDocument?docid=3807
https://documents.egi.eu/public/ShowDocument?docid=3807
https://documents.egi.eu/public/ShowDocument?docid=3807
https://csirt.egi.eu/
https://csirt.egi.eu/

 20

5 Operational integration

Having access using federated authentication and authorisation is the first step to integrating

HPC centres in the EOSC Compute Platform. Operational integration enhances the

federation from the operational perspective: they provide insights on the capacity

consumption by users, simplifies user interaction via a helpdesk, or provide service

availability and reliability metrics.

5.1 Accounting

The Accounting service, provided by APEL20, parses the logs from many computation

platforms such as SLURM, OpenStack, OpenNebula and others, sends them to APEL,

where they will be summarised, and transformed and sent to the Accounting Portal for

display. In the case of some large organisations, such as WLCG or OSG, those can do the

summarization and send their records already processed.

ARGO Messaging System (AMS)21 is used both for publication of non-summarized or

summarised data, and for sending the final data to the Portal. As part of the task, we

evaluated the scenario of using the APEL software to publish an existing SLURM-based

workload, in this case the parsing is done directly by the apel-parsers component instead of

second-party parsers like cASO, which in many cases were developed to address the

fragmentation existing in data representation between the existing Cloud provider

management software.

We installed apel-parser successfully and configured it to point to our SLURM-powered

computation node. The publication is done at fixed intervals, and in case of errors or gaps

in the publication there are special commands that allow selective republication of the

accounting data, although these must be used in tandem with APEL, so that old data is

replaced seamlessly with the corrected/more complete data.

In our case, the publication was successful, and in brief, the existing accounting solutions

seem to work correctly for our use case in a SLURM computing node.

20 https://docs.egi.eu/internal/accounting/
21 https://docs.egi.eu/internal/messaging/

https://docs.egi.eu/internal/accounting/
https://docs.egi.eu/internal/messaging/

 21

Figure 3: Accounting for HPC usage at CESGA22

5.2 Monitoring

Monitoring is key to gain insights into the status of an infrastructure. HPC providers in EGI-

ACE already count with detailed monitoring to ensure the regular operation of the systems

and detection of internal issues, thus this kind of monitoring will not be covered by the pilots.

Instead, we will focus on ensuring the access interfaces of the EOSC Compute Platform are

operational and available. ARGO23 - the monitoring solution of EGI - can be extended with

new probes and as part of the pilots we will implement those missing. For accessing the

HPC providers using HTC middleware there are already an extensive set of probes

available. Similarly, for HPC as a Service, which can be monitored using the existing EGI

Cloud related monitoring probes. In the case of ssh-oidc based access, the probes can

leverage the existing monitoring credentials in ARGO to obtain Check-in tokens that can be

used to access the system.

The EGI Configuration Database (GOCDB)24 is a central registry that records topology

information about all sites participating in the EGI infrastructure. As the HPC centres are

already part of the infrastructure, there exists an entry in the GOCDB that lists all the relevant

endpoints made available to users. New HPC providers entering the infrastructure need to

follow EGI’s PROC0925 (Resource Centre Registration and Certification) that covers all the

steps required for registering and certifying new Resource Centres (sites) in the EGI

infrastructure. Certified Resource Centres make resources available to international user

communities and guarantee a minimum quality of service of the resources (currently

expressed in terms of monthly availability and reliability as obtained by the monitoring).

22 https://accounting.egi.eu/egi/elap_processors/SITE/DATE/2021/7/2022/7/custom-
vo.grapevine.eu/onlyinfrajobs/
23 https://docs.egi.eu/internal/monitoring/
24 https://docs.egi.eu/internal/configuration-database/
25https://confluence.egi.eu/display/EGIPP/PROC09+Resource+Centre+Registration+and+Certificati
on

https://accounting.egi.eu/egi/elap_processors/SITE/DATE/2021/7/2022/7/custom-vo.grapevine.eu/onlyinfrajobs/
https://accounting.egi.eu/egi/elap_processors/SITE/DATE/2021/7/2022/7/custom-vo.grapevine.eu/onlyinfrajobs/
https://docs.egi.eu/internal/monitoring/
https://docs.egi.eu/internal/configuration-database/
https://confluence.egi.eu/display/EGIPP/PROC09+Resource+Centre+Registration+and+Certification
https://confluence.egi.eu/display/EGIPP/PROC09+Resource+Centre+Registration+and+Certification

 22

GOCDB collects information about all the service endpoints available at each site. These

endpoints are used by ARGO to automatically monitor and calculate the availability and

reliability metrics depending on their service type (service types are pieces of software while

service endpoints are a particular instance of that software running in a certain context). A

new service type for SSH-OIDC is now available and the probes’ implementation is in

progress for enabling complete monitoring of SSH-OIDC endpoints.

Figure 4: New service type available in GOCDB

The idea behind the SSH-OIDC probes being developed is to check the functionality of the

various aspects of the connection endpoint: connectivity, endpoint health, and ensuring the

correct assignment of user/groups to federated users. Since SSH-OIDC is a brand-new

endpoint with novel features, making sure that features are working as expected becomes

important.

When a user logs-in via SSH-OIDC, all Check-in metadata is also carried with the user,

allowing a user to use its previously defined groups and memberships inside the service the

user connected to. Considering ARGO is another user logging into a server to check its

health, these checks become practical. Just by connecting to the endpoint with SSH-OIDC

and comparing the memberships obtained with a known good list, a probe can verify end to

end functionality of an SSH-OIDC endpoint.

5.3 Helpdesk

The EGI Helpdesk26 is the entry point and ticketing system/request tracker for issues

concerning EGI services. New service providers can integrate into the Helpdesk by creating

a dedicated support topic listed on the Helpdesk user interface (for users to ask questions

or raise issues directly to the provider). Resource centres registered in the Configuration

26 https://docs.egi.eu/internal/helpdesk/

https://docs.egi.eu/internal/helpdesk/

 23

Database will be automatically available in the Helpdesk for routing tickets as needed so no

extra integration step is needed to be part of the Helpdesk.

 24

6 Data Transfers

This section documents the different data transfers methods tested for the pilots of the HPC

integration.

While many HPC centres offer File Transfer Services (FTS) such as UFTP or GridFTP for

staging large dataset in and out of the centre, these FTS appliances depend on properly

configured WAN connections, NAT rulesets, traffic shapers, and fast storage nodes,

especially for connections over 40Gb/s. In order to validate the performance of these

appliances, GÉANT operates a dedicated network testbed service (GTS) which permits

network researchers to test end-to-end network performance utilising the GÉANT core

services at 10-100Gb/s and above (as national links are upgraded). The GTS allows access

to both virtual environments and bare-metal Data Transfer Nodes (DTN27) where users can

employ an array of provided network testing applications, or even configure their own

services, such as XrootD used in big-data science.

6.1 DataHub

EGI DataHub28 is a high-performance data management solution that offers unified data

access across globally distributed environments and multiple types of underlying storage.

Users can transparently access, store, process and publish data backed by storage

providers worldwide. Replica management functionality enables data to be replicated across

providers on-demand or use Quality of Service rules to manage file replica distribution and

redundancy.

DataHub is based on Onedata technology29 and consists of the following main concepts:

● Spaces. All data in Onedata is organised into Spaces which are volumes containing

an arbitrary directory and file hierarchy, supported by one or more storage providers.

● Zones. Zones are created by deploying a Onezone service. Onezone takes care of

user authentication and authorization. EGI DataHub is an example of a zone, and is

integrated with EGI Check-in.

● Providers. Each Zone comprises a network of providers who make storage resources

available to users. The Oneprovider service is typically deployed at each site near

the storage resources and enables storage to be registered to Onezone. Storage

systems such as Ceph as well as those supporting S3, Swift or POSIX are supported.

From the users perspective, Onedata provides a set of interfaces for easy access and

management of data distributed among the storage providers resources. Specifically, data

can be accessed in four ways:

● Web interface, a web-based, graphical user interface to manage spaces, control

access rights and manage the user account.

● Command line interface. The oneclient command-line tool gives users the ability to

mount spaces and provides POSIX-like access to data. Oneclient is based on Fuse

27 https://wiki.geant.org/display/NETDEV/DTN
28 https://docs.egi.eu/users/data/management/datahub/
29 https://onedata.org

https://wiki.geant.org/display/NETDEV/DTN
https://docs.egi.eu/users/data/management/datahub/
https://onedata.org/

 25

and since version 18.02.2 and 19.02.0-rc1 can be installed using Anaconda from the

official Onedata conda repository. This allows users working on a HPC system to

mount Onedata virtual filesystems in their own home directories and access and

process data directly from the console. The only requirement to be satisfied to make

the Oneclient work is to have fuse/fuse3 installed on the system and be able to

access the fusermount tool.

● RESTful APIs. Onedata exposes both CDMI and its own API which provides the

ability to manage spaces.

● Since version 18.02.2, it is also possible to access data managed by Onedata directly

from Python, using the OnedataFS Python library. In this way, Onedata can be easily

integrated with Jupyter Notebooks via the OnedataFS Python library and the

OnedataFS-Jupyter plugin, thus allowing users to store the notebooks directly in

Onedata data spaces and access Onedata spaces from within the notebooks.

EGI DataHub supports multiple access policies including unauthenticated open access and

access restricted to members of a VO.

6.2 Parallel rsync (prsync)

Parallel rsync is a part of the common parallel ssh (pssh) suite available on many

distributions. Unlike other technologies within this section, its goal is not to copy between

two sites as fast as possible, but to copy a file to multiple sites as fast as possible. The

application of this technology could be an edge case, for instance to support extrinsic

uncertainty quantification across multiple HPC systems. However, it is not foreseen to be a

primary transport protocol.

This should also not be confused with the use of the GNU parallel command which can be

used with rsync. However, when attempting to do this, no significant performance gain is

observed over sequential single runs of rsync for large files.

6.3 rclone

Rclone is an open source and MIT licensed command line application to manage cloud

storage. The application supports over 40 cloud storage providers (including but not limited

to Amazon S3, Ceph, HDFS, Dropbox) and the standard protocols like HTTP, FTP and

SFTP. This flexibility allows Rclone to interface with almost any enterprise and consumer

cloud storage system and transfer large amounts of data with ease.

The power of the Rclone doesn't only come from its wide connectivity options. Rclone can

perform a variety of tasks over these connections. It can copy, move, sync and verify files in

either direction, and can perform these tasks with multiple connections and threads.

Moreover, if the connection is disrupted during any large job, Rclone can resume from the

last good file transferred instead of starting over. These features allow Rclone to be used in

both manual and automated scenarios with confidence.

Rclone requires Oauth authentication from most popular providers, yet its integrated

configuration manager allows these remotes to be added with minimal effort. Rclone

supports an arbitrary number of remote connections, allowing many accounts to be

https://anaconda.org/onedata

 26

connected to a single Rclone installation. Hence a person or a large research group can

connect all data resources to a single Rclone instance and manage all of them with ease.

The application can be found in package repositories of most Linux distributions. Also, it can

be downloaded in a variety of ways. The homepage of Rclone is https://rclone.org and it can

be directly downloaded from https://rclone.org/downloads. A list of supported providers and

per provider capabilities can be found at https://rclone.org/overview/.

6.4 Aspera

Aspera is a software specialised in the movement of big data files over long distances.

Belongs to IBM and is based on FASP (Fast Adaptive and Secure Protocol) technology.

Similar to the connectionless UDP protocol, FASP does not expect any feedback on every

packet sent. Only the packets marked as really lost must be requested again by the recipient.

As a result, it does not suffer as much loss of throughput as TCP does on networks with high

latency or high packet loss.

Aspera requires a software license. In Spain, research institutions connected to the

academic network NREN RedIris can take advantage of the institution license to use the

software to move data. Currently, RedIris has a license to use up to 10Gbit/s bandwidth

(Aspera is licensed in various ways, one of them is based on the bandwidth usage). RedIris

additionally provides a safe storage system to move data to and from remote locations than

once there can be moved faster using the high speed RedIris academic network.

6.5 HSCP and UDR

HSCP30 and UDR31 (as well as similar protocols such as RB-UDP32 and Tsunami33) are

based on reliable UDP (UDT34) which in principle should markedly improve network

performance, particularly over very long baselines or on noisy connections subject to

significant dropouts. UDP requires significantly less handshaking but on its own is impacted

by lossy connections; UDT overcomes this by providing a reliable mechanism for a server

to request only those packets which have not been received. In addition, the technology

allows for a high level of parallelisation.

UDR is a wrapper around rsync that enables the underlying rsync to use UDT, in a similar

way to the more complete and feature-rich Aspera mentioned above. While it is currently not

supported, and indeed the author recommends investigating the use of congestion control

algorithms to improve performance, there have been some recent attempts to revive the use

of this protocol. For example, as detailed in Chase Wright’s blog35, one user found that for

Wide Area transfers of large files over dual 1Gbps connections, standard rsync achieved

average bandwidths of 100Mbps, while using UDR this increased to 250-300 Mbps.

However, this improvement will typically only be visible on long WAN transfers of large files.

30 https://sourceforge.net/projects/hscp/
31 https://github.com/martinetd/UDR
32 https://www.evl.uic.edu/cavern/RBUDP/Reliable%20Blast%20UDP.html
33 http://tsunami-udp.sourceforge.net/
34 https://udt.sourceforge.io/
35 https://chasewright.com/remote-rsync-over-high-speed-but-latent-wan-udr-udt/

https://rclone.org/
https://rclone.org/downloads
https://rclone.org/overview/
https://sourceforge.net/projects/hscp/
https://github.com/martinetd/UDR
https://www.evl.uic.edu/cavern/RBUDP/Reliable%20Blast%20UDP.html
http://tsunami-udp.sourceforge.net/
https://udt.sourceforge.io/
https://chasewright.com/remote-rsync-over-high-speed-but-latent-wan-udr-udt/

 27

Movement of many smaller files will require a different approach; or that the small source

files be batched into larger files using some suitable tool. UDR is open source released

under the Apache 2.0 license.

HSCP was developed by the National Institutes of Natural Sciences, Okazaki Research

Facilities and like UDR does not seem to be supported (although this is not explicitly stated

on the home page). Unlike UDR, it is not a wrapper around an existing tool but has been

developed from scratch, with a higher level of security. It also provides a secure,

authenticated, reliable control channel for command flow but an insecure data channel for

bulk transfer as shown in figure 5. However, evidence of its performance in real situations

is scarce.

Figure 5: Secure and Insecure Channels in HSCP

Note that while UDT offers significant benefits for many use cases, and there was a rash of

development into protocols based on this in the early to mid 2010’s, realisation of that benefit

in real world situations was difficult, and, combined with general improvements in networking

hardware and software, has led to the continued use of TCP based protocols.

 28

7 Application support

All pilots included in EGI-ACE plan to execute their workloads using containers. The

preferred tool for supporting these containers is udocker.

7.1 udocker

udocker is a user-oriented tool to execute containers in user space without requiring root

privileges. udocker enables basic download and execution of containers by non-privileged

users in Linux systems. It can be used to access and execute docker containers in batch

systems and interactive clusters that are managed by other entities such as grid

infrastructures, HPC clusters or other externally managed batch or interactive systems.

udocker is a wrapper around several tools and technologies to pull container images and

execute them with minimal functionality. Since root privileges are not involved, most

operations that require privileges will not work under udocker. This limitation does not affect

user applications. udocker itself is written in Python and has a minimal set of dependencies

so that it can be executed in a wide range of Linux systems.

Since udocker does not require any type of privileges nor the deployment of additional

software by system administrators, it can be easily deployed by the end user in HPC clusters.

Users can download udocker themselves and install the tool in their home directory.

Advantages of udocker:

● Can be deployed by the end-user

● Does not require privileges for installation

● Does not require privileges for execution

● Does not require compilation, just download udocker

● Encapsulates several tools and execution methods

● Includes the required tools already statically compiled to work across systems

● Provides a docker like command line interface

● Supports a subset of docker commands: search, pull, import, export, load, save,

login, logout, create and run

● Allows loading of docker and OCI containers

● Supports NVIDIA GPGPU applications

● Can execute in systems and environments where Linux namespaces support is

unavailable

● Runs both on new and older Linux distributions including CentOS 6, CentOS 7,

CentOS 8, Ubuntu 14, Ubuntu 16, Ubuntu 18, Ubuntu 20, Ubuntu 21, Alpine, Fedora,

etc

The basic flow for udocker usage is:

1. The user downloads udocker to its home directory and executes it

2. Upon the first execution udocker will download additional tools

3. Container images can be fetched from Docker Hub with udocker pull

4. Containers can be created from the images with udocker create

5. Containers can then be executed with udocker run

 29

In addition and similar to other container tools:

A. Containers can be loaded from file with udocker load -i

B. Tarballs can be imported with udocker import

Figure 6 provides an outline of using udocker to execute containers. Containers can be

downloaded from a repository with pull, alternatively they can be loaded or imported from

files. The container layers and metadata corresponding to the images are stored in the user

home directory under $HOME/.udocker/layers. The content of these layers can then be

extracted (flattening) to create a single file system tree for execution that is also placed under

$HOME/.udocker/containers. Code within the extracted directory tree can then be executed

using one of the supported execution modes.

Figure 6: outline of containers execution with udocker

Installation can be performed using several methods. The installation from a release tarball

is the recommended approach. Installation instructions for sites without outbound

connectivity and additional information for shared installations are also available from the

installation manual. Detailed installation instructions are available at: https://indigo-

dc.github.io/udocker/installation_manual.html

The user manual including command references and usage recommendations and

considerations is available at: https://indigo-dc.github.io/udocker/user_manual.html.

Information on the use of udocker with GPUs and MPI is also available in the user manual.

udocker “executes” the containers by simply providing a chroot like environment to the

extracted container. udocker is meant to integrate several technologies and approaches

hence providing an integrated environment that offers several execution options. For

further information on selecting execution modes see the user manual section on udocker

setup.

https://indigo-dc.github.io/udocker/installation_manual.html
https://indigo-dc.github.io/udocker/installation_manual.html
https://indigo-dc.github.io/udocker/user_manual.html

 30

Table 1: Supported execution modes

Execution mode Tools Description

P1 PRoot Accelerated mode using seccomp

P2 PRoot Same as P1 without seccomp accelerated mode

F1 Fakechroot Execution through loader invocation

F2 Fakechroot Same as F1 with modified loader to prevent loading from host

F3 Fakechroot Execution with fixed ELF headers for libraries and executables

F4 Fakechroot Same as F3 plus dynamical fixing of ELF headers

R1 runc or crun Rootless user mode namespaces

R2 runc or crun Same as R1 plus P1 for software installation

R3 runc or crun Same as R1 plus P2 for software installation

S1 Singularity Uses singularity if available in the host

The Pn modes are the most generic and are used by default. The Fn modes are the fastest

but require shared libraries matching the container libc, these libraries are provided with

udocker for the most popular distributions. Both the Pn and Fn modes do not require the use

of Linux namespaces. These modes intercept calls to the system and perform pathname

translation to mimic a chroot environment.

Most of the required tools are provided with udocker already compiled and ready for use.

However, the Sn mode requires the installation of the corresponding tool in the host system.

The Rn modes require “user namespaces” support enabled in the Linux kernel.

Relevant links:

● Source code repository: https://github.com/indigo-dc/udocker

● Releases: https://github.com/indigo-dc/udocker/releases

● Complete documentation: https://indigo-dc.github.io/udocker

https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/udocker/releases
https://indigo-dc.github.io/udocker/

 31

8 EOSC Marketplace integration

The HPC providers participating in EGI-ACE should be accessible through the EOSC

Marketplace. Individual providers may be registered independently in the marketplace as

shown in figure 7 for CESGA:

Figure 7: FinisTerrae - CESGA HPC - registered in EOSC Marketplace

An “EGI Accelerated Cloud” entry will be created in the EOSC Marketplace for offering a

common entrypoint for the different HPC providers in EGI-ACE. This service will offer

cloud resources in combination with HPC capabilities, to cover workflows, where

collocated cloud and HPC resources are used to support a data space, e.g., long-running

services, are hosted as cloud VM, and jobs with high computational needs are spawned to

the collocated HPC as needed. In this configuration, the access control to the HPC system

can be better controlled and be limited to the cloud resources associated with it, thus

avoiding policy restrictions that do not allow the wide opening of HPC resources to the

internet. The service will be initially supported by four providers: LIP/INCD (PT), CESGA

(ES), TUBITAK (TR), IICT-BAS (BG), and will leverage the engagement process and

resource allocation processes defined for EGI-ACE and described in D2.5 (EOSC

Compute Platform Handbook)36. We intend to engage with additional HPC providers from

the EGI network and beyond and sign them up as suppliers behind the ‘EGI Accelerated

Cloud’ service entry.

36 https://documents.egi.eu/document/3813

https://documents.egi.eu/document/3813

 32

9 Conclusions

Thanks to the four EGI-ACE HPC pilots, the EOSC Compute Platform will be expanded to

cover HPC providers to support computing workflows that make combined use of HTC, HPC

and Cloud. In the first half of the piloting activity, the focus was on providing access to the

HPC systems using federated authentication and providing the use cases with the tools to

run their containerised workload across different providers. In this document we report the

various integration options and the main areas of work the pilots of the project have

developed until M18 of the project (June 2022). With the piloting activities now completed,

EGI will create a new entry in the EOSC marketplace named “EGI Accelerated Cloud” that

will allow users to request access to HPC providers as part of the EOSC Compute Platform.

During the remaining period of EGI-ACE our focus will shift to populate the “EGI Accelerated

Cloud” service with multiple suppliers from and beyond the EGI Federation and serving new

use cases require HPC services in the EOSC Compute Platform.

	Executive summary
	1 Introduction
	2 Requirements from pilots
	2.1 HEP
	2.2 PROMINENCE
	2.3 ELI-NP
	2.4 ENES

	3 Access to HPC Systems
	3.1 SSH with federated identities
	3.1.1 Provisioning and deprovisioning of accounts
	3.1.2 OIDC token based ssh access
	3.1.3 ENES SSH-OIDC Scenario

	3.2 HPC as a Service
	3.2.1 HPCaaS for ELI-NP

	3.3 Access via middleware / gateways
	3.3.1 ENES JupyterHub Scenario

	3.4 Other integration mechanisms

	4 HPC security guidelines
	5 Operational integration
	5.1 Accounting
	5.2 Monitoring
	5.3 Helpdesk

	6 Data Transfers
	6.1 DataHub
	6.2 Parallel rsync (prsync)
	6.3 rclone
	6.4 Aspera
	6.5 HSCP and UDR

	7 Application support
	7.1 udocker

	8 EOSC Marketplace integration
	9 Conclusions

