
Disclaimer: Views and opinions expressed are however those of the author(s) only and 
do not necessarily reflect those of the European Union. Neither the European Union nor 

the granting authority can be held responsible for them 

 

 

 

D4.1 First Architecture design of 

the DTs capabilities for climate 

change and impact decision 

support tools 
Status: FINAL 

Dissemination Level: public  



D4.1 First Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

interTwin – 101058386                          2 

 
Abstract 
Key Words Architecture, design, capabilities, Digital Twin Engine, climate change, 

impact decision, support tools 

 
This deliverable describes the capabilities that the architecture design of a Digital Twin 
Engine (DTE) has to provide in order to be able to support the climate change use cases 
and the implementation of the related impact decision support tools. It details the 
functional specifications and requirements analysis for these use cases. Finally, it provides 
insights into the architecture design decisions made when developing the blueprint 
architecture of the DTE to specifically address the needs of the climate change use cases. 
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Executive summary 
 
This document is deliverable 4.1 of the interTwin project, part of work package 4. It is a 

report collectively written by the partners of tasks 4.5, 4.6 and 4.7, who are directly 

involved in designing DT applications for the environmental domain (climate projections 

& extreme events). This report aims to explain the motivation behind the development 

of specific DT applications, the architecture design, who will be the beneficiaries, and 

what may be expected in the future from the specific digital twins. 

Starting from the description of user stories as  scientists, students, developers, decision 

makers and policy makers to use DT applications for climate change impacts in various 

geographical regions by covering tropical storms, wildfires, floods, droughts and extreme 

weather events. Each DT also provided a user interface as a visualisation tool and Jupyter 

notebook to enhance usability and accessibility for both technical and non-technical 

users. 

Furthermore, each DT application follows a specific workflow from the user's perspective, 

which involves defining geographical extent, data selection and preprocessing, model 

selection/training, post-processing and visualising results. Various modules from 

different Work Packages (WPs) within the interTwin project are incorporated into the DTs 

for processing data, composing workflows, and visualising results. Depending on each DT 

application, the results are stored as output files or visualised using Python visualisation 

modules or user interface. Overall, these DTs are designed and linked to address specific 

climate change impacts and provide valuable insights for assessing climate risk, 

identifying early warning signals, and implementing mitigation measures.  
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1 Introduction 

1.1 Aim of this deliverable 

 

The overall objective of deliverable 4.1 is to provide an overview of DT Applications 

features and architecture design for the environmental domain (T4.5, T4.6, T4.7) and their 

key requirements in the interTwin project.  A Digital Twin Application is a user-facing 

implementation of a DT. DT applications are the consumers of the capabilities offered by 

the interTwin DTE, thus introducing use case-specific requirements. 

 

1.2 For who is this document 

The deliverable 4.1 could be useful for both developers and end users as described 

below: 

 

For developers: the current deliverable provides them with an opportunity to gain insight 

into different components, data integration strategies, and computational models 

required to build an effective digital twin. It would allow them to incorporate new 

features, leverage components and workflow, improve scalability, support evolving 

problems over time, and ensure interoperability. 

 

For end users: the specified deliverable facilitates data sharing, integration, and analysis 

among various stakeholders and scientists. By establishing a common framework for 

communication, researchers and stakeholders will be able to exchange information, 

validate models, and collaboratively address climate change impacts and suggest 

mitigation measures. 

 

1.3 Structure of the document 

 

The structure of this deliverable is as follows. Section 2 describes the user interface and 

requirements for each digital twin. A detailed table is provided by each digital twin 

application where details are provided regarding user problems, their requirements ( 

following the MoSCow method1), expectations, and timeframe for completing the tasks. 

Section 3 mainly explains architecture design which illustrates the workflow composition  

within each digital twin application. It depicts sequential or parallel steps involved in each 

DTs operations, highlighting the input, processing, and expected outcomes. 

 
1 https://en.wikipedia.org/wiki/MoSCoW_method    

https://en.wikipedia.org/wiki/MoSCoW_method
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2 DT Applications User Stories 

2.1 DT Application: Tropical storms change in 

response to climate change 

Geographical region of interest: Global 

 
Summary 

This DT will focus on the detection of tropical cyclones that consists in classifying, given 

some input drivers, the absence or presence of a cyclone in input data and, if present, 

subsequently localising its centre (or “eye”) in terms of latitude/longitude coordinates. 

Machine Learning models allow learning the mapping between climatic variables 

significant to the cyclogenesis and the positions and trajectories that storms follow during 

their lifetime in historical records. Trained models will be exploited to predict the 

occurrence of storms in future projection scenarios in order to give an indication across 

both space and time about the areas of the world that will be more susceptible to 

experience such phenomena, according to different levels of climate change.  

 
Use case 
The goal is to provide notebooks for scientists and policy makers for running analysis on 

tropical cyclones on future projection data: 

Preconditions 

User has access to DT data, models, thematic components and notebook 

1. Users can select: 

a. future projection scenarios from a given list (e.g., CMIP6 scenarios – SSP) 

b. temporal and geographical extents; 

c. ML models in the ensemble from a set of pre-trained models (types and 

number of models); 

2. The user runs the DT workflows on the selected input data and trained models 

3. The output of the DT can be downloaded/saved as NetCDF and/or visualisations. 

Maps and charts can be customised through widgets. 

a. What-if analyses can be performed according to the SSPs selected  

i. List of maps/charts of TC position on the different scenarios 

ii. Ensemble of the model scenarios (average) 

b. Different indicators can be provided: 

i. Frequency of TC occurrences on a seasonal/annual basis 

ii. Number of TCs per basin/year 

iii. The trend of TCs per basin/year 
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Table 1 –  User stories for DT Application: Tropical storms change in response to 

climate change 

Ref N  As a 
Stakeholder 

I want to So that And it’s 
considered 
done when 

MoSCoW 

4.5-1 Policy 
maker with 
little 
technical 
expertise 

Specify a 
region and 
period of 
interest, the 
CMIP 
scenarios to 
be used for TC 
analysis 

The pre-
trained ML 
model can 
perform TC 
detection and 
tracking on 
the input 
climate data 

The 
resulting 
datasets 
with TC 
detections 
and plots 
are 
generated 

Must have: 
- Access to Jupyter 
Notebook as a service 
- Access to necessary 
global data 
- Access to the ML 
models 
 
Could have: 
- Possibility to adjust 
the visualisation 
interactively 
- Possibility to 
download the results 
 

4.5-2 Scientists 
with some 
technical 
expertise 

Specify the 
number and 
types of pre-
trained ML 
models to be 
used together 
with the 
extent and 
scenarios  

Can run 
complex 
analysis with 
one or more 
ML models for 
TC detection 
and tracking 

The 
resulting 
datasets 
with TC 
detections 
and plots 
are 
generated 

Must have: 
- Access to Jupyter 
Notebook as a service 
- Access to necessary 
global data 
-Access to the ML 
models 
 
Could have: 
- Interfaces to adapt 
the visualisation 
- Possibility to 
download the results 

 
  

2.2 DT Application: Wildfire risk assessment in 

response to climate change 

 

Geographical region of interest: Europe 
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Summary 

The DT related to the wildfires application will focus on the generation of fire risk maps 

that closely resemble the original fire risk distribution in historical records. Output fire 

risk maps are produced through Machine Learning models, such as DNN, that are trained 

to learn the non-linear relationship between different climatic, weather, and potentially 

vegetation conditions provided as input and the likelihood of wildfires in the geographical 

domain of interest. Trained ML models will be applied to future projection scenarios to 

give an indication of the areas that are more likely to experience wildfires and the impact 

of climate change.  

 

Use case 

The goal is to provide notebooks for scientists and policy makers for running analysis on 

tropical cyclones on future projection data: 

Preconditions 

User has access to DT data, models, thematic components and notebook 

1. Users can select: 

a. future projection scenarios from a given list (e.g., CMIP6 scenarios - SSP) 

b. temporal and geographical extents; 

c. ML models from a set of pre-trained models (types of models); 

2. The user runs the DT workflows on the selected input data and trained models 

3. The output of the DT can be downloaded/saved as NetCDF and/or visualisations. 

Maps and charts can be customised through widgets. 

a. What-if analyses can be performed according to the SSPs selected  

i. List of maps/charts of wildfire risk on the different scenarios 

ii. Ensemble of the model scenarios (average) 

b. Different indicators can be provided: 

i. Average fire risk maps on a monthly/seasonal/annual basis 

ii. Areas more affected by wildfires seasonally/annually (by threshold) 

iii. The trend of fire risk annually globally or region 

c. Outputs can be filtered by bounding box or geographical domains (e.g., 

Cordex) 

 

 

Table 2 –  User stories for DT Application: Wildfire risk assessment in response to 

climate change 

Ref N  As a 
Stakeholder 

I want to So that And it’s 
considered 
done when 

MoSCoW 

4.5-3 Policy 
maker with 
little 

Specify a 
region and 
period of 

The pre-
trained ML 
model can 

The resulting 
maps with 
the wildfire 

Must have: 
- Access to Jupyter 
Notebook as a service 
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technical 
expertise 

interest, the 
CMIP 
scenarios to 
be used for 
the wildfire 
risk area  

predict 
wildfires risk 
maps 

risk 
probabilities 
are produced 

- Access to necessary 
data 
-Access to the ML 
models 
 
Could have: 
- Possibility to adjust 
the visualisation 
interactively 
- Possibility to 
download the results 
 

4.5-4 Scientists 
with some 
technical 
expertise 

Specify the 
type of pre-
trained ML 
models to be 
used 
together with 
the extent 
and scenarios  

Can run 
complex 
analysis with 
the ML 
models for 
wildfires risk 
maps 
prediction 

The resulting 
datasets with 
wildfire risk 
probabilities 
and plots are 
generated 

Must have: 
- Access to Jupyter 
Notebook as a service 
- Access to necessary 
global data 
- Access to the ML 
models 
 
Could have: 
- Interfaces to adapt the 
visualisation 
- Possibility to 
download the results 

 
 

2.3 DT Application: Flood early warning in coastal and 

inland regions 

 

Geographical region of interest: Humber, United Kingdom 

 

Summary 

The DT for flood early warning in coastal and inland regions will focus on the generation 

of flood risk maps that trigger early warning alerts when a flood is predicted. The system 

will be demonstrated for historical flood events of Humber, United Kingdom. 

 

Output flood risk maps are produced from SFINCS, a reduced-complexity model for 

super-fast dynamic modelling of compound flooding, which receives river discharge data 

from Wflow, a hydrological model. Both SFINCS and Wflow will be forced by example 

(historical) weather forecasts. Additionally, the DT will combine the SFINCS flood maps 

with Sentinel-1 based flood maps generated by the openEO implementation of the Global 

Flood Monitor. The mentioned software components are described in D7.1 [R6] 
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The flood early warning system will trigger alerts (e.g. email alerts) if populated areas are 

at risk of being flooded.  

 

Use case 

The goal is to provide Jupyter Notebooks for scientists and decision-makers to 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models and Earth Observation processing pipelines to produce 

deterministic and probabilistic flood maps for a user-defined region of interest 

and validate the resultant output data against observations. 

3. Prepare the data for easy ingestion into an early warning system. 

Preconditions 

User has access to DT data, models, thematic components and Jupyter Notebooks. 

1. Users can: 

a. specify a region of interest 

b. specify a temporal period to simulate 

c. select local data for the models if available 

2. User runs the DT workflows for the specified region and period using default 

global data or selected local data if available 

3. The output of the DT can be visualised in the Jupyter Notebooks and the data can 

be downloaded/saved as NetCDF data.  

 

Table 3 –  User stories for DT Application: Flood early warning in coastal and 

inland regions 

Ref N  As a 
Stakeholder 

I want to So that And it’s 
considered 
done when 

MoSCoW 

4.6-1 … decision 
maker with 
little 
technical 
expertise 

… specify a 
geographic 
region and 
temporal 
period of 
interest 

… I can set up 
the automated 
processing of 
data for flood 
inundation 
and 
hydrological 
models and 
access 
relevant EO 
data for flood 
monitoring 
and 
forecasting 

… when the 
system 
simulates a 
historic flood 
event and 
data is 
automatically 
prepared, so 
an automated 
early warning 
system can 
access it in a 
standardised 
form 

Must have: 
- Access to Jupyter 
Notebook as a service 
- Access to necessary 
global data 
 
Should have: 
- Example 
visualisations of 
output to support 
validation 
- trigger sending alert 
based on flood extent 
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 Could have: 
– option to upload 
local data 
–  interactive Solara2-
based front-end  
 
Won’t have: 
–  Operational early 
warning system. This is 
a demonstrator only. 

4.6- 
2 

… expert 
user with 
good 
technical 
expertise 
but little 
domain 
knowledge 

…process 
and combine 
modelled 
and EO-
based flood-
related data 
for specific 
regions of 
interest  

…I can get 
tailored 
information on 
flood 
monitoring 
and 
forecasting 

…I can 
provide 
decision 
makers with a 
thorough 
overview of 
the expected 
flood event 

 
 
 
 
 

2.4 DT Application: Alpine droughts early warning 

Geographical region of interest: Alps 

 
Summary  

This DT aims to develop a prototype of a drought early warning system for the Alps at the 

river basin scale. The study area is divided into seven Alpine basins to reduce the 

computational time (Po East, Po West, Danube, Swiss, Drava, Rhone East, Rhone West). A 

machine learning model (surrogate model) is trained to replicate the WFLOW process-

based hydrological model. The parameters of the surrogate model will be optimised 

based on historical observations and static inputs by minimising a loss function between 

model output and observations (i.e., soil moisture and possibly evapotranspiration 

derived from satellite data, and streamflow) in the area of interest. Once the model is 

trained, seasonal forecasts from ECMWF will be used to forecast discharge and soil 

moisture and identify regions affected by drought events. A machine learning algorithm 

to downscale seasonal forecasts is also developed. 

 
Use case 

The prototype of a drought early warning system is developed and integrated into 

openEO as a user interface for researchers and decision makers. Through openEO the 

user should be able to: 

 

1) Run a trained model for a specific area of interest and temporal extent. The 

detailed information about openEO is already described and can be available in 

Deliverable D6.1[R3] 

2) Validate results using historical observations and  

3) Run the model driven by seasonal forecasts to identify areas affected by 

hydrological drought. 

 
2 https://solara.dev/docs/  

https://solara.dev/docs/
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Preconditions 

 

1) Users have to access DT using OpenEO, available global data, or upload their 

regional data. 

2) The module for downscaling climate data and the trained surrogate model should 

be implemented and available in openEO.  

3) Modules for coregistering and formatting all the required input data have to be 

available in openEO. 

4) The output from DT can be directly examined using openEO and can also be 

downloaded for later use. 

 

Table 4 –  User stories for DT Application: Alpine droughts early warning 

 

Ref N  As a 
Stakeholde
r 

I want to So that And it’s 
considered done 
when 

MoSCoW 

4.6-3  
 
 
 
 
 
 
 
 
Researche
rs   
 
 
 
 
 
 

– Use 
OpenEO to 
test a 
drought early 
warning 
system using 
a trained 
model and 
EO data 
 
 
 

– I can study 
potential 
drought 
impacts on the 
Alpine region.  
– I can 
contribute to 
further 
enhancing the 
trained model. 
-I can leverage 
cloud-based 
processing 
capabilities 

When simulated 
results are in  
good agreement 
with historical 
observations 
and the trained 
model is able to 
reproduce past 
drought events  

Must have: 
i) access to openEO 
Authentication and 
Access Control, ii) 
access to modules to 
ingest and pre-
process EO and 
climate data, iii) 
access to the trained 
surrogate model 
 
Should have: 
i) estimation of model 
accuracy, ii) 
interactive and user-
friendly visualisations 
for simulated results. 
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4.6-4 Local/Regi
onal 
public 
authoritie
s in the 
field of 
agriculture
, 
hydrology 
and river 
basin 
managem
ent 

– Know over 
which basins 
there is high 
probability of 
water 
scarcity in the 
next month 

–  I can have an 
overview of the 
areas where 
there is a high 
risk of drought 
impacts 
–  I can inform 
the interested 
water users  
– I can develop 
strategies for 
water 
allocation and 
conflict 
management 
 

–  It is possible 
to visualise and 
analyse the data 
and simulated 
results. 
– The accuracy 
of the 
prediction is 
high 
 

 
Could have: 
Access to 
hydrological data for 
validation. 
 
Won't have: 
Operational drought 
early warning system 
 
 
 
 

4.6-5 Journalist 
for 
environme
ntal topics 
with little 
expertises 
about 
technical 
data 

Visit OpenEO 
by visualising 
fact sheets 
about 
drought 
conditions in 
the Alpine 
region. 

Publish an 
article about 
the impact of 
extreme events 
on water 
availability in 
the  Alpine 
region. 

Information is 
easily accessible 
also to a non-
expert user  

 
 

2.5 DT Application: Extreme rainfall, temperature and 

wind weather event changes in response to 

climate change 

 

Geographical region of interest: Europe, but could be applied anywhere in the world 

 
Summary 
The DT for impacts of extreme weather event changes in response to climate change will focus 
on providing to the users information on the changes of the characteristic of those events and 
impacts compared to a reference period and a specific region. The focus will be on 
precipitation as well as on temperature and wind extremes. The change of characteristics will 
be assessed, such as geographical extent, intensity (if relevant), duration, and frequency of 
occurrence. This DT will use an innovative Artificial Intelligence (AI) method based on a 
Convolutional Variational Auto-Encoder (CVAE) method to detect anomalies. 
 
Use Case 
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The goal is to provide Jupyter Notebooks for scientists and decision-makers to: 
 

1. Assess the changes of characteristics of specific weather extreme events and assess 
their impacts 

2. Assess over a selected geographical region, a specific climate reference period, a 
specific future time period with one or several greenhouse gas scenarios 

 
Preconditions 

1. Set up the necessary CVAE model for a user-defined extreme weather event, 
geographical region of interest, climate reference time period (historical 20-30 years), 
season, future climate scenarios (RCPs) and climate time period of interest. 

2. Train the CVAE model according to end users’ choices of step 1, on separate climate 
models from the CMIP6 archive, using several climate model ensemble members. 

3. Run the CVAE model on the end users’ choices of extreme weather events, 
geographical regions, future climate scenarios (RCPs), and climate time periods of 
interest, for several climate models using specific training information according to 
each climate model and specific reference period. 

4. Generate end users’ products related to the changes in characteristics of those events: 
geographical extent, intensity (if relevant), duration, and frequency of occurrence. 
Those products will be specific plots and maps. Output data will be also available to 
end users for further data processing. Multiple climate models and RCPs will be used 
to provide uncertainties evaluation with a range of characteristic changes. 

Table 5 –  User stories for DT Application: Extreme rainfall, temperature and wind 

weather event changes in response to climate change 

 

Ref N  As a 
Stakeholder 

I want to So that And it’s 
considered 
done when 

MoSCoW 

4.7-1 Policy 
maker with 
little 
technical 
expertise 

Specify an 
extreme 
weather event, 
a geographical 
region, a 
reference 
historical 
climate time 
period, a future 
time period of 
interest, and 
the CMIP6 SSP 
scenarios to be 
used for 
extreme event 
analysis 

The CVAE 
model will be 
automatically 
trained and 
applied on the 
input climate 
data 

The resulting 
datasets with 
extreme 
events change 
of 
characteristics 
will be 
calculated and 
plots are 
generated 

Must have: 
–  Access to Jupyter 
Notebook as a 
service 
–  Access to 
necessary global 
data 
–  Access to the 
CVAE model 
 
Could have: 
–  Possibility to 
adjust the 
visualisation 
interactively 



D4.1 First Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

interTwin – 101058386                          18 

–  Possibility to 
download the 
results 
 

4.7-1 Scientists 
with some 
technical 
expertise 

Specify an 
extreme 
weather event, 
a geographical 
region, a 
reference 
historical 
climate time 
period, a future 
time period of 
interest, and 
the CMIP6 RCP 
scenarios as 
well as CMIP6 
specific climate 
models to be 
used for 
extreme event 
analysis 

Can run 
complex 
analysis with 
specific CMIP6 
climate 
models to 
better assess 
uncertainties 

The resulting 
datasets with 
extreme 
events 
characteristics 
and plots are 
generated 

Must have: 
–  Access to Jupyter 
Notebook as a 
service 
–  Access to 
necessary global 
data 
–  Access to the VAE 
model 
 
Could have: 
–  Interfaces to 
adapt the 
visualisation 
–  Possibility to 
download the 
results 

 
 
 
 

2.6 DT Application: Flood climate impact in coastal 

and inland regions 

Geographical region of interest: Humber, United Kingdom, and Beira, Mozambique 

 
Summary 

The DT for flood climate impact in coastal and inland regions will focus on the generation 

of flood maps and quantifying impacts on buildings, utilities, roads and accessibility 

under future climate conditions. Additionally, end-users can select flood mitigation and 

adaptation measures and test their effectiveness. The system will be demonstrated for 

flood scenarios under climate change for Humber, United Kingdom, and Beira, 

Mozambique. 

 

Flood maps under future climate scenarios are produced from SFINCS, a reduced-

complexity model for super-fast dynamic modelling of compound flooding, which 

receives river discharge data from Wflow, a hydrological model. The flood maps are then 

used by Delft-FIAT, a flood impact assessment tool, and RA2CE, a Resilience Assessment 
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and Adaptation for Critical infrastructurE – model, to quantify impacts and damages to 

buildings, utilities, roads and accessibility. 

 

Additionally, end-users will be able to select flood mitigation and adaptation measures 

and re-run flood scenarios to test their effectiveness in reducing flood-related impacts. 

 

Use case 

The goal is to provide Jupyter Notebooks for scientists and decision-makers to 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models to produce baseline flood maps for a user-defined 

region of interest and quantify impacts and damages to buildings, utilities, roads 

and accessibility. 

3. Select flood mitigation and adaptation measures and re-run flood scenarios to test 

their effectiveness at reducing flood-related impacts. 

Preconditions 

 The user has access to DT data, models, thematic components and Jupyter Notebooks. 

1. Users can: 

a. specify a region of interest 

b. specify a temporal period to simulate 

c. select local data for the models, if available 

d. select and specify mitigation and adaptation measures  

2. The user runs the DT workflows for the specified region and scenario using default 

global data or selected local data if available 

3. The output of the DT can be visualised in the Jupyter Notebooks and the data can 

be downloaded/saved as NetCDF and GeoPackage data. 

Table 6 –  User stories for DT Application: Flood climate impact in coastal and 

inland regions 

 

Ref N  As a 
Stakeholder 

I want to So that And it’s 
considered 
done when 

MoSCoW 

4.6-6 … decision 
maker or 
planner 
with little 
technical 
expertise 

… specify a 
geographic 
region, a 
climate change 
scenario and 
select 
mitigation / 
adaptation 
measures of 
interest. 

… I can set up 
the flood 
inundation and 
hydrological 
models and run 
flood scenarios 
under future 
climate 
conditions and 
test the impact 

… when the 
system 
simulates a 
flood scenario 
and quantifies 
the impacts 
and damages 
to buildings, 
utilities, roads 

Must have: 
- Access to Jupyter 
Notebook as a 
service 
- Access to 
necessary climate 
projection data 
 
Should have: 
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of the selected 
mitigation / 
adaptation 
measures 

and 
accessibility. 

- Flood and related 
impact visualisations 
and data to support 
decision-making 
- Options to select 
future climate 
change scenarios 
- Options to select 
mitigation and 
adaptation 
measures 
 
Could have: 
- Option to upload 
local data 
- Interactive Solara-
based front-end  
 
Won’t have: 
- An extensive list of 
adaptation and 
mitigation measures 
- An operational 
system, this is a 
demonstrator only 

4.6-7 … expert 
user with 
good 
technical 
expertise 
but little 
domain 
knowledge 

…process and 
combine 
different 
models and 
tools needed 
for flood 
related 
adaptation 
planning for 
specific regions 
of interest 

…I can get 
tailored 
information on 
flood scenarios 
under future 
climate 
conditions and 
make decisions 
on what 
adaptation and 
mitigation 
measures to 
invest in 

…I can provide 
decision 
makers with a 
thorough 
overview on 
the expected 
flood 
scenarios and 
their impact 
under future 
climate 
conditions 

 

3 DT Applications Design 

3.1 DT Application: Tropical storms change in 

response to climate change 

3.1.1 ML Model Requirements 

Since the application input consists of a set of 2-dimensional data, each variable can be 

easily considered as a 2D image, where each pixel corresponds to a cell of the lat-lon grid. 

Based on this consideration the ML model identified for the DT is a Convolutional Neural 

Network (CNN). In order to feed the CNN with the images, input climatic variables are 

stacked together and tiled into non-overlapping patches of fixed size, generating an input 

of dimension 𝐻 × 𝑊 × 𝐶. Besides traditional CNN, Convolutional Graph Neural Network 

(CGNN) approaches will be considered too. Data needs to be preliminarily divided into 

patches in order to improve the model efficiency and, more importantly, to ensure that 

each patch is more likely to contain at most a single TC. Such patches are mapped with 
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the records provided by IBTrACS so that each patch containing a cyclone is associated 

with the corresponding (lat,lon) record, while each patch without a cyclone is associated 

with a negative value, e.g., (-1,-1). Therefore, the CNN will be trained to find a non-linear 

mapping between input 3D patches and the corresponding lat-lon output coordinates. In 

terms of software infrastructure, solutions like Keras/Tensorflow and/or PyTorch will be 

exploited. 

 

A preliminary list of identified data variables is available in Table 7. 

Table 7 – Preliminary list of data variables for the DT Application 

Variable name Temporal 

Resolution 

Spatial Resolution Unit ERA5 Name CMIP6 Name 

10 m wind gust 

since previous post-

processing 

6-hourly 0.25°x0.25° m/s fg10 TBD 

10 m instantaneous 

wind gust 

6-hourly 0.25°x0.25° m/s i10fg wsgmax10m 

temperature at 500 

mb  

6-hourly 0.25°x0.25° K t_500 ta 

temperature at 300 

mb 

6-hourly 0.25°x0.25° K t_300 ta 

relative vorticity at 

850 mb 

6-hourly 0.25°x0.25° 1/s vo_850 rv850 

mean sea level 

pressure 

6-hourly 0.25°x0.25° Pa msl psl 

 

 

3.1.2 Workflow Description 

This section describes the logical flow of operations the DT needs to perform to carry out 

user requests. The links to WP6 core modules and WP7 thematic modules are highlighted. 

 

In terms of computing workflow, the DT on Tropical Cyclones comprises these steps: 

1. Users can select the proper data for running their analysis; i.e., specifying the 

temporal and spatial extensions to be considered or the models from CMIP 

experiments. Gathering & Filtering of climate data thematic modules (WP7) will be 

used for retrieving the data from the different sources. 

2. Selected data will be pre-processed so that it can be used as input to the  ML 

models. Two thematic modules will be exploited for this step: Subsetting & patches 

generation on gridded data and Data augmentation and pre-processing of gridded 

data (WP7). In particular, patches from the input data will be generated, and: 

a. For the training stage: data will be labelled and normalised based on the 

training set. In addition data augmentation techniques will be applied; 
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b. For the inference stage: data will be only normalised according to the 

training scaler;  

3. Only for the training workflow: training/re-training of a ML model can be triggered 

in order to use different hyper-parameters if results from testing are not 

satisfactory in terms of evaluation metrics (e.g., error and classification metrics); 

the Software Quality Validation core module (from T6.2) will be used to this end. At 

this stage, patch generation and data augmentation procedures of ERA5 data are 

also required to increase the number of training examples. The trained models  

will be stored in a ML model repository for future usage. The ML workflow core 

module (from T6.5) will be exploited for this step. 

4. Only for the inference stage: a ML model from the repository of pre-trained 

models will be executed on the data from step 2.  The ML workflow core module 

(from T6.5) will be exploited for this step. 

5. Results from the inference stage on projection data (e.g., CMIP6) will then be post-

processed to build the final results (e.g., to build the spatial grid) using the Geo-

referencing data thematic module (from WP7); 

6. Results on different CMIP experiments and/or different ML models can be 

combined together to reduce the uncertainties of the results from the single ML 

models and/or CMIP output, according to the user's input. The Multi-model climate 

inference thematic module (from WP7) can be used for this step; 

7. Final results can be stored as output files or visualised in the notebook interface 

using different Python visualisation modules. 

The overall workflow of the application will be orchestrated by the Workflow engine 

solutions from T6.1, which will also take care of tracking the DT provenance, and deployed 

by the Big Data processing infrastructure T6.4 over the WP5 infrastructure resources. Figure 

1 shows a diagram with the DT workflow main steps. 

 

 
Figure 1 – Overview of the workflow for DT on extreme events 
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3.2 DT Application: Wildfire risk assessment in 

response to climate change 

3.2.1 ML Model Requirements 

The main goal of DT Wildfire case study is to develop several Deep and Convolutional 

Neural Network-like architectures capable of learning complex relationships between 

chosen input variables and extract global fire risk maps containing wildfire burned areas 

probabilities. Several architectures could be investigated, such as UNet and UNet++. The 

proposed ML architectures will take as input a stack of climatic variables (similarly to 

Section 2.1.2) of dimension 𝐻 × 𝑊 × 𝐶 (where H and W are height and width, 

respectively, and C is the number of drivers) and provide as output a map of dimension 

𝐻 × 𝑊 × 𝐶 with wildfires risk probabilities inside the patch. The input data will be split 

into non-overlapping patches of fixed size as mentioned in Section 2.1.2. 

 

Preliminary list of identified data variables is available in Table 8. 

Table 8 – SeasFire Cube and corresponding to CMIP6 data variable chosen to 

carry out the Wildfire case study 

 

Full name SeasFire Cube name Unit CMIP6 name 

 ERA5 Meteo Reanalysis Data 

Total precipitation tp m pr 

Relative humidity rel_hum % hur 

Vapor Pressure Deficit vpd hPa N.A. 

Sea Surface Temperature sst K tos 

Temperature at 2 meters – Min t2m_min K tasmin 

Surface net solar radiation ssr MJ m-2 rss 

Land-Sea mask lsm 0-1 sftlf 
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Nasa MODIS MOD11C1, MOD13C1, MCD15A2 

Land Surface temperature at day lst_day K ts 

Normalised Difference Vegetation Index ndvi unitless N.A. 

Global Wildfire Information System  (GWIS) 

Burned Areas from GWIS gwis_ba ha Used only for 

training 

Valid mask of GWIS burned areas gwis_ba_valid_mask 0–1 Used only for 

training 

 

3.2.2 Workflow Description 

 

This section describes the logical flow of operations the DT on WildFires needs to perform 

to carry out user requests. The links towards WP6 core modules and WP7 thematic 

modules are highlighted also in this case. 

 

In terms in computing workflow, the DT on Wildfires risk management comprises these 

steps: 

1. Users can select the proper data for running their analysis; i.e., specifying the 

temporal and spatial extensions to be considered or the models from CMIP 

experiments. Gathering & Filtering of climate data thematic modules (WP7) will be 

used for retrieving the data from the different sources. 

2. Selected data will be pre-processed so that it can be used as input to the  ML 

models. Two thematic modules will be exploited for this step: Subsetting & patches 

generation on gridded data and Data augmentation and pre-processing of gridded 

data (WP7). In particular, patches from the input data will be generated and: 

a. For the training stage: data will be normalised based on the training set 

from SeasFire. In addition data augmentation techniques will be applied; 

b. For the inference stage: CMIP6 data will be normalised according to the 

training scaler and pre-processed to be compatible with SeasFire cube data 

structure; 

3. Only for the training workflow: training/re-training of a ML model can be triggered 

in order to use different hyper-parameters, if results from testing are not 

satisfactory in terms of evaluation metrics (e.g., error and classification metrics); 

the Software Quality Validation core module (from T6.2) will be used to this end. At 

this stage, patch generation and data augmentation procedures of SeasFire data 

are also required to increase the number of training examples. The trained models  
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will be stored into a ML model repository for future usage. The ML workflow core 

module (from T6.5) will be exploited for this step. 

4. Only for the inference stage: a ML model from the repository of pre-trained 

models will be executed on the data from step 2.  The ML workflow core module 

(from T6.5) will be exploited for this step. 

5. Results from the inference stage on projection data (e.g., CMIP6) will then be post-

processed to build the final results (e.g., to build the spatial grid) using the Geo-

referencing data thematic module (from WP7); 

6. Final results can be stored as output files or visualised in the notebook interface 

using different Python visualisation modules. 

The overall workflow of the application will be orchestrated by the Workflow engine 

solutions from T6.1, which will also take care of tracking the DT provenance, and deployed 

by the Big Data processing infrastructure (T6.4) over the WP5 infrastructure resources. The 

overall DT workflow is similar to the one shown in Figure 1. 

 

 

3.3 DT Application: Flood early warning in coastal and 

inland regions 

3.3.1 Model Requirements 

The flood early warning DT for coastal and inland regions relies on two process-based 

models combined with satellite observations of floods: 

1. Super-Fast INundation of CoastS (SFINCS): a reduced-complexity model designed 

for super-fast modelling of compound flooding in a dynamic way. 

2. Wflow: A framework for modelling hydrological processes, allowing users to 

account for precipitation, interception, snow accumulation and melt, 

evapotranspiration, soil water, surface water and groundwater recharge in a fully 

distributed environment. 

3. openEO satellite-based flood monitoring:  An existing workflow for flood 

monitoring [R4] will be re-developed in the openEO syntax[R5] for being usable on 

several platform backends. The process graph will be gradually enhanced to 

create a fully automatic processing chain, based on Sentinel-1 σ₀ and PLIA image 

collections. 

 

Wflow simulates the volume and timing of water flow (runoff) from a catchment into a 

river system, based on meteorological inputs and the catchment characteristics. To do so 

a user has to define catchment boundaries, set up hydrological response units based on 

combining e.g. soil, land cover and topography data. Simulations are forced using 

precipitation data, and results are affected by land use / land cover, soil types, topography 

and evapotranspiration rates.  
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For inland flooding, the hydrological model (Wflow) simulates how water flows through 

river systems and floodplains, and the flood inundation model (SFINCS) simulates how 

this water might spread during flood events. The flow and spread of water is affected by 

the geometry of the river channel and floodplain (usually derived from Digital Elevation 

Models), the upstream inflow, downstream water levels, location of levees, dams, and 

channels and how these are operated.  

 

For coastal flooding additional factors and data need to be considered, including tides, 

storm surges, sea level rise projections, waves, beach morphology and dynamics, coastal 

infrastructure and defenses, wind speed and direction and atmospheric pressure. 

 

An overview of data requirements to run Wflow and SFINCS can be found in Tables 4 and 

6 of interTwin D7.1 [R6] 

To produce deterministic flood maps for a given scenario or event, a specific (extreme) 

rainfall or surge event is selected and the hydrological model (Wflow) simulates river 

inflows. These together with the aforementioned data representing relevant processes 

associated with coastal flooding are fed into the flood inundation model (SFINCS) which 

simulates the flood extent and depth. The flood extent and depth is then used to trigger 

an early warning. 

 

To produce probabilistic flood maps, an ensemble of scenarios that represent a range of 

possible rainfall and surge events is simulated. This is done in order to take into 

consideration potential variations in e.g. intensity, duration and spatial distribution. Each 

scenario is associated with a return period (e.g. 1 in 100 years) or a probability of 

occurrence (e.g. 1% chance each year). Then based on the ensemble simulations the 

likelihood of flooding to occur for each point on the map is determined. The resultant 

flood map shows the probability of inundation for each location. 

 

To ensure accurate simulations, models are usually calibrated and validated against 

historical data from in situ measurements and / or satellites. Those value-added satellite 

data will be processed, using a global flood monitoring workflow that is being adapted to 

project specific requirements and that is being automated. In a first iteration the flood 

monitoring workflow is based on Bayesian decision making, exploiting data cubes of 

Sentinel-1 data with its orbit repetition and a-priori generated probability parameters for 

flood and non-flood conditions. Therefore, local seasonal non-flood conditions for each 

day-of-year are defined by pre-processing harmonic parameters of each pixel’s full time 

series. As a stretched goal, processing this firstly static information can be embedded as 

a dynamic workflow into the operational process chain, only analysing e.g. the recent two 

years and thus considering possible changes in the backscatter by e.g. changes of land 

use / land cover. Another stretched goal is the usage of ML-based training instead of the 

lightweight Bayesian approach, making use of the available big data processing 

capabilities within the project. A data cube based masking of no-sensitivity resulting from 

ill-posted satellite geometries or impeding land cover further enhances the process’ 

robustness. Implementing the described stretched goals will depend on 1) analyses on 

their potential to increase the product’s accuracy, and 2) on decisions throughout the 
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project regarding implementing redundant processing libraries, usable for this and for 

other workflows. 

 

To set up Wflow for the purposes described above, a Digital Elevation Model is used to 

delineate the watershed boundaries. The catchment can then be broken down into 

smaller sub-basins or hydrological response units based on land use, soil type and 

topography. For each sub-basin processes such as runoff coefficients and infiltration 

rates are parameterised. 

 

To set up SFINCS, the same Digital Elevation Model is used to define the river network, 

i.e. the geometry of the rivers and floodplains. Boundary condition points are determined 

for the upstream inflows from Wflow and downstream water levels or tidal conditions. 

The influence of bridges, dams, levees, and other infrastructure on flow dynamics should 

also be included. 

 

An overview of data requirements to set up Wflow and SFINCS can be found in Tables 3 

and 5 of interTwin D7.1 [R6]  

 

In this digital twin application functionality is being developed that enables an end user  

1. Easily set up Wflow and SFINCS for a user-defined region of interest 

2. Easily run the models and produce deterministic and probabilistic flood maps 

 

3.3.2 Workflow Description 

Three workflows are described in this section: 

1. Setting up the necessary Wflow and SFINCS models 

2. Producing a deterministic flood map 

3. Producing a probabilistic flood map 

 

Setting up Wflow and SFINCS models for a specific region of interest comprises the 

following steps: 

1. Set up SFINCS 

a. A user defines a geographic region of interest 

b. A user defines the SFINCS model resolution 

c. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of the global data. 

2. Set up Wflow 

a. The area of interest defined for SFINCS is used to define the upstream 

catchment area for Wflow 

b. A user defines the Wflow model resolution 

c. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of the global data 

 

Once the SFINCS and Wflow models have been set up they can be run to produce 

deterministic and probabilistic flood maps as follows. 
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For deterministic flood maps: 

1. A user selects a time period to simulate, e.g. a specific historical event 

2. A user selects the preferred forcing data for SFINCS and Wflow, e.g. 

a. Wflow – temperature, precipitation, and potential evapotranspiration 

b. SFINCS – in addition to precipitation, for a coastal flood, select data for 

tides, surges, waves, and sea level 

3. A user then runs Wflow 

4. A user then runs SFINCS with river discharges from Wflow 

5. The water levels produced by SFINCS are interpolated to the digital elevation 

model selected by the user in the Setup SFINCS step 1c, to estimate flood depths 

and extent 

 

For probabilistic flood maps 

1. A user selects a time period to simulate, e.g. a specific historical event 

2. A user selects the preferred ensemble of forcing data for SFINCS and Wflow, e.g. 

a. Wflow – temperature, precipitation, and potential evapotranspiration 

b. SFINCS – in addition to precipitation, select data for tides, surges, waves, 

sea level 

3. A user then runs many Wflow simulations forced with the ensemble forcing data 

4. A user then runs many SFINCS simulations with river discharges from Wflow 

5. The many water levels produced by SFINCS are interpolated to the digital elevation 

model selected by the user in the Setup SFINCS step 1c, to estimate flood depths 

and extent and e.g. the likelihood of a flood occurring at a specific location is 

computed. 

 

In the above workflows, this DT application will leverage the following capabilities from 

other WPs of interTwin (summarised in Fig.2) 

● The DT will leverage capabilities developed in WP7, T7.6: Hydrological model data 

processing thematic module. 

● Additionally for preprocess forcing and boundary condition data, this DT aims to 

leverage developments from WP6, T6.3 Data fusion. 

● To run the models using containers, this DT will rely on functionality from WP6, 

T6.4 Container workload management and batch queue system. 

● For post-processing and visualisation, this DT will rely on WP6, T6.2 FAIR data 

quality evaluation. 

● For workflow composition and execution, this DT will leverage developments from 

WP6, T6.1 Workflow composition and WP6, T6.4 Workflow backend. 

● Finally, all data and compute resources are leveraged from WP5, the DTE 

infrastructure including Notebooks as a Service. 
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Figure 2 – Overview of the workflow components mapped against developments in other work 

packages and tasks of the project in C4-Model Level 3 format. 

3.4 DT Application: Alpine droughts early warning 

 

3.4.1 Model Requirements 

The drought early warning DT Application aims to develop a deep learning model capable 

of reproducing the physical representation of hydrological processes of the model Wflow, 

and learning complex physical aspects, not yet described in the physical model, from 

spatially distributed data derived from EO. The model will be used to simulate 

hydrological fluxes (streamflow, soil moisture and evapotranspiration) and predictively 

identify drought prone areas. In this study, both dynamic and static types of data are used 

as input to run hydrological as well as its surrogate model. The dynamic input data include 

meteorological variables (temperature, precipitation and potential evapotranspiration) 

and vegetation-related information, such as the leaf area index. Meteorological inputs 

from 2000 to 2020 derive from daily ERA5 reanalysis. Both the dynamic and static data 

are resampled to the resolution of the hydrological model grid (~ 1 km).  Once the model 

is set, it will be run with meteorological forcing inputs derived from a downscaled version 

of ECMWF SEAS5 seasonal forecasts in place of ERA5 reanalysis to make predictions for 

future drought conditions. The downscaling of forecast fields will be performed through 

machine learning schemes optimised for each specific variable. Continuously update the 

model with new forecast data as it becomes available to generate near-real-time drought 
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predictions. Table 9 and 10 presents the type of dynamic and seasonal forecast data used 

in this study. The description of static data is already available in D7.1[R6]. 

Table 9  – Details of dynamic data used in this study and their sources. 

Dynamic Data Data 

Source 

Time Temporal 

Resolution 

Spatial 

Resolution 

Product 

Description 

2m_temperature Copernicus 

Climate 

Data Store 

(CDS) 

  

  

  

2000–2020 

  

  

  

Daily 

  

  

  

0.25⁰ x 0.25⁰ 

0.0495⁰ x0.0495⁰ 

  

  

  

ERA5 & 

 CERRA 

Surface pressure 

Total precipitation 

Surface net solar 

radiation 

ECMWF 

Surface solar 

radiation downwards 

Surface Pressure CDS 

Potential 

evapotranspiration 

CDS de Bruin et al. 

(2016). 

Leaf Area Index Earth Data Monthly 500 m MODIS 

    Table 10 –  Details of seasonal forecast data used in the study and their sources. 

Variable Spatial 

Resolution 

Temporal 

Resolution 

Product Description 

2m_dewpoint_temperature  

 

 

0.25° x 0.25° 

 

 

 

Hourly 

 

 

Seasonal Forecast 

ECMWF 

2m_temperature 

Geopotential (at 500 and 850 hpa) 

Mean_sea_level_pressure 

Specific_humidity (at 500 and 850 hpa) 

Surface_pressure 
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Temperature (at 500 and 850 hpa) 

Total precipitation 

u_component_of_wind (at 500 and 850 hpa) 

v_component_of_wind (at 500 and 850 hpa) 

 

3.4.2 Workflow Description  

The purpose of this section is to describe the logical flow of operations that the DT 

drought early warning system needs to carry out both from development side as well as 

from user perspective.  

1) Computing workflow from the development side of the DT drought early warning 

system. Three primary steps are involved: 

i)     Setting Up physical based model (Wflow_sbm) and develop its surrogate model by 

keeping physical aspects of  Wflow_sbm 

   ii)      Calibrate parameters of the hydrological (surrogate) model. 

  iii)   Predict drought anomalies using trained model and seasonal forecast data from 

        ECMWF 

This activity will use the spatially distributed hydrologic model Wflow_sbm [R1, R2] to 

estimate hydrological fluxes including snow accumulation and melt, actual 

evapotranspiration, soil moisture, streamflow. The study area is divided into seven Alpine 

basins to decrease computational time (Po east, Po west, Danube, Swiss, Drava, Rhone 

East, Rhone West). Throughout the study domain, all models are set up in the same 

manner with 0.008333-degree cell sizes, which correspond to approximately one 

kilometer. The Wflow_sbm performance will examine using observed discharge, 

MODIS/Terra Net Evapotranspiration and Sentinel-1 based soil moisture both at temporal 

and spatial scale. A surrogate model for differentiable hydrological models, like 

Wflow_sbm, offers computational efficiency, improves convergence while reducing noise, 

making it suitable for distributed computing. In this study, a surrogate model based on 

dPL framework is developed in two phases as shown in Fig.3. The first phase involves 

training the LSTM to reproduce the performance of the process-based model Wflow_sbm 

by minimising the loss function (RMSE). It is necessary to include this step in order to 

support a differentiable workflow as well as to save time during computation. The LSTM 

surrogate model is trained using dynamic forcings and static attributes, using soil 

moisture and evapotranspiration simulated by Wflow_sbm as a target of emulations. By 

using the Inter-Quartile Range (IQR) approach, the data is preprocessed to remove 

outliers. Next, the data is normalised using the min–max normalisation technique. Finally, 
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the preprocessed data is split into a 70% training set and a 30% testing set to evaluate 

the model's performance. This process ensures that the LSTM model receives clean and 

standardised data for effective training and testing. Once the loss function is minimised, 

parameters of surrogate hydrological models are estimated based on historical 

observations and static inputs by minimising the loss function between model outputs 

and observations, namely soil moisture, which plays an integral role in drought 

prediction. As soon as the model is trained and the parameters are calibrated, seasonal 

forecast data from ECMWF at daily scale will be used in order to forecast drought 

conditions over the following two weeks to two months.   

2) Based on the user's perspective within openEO, the drought early warning system 

consists of the following steps: 

1.     Defining Geographical Extent 

To begin the analysis, the user must specify the geographical area of interest. The user 

can select the watershed of interest among the ones included in the study area. 

2.      Data Selection and Preprocessing 

Data selection is one of the key components in simulating DT results. The drought DT 

Application provides flexibility to their users to choose globally available data on the 

portal or bring their own local data both for historical and future simulation. The user 

must preprocess and harmonise the data according to model resolution. This process 

ensures that the ML model receives clean and standardised data for simulation.  

3.     Model Selection/ Training 

Following the preprocessing of the data, the user can select the trained model to simulate 

historical drought conditions as well as forecast drought anomalies in the future. The 

current model is trained and tested for the Alps. If the user wishes to run the model in a 

different region or use a different type of model, it will be necessary to retrain the model. 

4.     Post-Processing 

Users can check the performance of trained models and simulations by comparing them 

with historical observations of streamflow, evapotranspiration, and soil moisture. Upon 

satisfactory model performance, users can also run the model using seasonal forecasts 

for predicting drought anomalies.  

5.     Visualisations 

Final results can be visualised in the openEO interface by using different Python 

visualisation modules or they can be downloaded for further analysis and shared with 

the appropriate authorities. 
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Figure 3 – (i) A deep learning model is trained to emulate a physical based hydrological model 

(Wflow_sbm) (ii) work plan of differential parameter learning (dPL) for parameter estimation using 

trained model in first phase, past observations, reanalysis inputs and static attributes (iii) the 

trained model is finally run using downscaled dynamic forcing inputs derived from seasonal 

forecasts of ECMWF to predict drought conditions. 

 

3.5 DT Application: Extreme rainfall, temperature, and 

wind weather event changes in response to 

climate change 

3.5.1 ML Model Requirements 

The application inputs are sets of 2-dimensional data for each climate variable. Each of 

them can therefore be considered as a 2D image, where each pixel coincides with a cell 

of the lat-lon grid. Considering three climate variables (temperature, precipitation, and 

wind), the images take the form of “RGB” (Red Green Blue) images, carrying three 

components for each pixel. Based on this consideration, the deep learning model 

identified for the DT is based on convolutional layers. Given the unsupervised learning 

conditions, the model used for anomaly detection is a Convolutional Variational Auto-

Encoder – an image-compressing/rebuilding neural network (CVAE). Its inputs are daily 

squares over Western Europe, with the three climate variables values for each pixel - 

dimension nlat x nlon x 3. The tool can be extended to any geographical zone. The  CVAE 

compresses (encodes) the input with convolutional layers to a smaller latent space. 

Distribution parameters are sampled from the encoded space, and the image is rebuilt 

with symmetrically transposed convolutional layers. A backward loop assesses the loss 

between the original and reconstruction image. The model is trained on historical data 

(about 30 years), assuming that history is the “normal” situation. The trained network is 

then applied to projection data: when the reconstruction loss is unusually high, the 
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situation is considered an anomaly. Post-processing these findings helps characterise the 

events with their duration, frequency, and intensity. 

The software infrastructure is PyTorch. 

 

A preliminary list of used data variables is available in Table 10. 

Table 10 – Preliminary list of data variables for the DT Application 

 

Variable name 
Temporal 

Resolution 

Spatial 

Resolution 
Unit 

Daily Maximum Near-Surface Air 
Temperature daily 100km x 100km K 

Daily Precipitation daily 100km x 100km kg m-2 s-1 

Daily-Mean Near-Surface Wind Speed daily 100km x 100km m s-1 

 

3.5.2 Workflow Description 

This section describes the logical flow of operations the DT needs to perform to carry out 

user requests. 

In terms of computing workflow, the DT on extreme events follows those steps: 

1. Data Selection Users select the relevant data to run their analysis; i.e., specify the 

geographical region of interest, climate reference time period (~30 years), time 

period of interest, season, and future climate scenarios (RCPs). 

2. Data Preprocessing Selected data will be pre-processed so that it can be used as 

input to the  ML model. In particular, data will be normalised with respect to the 

full dataset, and split into four season datasets. 

3. Model Training The network will be pre-trained for Western Europe on a specific 

climate model, but for any other location or model it will have to be trained again. 

The training is based on 30 years of historical data. The hyperparameters are 

tuned to reach a trade-off between various applications. 

4. Projection Data Inference The weights of the trained network are saved and 

applied to projection data of the same climate model –  to avoid detecting biases 

between climate models as anomalies. 

5. Post-processing The daily reconstruction errors will be analysed with respect to 

history or other IPCC scenarios, for each season. Percentiles and other statistical 

methods are used to determine the behaviour changes of historically rare events: 

their frequency of occurrence, duration, intensity (when relevant), and 

geographical extent.  
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6. Improving results Only one climate model can be studied at a time, but variants 

of the same model (ensemble members) can be used simultaneously and 

therefore augment available data. A trained network on more data will generate 

more accurate results and reduce uncertainty – it can be evaluated depending on 

climate models and RCPs. Results from different models (and therefore different 

networks) can also be aggregated. 

7. Visualising Final results can be stored as output files or visualised in the notebook 

interface using different Python visualisation modules, e.g. plots, maps. 

The script of the core model is available on GitHub (in progress): 

https://github.com/cerfacs-globc/xtclim. 
 

 
Figure 4 – Schematic overview of the main components of the DT Application: Extreme rainfall, 

temperature, and wind weather event changes in response to climate change. It uses a 

Convolutional Variational Auto-Encoder method to detect anomalies. 

3.6 DT Application: Flood climate impact in coastal 

and inland regions 

3.6.1 Model Requirements 

In addition to the hydrological and flood inundation models and workflow described in 

Section 3.3, the flood climate impact DT for coastal and inland regions uses models and 

https://github.com/cerfacs-globc/xtclim
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tools to quantify impacts on buildings, utilities, roads and accessibility under different 

future climate scenarios applying different mitigation and adaptation strategies. 

 

Instead of using the meteorological data referred to in Section 3.3 to run the hydrological 

models (Wflow) and the flood inundation model (SFINCS), here climate projection data 

will be used to simulate flood depth and extent under future climate conditions. The 

requirements and workflow to arrive at the deterministic and probabilistic flood maps 

are the same as in Section 3.3, but using climate projection data instead of weather 

forecasts. 

 

Once the deterministic and probabilistic flood maps have been generated, these are fed 

into the flood impact assessment tool (Delft-FIAT), and the Resilience Assessment and 

Action perspective for Critical infrastructurE (RA2CE) model. 

 

Using the flood maps, and additional inputs such as depth-damage functions, asset 

locations and their maximum potential damages, Delft-FIAT derives asset-level and 

aggregated damages and risk. For each asset specified in the exposure dataset, the water 

depth or elevation is subtracted from the flood map at the location of the assets; water 

elevations are converted to water depths using the ground elevation of each asset. When 

calculating partial flooding, Delft-FIAT will extract either the average or maximum water 

depth and the fraction of the building that is flooded. The inundation depth within 

buildings is obtained by subtracting from the water depth the ground floor height. Delft-

FIAT derives the damage fraction for each asset using its inundation depth and 

interpolating over its depth-damage curve. The damage to the asset is then calculated as 

the product of the maximum potential damage and the damage fraction. When 

calculating partial flooding, the damages will be reduced by the fraction of the building 

that is dry. When the user inputs return-period flood maps, Delft-FIAT will calculate the 

associated return-period damages, and then integrate these to derive the expected 

annual damages. 

 

Similarly to Delft-FIAT, RA2CE uses the flood maps combined with road network data, 

road damage functions, road depth damage curves, population data, and important 

locations to calculate damages to road networks including the cascading effects on 

society due to disruptions of the infrastructure network. 

 

Additionally for this DT, users can select and input flood mitigation and adaptation 

strategies such as flood walls, levees, pumps and culverts, raising properties and flood 

proofing properties and run scenarios to estimate the impact said strategies have on 

mitigating damages related to floods. 

 

Setting up Delft-FIAT for the purposes described above requires exposure data including 

building footprints, roads, and asset classification data, as well as vulnerability data 

including depth damage curves and functions. 

 

To set up RA2CE, additionally requires road infrastructure data as well as data on 

population and important locations. 
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An overview of data requirements to set up Delft-FIAT and RA2CE can be found in Tables 

7-10 of interTwin D7.1 [R6] 

 

3.6.2 Workflow Description 

The workflow to set up SFINCS and Wflow is described in Section 3.3.2. For the flood 

climate impact DT,  there are 3 additional workflows, namely: 

1. Setting up the Delft-FIAT and RA2CE models 

2. Producing a baseline damage and impact assessment, based on flood depth and 

extent from running Wflow and SFINCS with future climate projection data 

3. Selecting flood mitigation and adaptation strategies and rerunning the models 

 

Setting up the Delft-FIAT and RA2CE models for a specific region of interest comprises the 

following steps: 

1. Set up Delft-FIAT 

a. A user defines a geographic region of interest. 

b. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of global data. 

c. A user checks and/or links the classification of the assets to the asset 

damage functions. 

2. Set up RA2CE 

a. A user defines a geographic region of interest. 

b. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of global data. 

c. A user selects the road types to include. 

d. A user checks and/or links the road types to the road damage functions. 

 

Once the SFINCS, Wflow, Delft-FIAT and RA2CE models have been set up, they can be run 

to produce baseline damage assessments under future climate scenarios as follows: 

1. A user selects a time period to simulate, e.g. a specific historical event 

2. A user selects the preferred forcing data for SFINCS and Wflow, e.g. 

a. Wflow –  temperature, precipitation, and potential evapotranspiration 

b. SFINCS – in addition to precipitation, select data for tides, surges, waves, 

and sea level 

3. A user then runs Wflow 

4. A user then runs SFINCS with river discharges from Wflow 

5. The water levels produced by SFINCS are interpolated to the digital elevation 

model selected by the user in the Setup SFINCS step 1c (Section 3.3.2), to estimate 

flood depths and extent 

6. A user then runs Delft-FIAT with the flood depth maps from SFINCS 

7. A user then runs RA2CE with the flood depth maps from SFINCS 

8. A user can visualise the resulting damages and impacts spatially in the Jupyter 

Notebook or in any GIS software 
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Once the baseline damage assessments under a future climate scenario has been run, 

the workflow to assess the impact of selecting mitigation and adaptation strategies can 

be run as follows: 

1. A user selects the measures and specifies the properties of the measures that they 

want to test 

2. A user runs a FloodAdapt module that implements the changes in the models 

corresponding to the measures. It is currently possible to implement measures 

that make changes to the SFINCS and Delft-FIAT models. 

3. Depending on the choice of measures, the user must rerun the following models 

with the updated model data: 

a. If the user selected a flood wall, pump, levee, and/or culvert, the user must 

rerun SFINCS, Delft-FIAT and RA2CE with the updated models. 

b. If the user selected buyouts, flood proofing, and/or raising properties, the 

user can just rerun Delft-FIAT. 

4. A user can visualise the resulting changes in damages and impacts spatially in the 

Jupyter Notebook or in any GIS software 

 

In the above workflows, this DT application will leverage the following capabilities from 

other WPs of interTwin (summarised in Figure 2, Section 3.3) 

● The DT will leverage capabilities developed in WP7, T7.6: Hydrological model data 

processing thematic module. 

● Additionally for preprocess forcing and boundary condition data, this DT aims to 

leverage developments from WP6, T6.3 Data fusion. 

● To run the models using containers, this DT will rely on functionality from WP6, 

T6.4 Big Data Alalysys. 

● For post-processing and visualisation, this DT will rely on WP6, T6.2 FAIR data 

quality evaluation. 

● For workflow composition and execution, this DT will leverage developments from 

WP6, T6.1 Workflow composition and WP6, T6.4 Workflow backend. 

● Finally, all data and compute resources are leveraged from WP5, the DTE 

infrastructure including Notebooks as a Service. 

 
 
 
 
 
 
 

4 Conclusions 

The first version of the architecture design of interTwin DTs applications for WP4 

concerned with the environmental domain was developed during the first year of the 

project. In the current deliverable D4.1, the main focus is on defining a preliminary 

workflow and identifying possible beneficiaries for each DTs application. As part of each 
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task (4.5, 4.6, and 4.7), we described user stories, key requirements, expected outcomes, 

and the steps they planned to accomplish their specific goals. Additionally, we outlined in 

section 3 the layout and necessary steps that should be considered when designing an 

individual DT application. 

The next step will be to complete the development of  the first version of each DT 

Application, followed by their release and integration with the DTE corresponding to the 

deliverable D4.3 planned for April 2024. That deliverable will also serve as feedback for 

the first DTE components to be released in Dec 2023 and integrated by the DTs. 
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