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Abstract 
Key Words Architecture, design, capabilities, Digital Twin Engine, High Energy 

Physics, GW Astrophysics, Radio Astronomy 

 
This deliverable describes the capabilities that the architecture design of a Digital Twin 
Engine (DTE) has to provide in order to be able to support the use cases coming from the 
High Energy Physics, Radio Astronomy and GW Astrophysics and the implementation of 
the related DT Applications. It details the functional specifications and requirements 
analysis for these use cases. Finally, it provides insights into the architecture design 
decisions made when developing the blueprint architecture of the DTE to specifically 
address the needs of the use cases. 
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Executive summary 
 
This document is deliverable 4.2 of the interTwin project, part of work package 4. It is a 

report collectively written by the partners of tasks 4.1, 4.2, 4.3 and 4.4, who are directly 

involved in designing digital twins for the physics  domain (High Energy Physics, Radio 

Astronomy, and Gravitational Waves Astrophysics). This report aims to explain the 

motivation behind development of specific digital twins, the architecture design, who 

will be the beneficiaries, and what may be expected in the future from the specific 

digital twins. The deliverable will be followed by a final version of the document (D4.6) 

to be delivered at M30 of the project, which will highlight the final architecture design of 

the Digital Twins.  
Furthermore, each DT Application in the physics domain requires interaction with 

different types of stakeholders, either DT operators or DT end users (these stakeholder 
can be experts in the field or users who are not experts but are interested in using the 

results), hence user stories have been used, discussed, and presented in the document 

to understand the requirements of the different stakeholders involved. 
Finally, the various modules from different Work Packages (WPs) within the project are 

highlighted to show how the DT Applications will interact with the interTwin DTE for the 

purposes of processing data, composing workflows, and visualising results. 
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1 Introduction 

1.1 Aim of this deliverable 

The overall objective of deliverable 4.2 is to provide an overview of the DT Applications, 

their features, and their architecture design for the physics domain (T4.1, T4.2, T4.3, T4.4) 

and their key requirements in the interTwin project.  A Digital Twin Application is a user 
interface implementation of a DT. DT applications are the consumers of the capabilities 

offered by the interTwin Digital Twin Engine (DTE), therefore they introduce use case-

specific requirements. 

1.2 Intended audience of this document 

The main audiences for the deliverable 4.2 are the developers and end users 
For the DT application and DTE developers: this deliverable provides them with an 

opportunity to gain insight into different components, data integration strategies, and 

computational models required to build an effective DT. Thereby enabling them to 

incorporate new features, leverage components and workflows, improve scalability, 

support evolving problems over time, and ensure interoperability. In particular, 
developers of the DTE need to understand the requirements from the DT Applications while 
developers of the DT Applications will use this document as a reference for their own 
requirements and for the way they plan to interact/integrate with the underlying DTE 
modules. 
For DT end users and operators, this deliverable facilitates data sharing, integration, and 

analysis among various stakeholders. By establishing a common framework for 

communication, stakeholders will be able to exchange information, validate models, and 

collaboratively address their challenges. 

1.3 Structure of the document 

The structure of this deliverable is as follows. Section 2 describes the user interface and 

requirements for each digital twin. A detailed table is provided for each digital twin 

application where details are provided regarding user stories, their requirements 

(following the MoSCoW method1), expectations and timeframe for completing the tasks. 

Section 3 explains architecture design which illustrates the workflow composition  within 

each DT application. It depicts sequential or parallel steps involved in operating each DT, 

highlighting the input, processing, and expected outcomes. 

 
1 https://en.wikipedia.org/wiki/MoSCoW_method    

https://en.wikipedia.org/wiki/MoSCoW_method
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2 DT Applications User Stories 

2.1 DT Application: Lattice QCD simulation 

Task 4.1 aims to produce a Digital Twin (DT) application for simulation of quantum field 

theories on a lattice, and in particular, lattice Quantum ChromoDynamics (QCD). Two use 

cases are being explored: a conventional scenario for lattice-QCD simulations, with large 

scale simulations in High Performance Computing (HPC); and a second scenario, ML-

based simulations, which is an area under development in the community.  
Large scale Monte Carlo simulations of Lattice QCD take place in major HPC infrastructures  
either at national or international level. In the framework of the project we want to explore 
and implement the new federated data capabilities (WP5) with several purposes. From the 
infrastructure support point of view increasing redundancy and enabling fast data transfer is 
fundamental, as many challenges in current competitive simulations today require the 
transfer of several 100s of TBs between HPC centres. An additional beneficial point for end 
users is the flexibility of data lakes when it comes to access and sharing data. At the moment 
users are subject to the policies of HPC centres, which prevent sharing of data between users 
not having a classic account ssh-based in their system.  
In the particular case of data analysis, Jupyter Notebooks are used to take care of the full 
analysis workflow (of the several steps involving different codes). Connecting those 
notebooks with the data lake is therefore an interesting possibility.  
For the second scenario we aim at exploring how ML can support conventional Monte Carlos 
simulations. For example, finding the right parameter point to perform a large-scale 
simulation in QCD (“tuning the simulation”) is in general tricky, and requires the application 
of very advanced statistical methods and a consistent investment in CPU hours. The 
identification of phase transitions points is a clear example. The usage of Normalizing Flows 

[R1] for the purpose of generating field configurations to support the conventional Monte 

Carlo simulations is a very active research field. The trained models will be used in a 

pipeline for generating field configurations that can be used to calculate various 

observables of interest relevant to physics applications, a reference observable is the 
energy of the lattice plaquette, whose autocorrelation length is often used as a reference to 
estimate the statistic properties of the simulation. In section 3.1 a description of the pipeline 

stages is given. The main stakeholder of the DT is the expert who designs architectures 

for various quantum field theories, trains the model, and investigates the efficiency of the 

trained model. The other stakeholders are the physicists that exploit the trained model 

in their research. 

Table 1 –  User stories for DT Application: Lattice QCD Application 

Ref N  As a  I want to So that And it’s considered 
done when 

MoSCoW 

4.1-1 User 

performing 

Monte 

Be able to 

retrieve and 

transfer Lattice 

configurations 

The user can 

restart the 

simulation in a 

different 

The user can 

access 

configurations in 

a data lake using 

Must 
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Carlo 

simulations 

between 

different HPC 

systems using a 

Data Lake 

machine of 

perform data 

analysis 

the AAI solution of 

the project 

4.1-2 User 

performing 

model 

training. 

be able to train 

a generative 

model for a 

given field 

theory. In 

particular, 

the generative 

method 

considered 

here is the 

method of 

Normalizing 

Flows. 

field 

configurations 

for various 

quantum  field 

theories can be 

generated. 

the model is so 

well trained that 

the efficiency is 

comparable with 

the traditional 

methods of 

generating field 

configurations. To 

quantify the 

efficiency one 

needs to measure 

the 

autocorrelation in 

the generated 

configurations. 

Must 

4.1-3 User 

performing 

data 

analysis. 

generate field 

configurations 

using the 

trained model. 

various 

observables of 

interest 

relevant to 

physics 

applications 

can be 

calculated. 

The accuracy of 

the observables 

matches the 

desired level. 

Must 

 

2.2 DT Application: Detector simulation 

In Task 4.2 a DT application for particle detector simulation is being designed and will be 

developed.  
A methodology that accelerates particle detector simulations, leveraging generative deep 

learning methods, has already been described and is available in deliverable 7.2 (D7.2) 

[R3]. Our methodology is using Geant42, a software toolkit for the simulation of the 

passage of particles through matter, and Generative Adversarial Networks (GAN), a class 

of machine learning frameworks for approaching generative AI. The technical 

requirements have been identified, defined, and reported in detail in D7.2. 
This section outlines the user stories that define the key functionalities and requirements 

for our Geant4 and Generative Adversarial Network (GAN) DT Application. These user 

stories have been identified to reflect the needs of DT operators, including physicists, data 

scientists, and machine learning engineers. Each user story represents a specific goal 

from the perspective of the interested stakeholder to guide the development process. 

 
2 https://geant4.web.cern.ch/   

https://geant4.web.cern.ch/
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Table 2 –  User stories for DT Application: Detector Simulation 

Ref N  As a  I want to So that And it’s considered done 
when 

MoSCoW 

4.2-1 DT 

operator 

use the Geant4 

application to 

simulate 

particles 

passing through 

a specific 

detector setup 

(full/Monte 

Carlo-based 

simulation). 

the operator 

can generate 

data for 

various 

scenarios 

the system 

successfully 

simulates particles 

passing through the 

specified detector 

setup, and generates 

and stores simulation 

data for further 

usage. 

Must 

4.2-2 Data 

Scientist 

preprocess the 

simulated data. 

it can be 

used to train 

a GAN 

model. 

the data scientist has 

access to the raw 

simulation data, the 

system allows for 

data preprocessing 

and preparation 

steps, and then the 

preprocessed data is 

suitable for GAN 

training. 

Must 

4.2-3 Machine 

Learning 

Engineer 

train a GAN 

model on the 

preprocessed 

simulated data, 

with specified 

model input 

conditions (e.g. 

particle’s 

entrance angle, 

initial energy 

and type). 

the model 

can generate 

data that is 

similar to 

the original 

simulated 

data. 

the machine learning 

engineer can access 

and input the 

preprocessed data 

into the GAN model, 

the DT provides tools 

for monitoring and 

tuning the training 

process, and 

additionally the 

system validates the 

trained GAN model 

by providing 

performance metrics. 

Must 

4.2-4 Physicist use the trained 

GAN model 

within the 

Geant4 

application 

during the 

inference step 

(fast/ GAN-

they can 

produce 

GAN-based 

simulation 

data faster, 

in contrast 

to using 

traditional 

the physicist can 

import the trained 

GAN model into the 

Geant4 application, 

the system 

successfully 

generates GAN-based 

simulation data when 

Must 
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based 

simulation). 

Geant4 

simulation. 

given initial 

conditions (e.g. 

particle’s entrance 

angle, initial energy 

and type), and then 

compares GAN-based 

simulation data with 

traditional Geant4 

simulation data for 

consistency and 

speed. 

 

2.3 DT Application: Noise simulation for radio 

astronomy 

Task 4.3 aims to develop a DT of an astronomical source-telescope system, able to 

generate synthetic output signals identical to the data recorded by a real telescope, which 

includes both scientifically valuable data and various interference and noise signals. The 

DT is physics-based: a set of the control parameters will allow adjustment of the output to 

various sources, detection instruments, and observing conditions. The resulting data is 

to be used to train ML data-classification tools. A detailed overview of the project has 

already been provided in the deliverable 7.2 [R3]. 
The work is split into three parallel and interacting subprojects: astrophysical analysis of the 
real data, theoretical modelling of the source/telescope system, and development of a fast 
and scalable C++ implementation. The first of these includes building of the ML-data 
classification tool for the analysis of the real data, which assigns labels to each data fragment 
based on the type of signal detected or not detected in it. The label describes the fragment 
on a basic level as “scientifically important data”, “no signal”, “interference” etc., and in the 
future may also include more detailed properties. Since the proportions of each data type in 
the real data flow are very different (e.g. scientifically important data might constitute less 
than 1% of the data sample), efficient ML training requires synthetic data to be used. That is 
where the DT comes in, which is developed in the second subproject based on a physical 
model of the source, its signal transmission and registration. Finally, within the third 
subproject both the ML tool and the DT are implemented as efficiently as possible.   
 

Table 3 –  User stories for DT Application: Noise Simulation for Radio Astronomy 

Ref N  As a  I want to So that And it’s considered 
done when 

MoSCoW 

4.3-1 Radio 

Telescope 

Operator / 

On-Site 

get DT- 

generated 

synthetic data 

tailored to the 

the ML data 

classifier can 

be used in 

flagging the 

DT-trained ML 

data classifier 

labels the real 

data by type 

Must 
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Radio 

Astronomer

. 

specific 

observation 

type, target and 

conditions, and 

train the ML 

data classifier 

with them.  

scientifically 

worthless data 

during the 

observation 

run to keep the 

recorded data 

volume as low 

as possible.  

(science, empty, 

interference etc.) 

with a high degree 

of certainty 

(~95%). 

4.3-2 Radio 

Astronomer 

(responsibl

e for 

processing 

and 

assessing 

the data). 

be able to run 

DT- generated 

synthetic data 

through data 

processing 

pipelines and 

analytic tools. 

the pipelines 

and tools can 

be debugged 

and correctly 

configured 

prior to the 

arrival of real 

data, improving 

the efficiency 

and shortening 

the time before 

the data 

release. 

there is no 

apparent 

difference when 

running the 

synthetic data 

through the 

relevant pipelines 

and tools. 

Must 

4.3-3 Radio 

Astronomer 

(scientific 

analyst, 

“end user”). 

use the DT- 

generated and 

processed data. 

hypotheses 

about the real 

data can be 

tested. 

the synthetic data 

is tried in a 

scientific analysis 

of a real project, 

and the end users 

are happy with the 

results. 

Should 

4.3-4 Radio 

Astronomer 

or Software 

Engineer 

(data 

acquisition/ 

processing 

pipeline 

developer). 

run the DT and 

ML data 

classifier 

training in 

parallel 

configuration 

on computing 

clusters. 

run time can be 

decreased to 

achieve (near) 

real-time data 

processing. 

near real-time 

data processing is 

achieved. 

Should 

 

2.4 DT Application: VIRGO Noise detector 

The goal of Task 4.4 is to produce a Digital Twin (DT) of the Advanced  Virgo interferometer 

to realistically simulate transient noise in the detector. We will use Generative Adversarial 

Networks (GANs) to determine the relationship between strain data (that measure the 

deformation induced by the passage of a gravitational wave)  and auxiliary data (that 

monitor the status of the detector’s subsystems as well as the environmental conditions). 
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The trained model will be used in a pipeline for vetoing and denoising the strain signal in 

low-latency searches, i.e. those data analysis pipelines that search for transient 

astrophysical signals on shorter timescales and in almost real time. The high-level 

architecture of the DT has been defined in deliverable 7.2[3]. The main stakeholder of the 

DT is the expert user operating the vetoing/denoising pipeline (the DT Operator), as well 

as people working in the Rapid Response Team on shift during the observing period. The 

other stakeholders are the physicists operating the downstream pipelines that will use the 

information provided by the DT. In table 4, for each of the two stakeholders we report a 

list of requirements that will drive the design of the DT. 

Table 4 –  User stories for DT Application: VIRGO Noise Detector 

Ref N  As a  I want to So that And it’s considered 
done when 

MoSCo
W 

4.4-1 DT 

Operator 

make sure that 

the GAN model is 

periodically re-

trained on most 

recent data. 

the DT 

realistically 

simulates the 

detector 

response 

following any 

change in the 

experimental 

conditions. 

the model re-

training converges 

and has a good 

accuracy in 

reproducing the 

flux of incoming 

data. 

Must 

4.4-2 DT 

Operator 

make sure that 

the DT is able to 

identify transient 

noise (glitches) in 

incoming data. 

the information 

about an 

identified glitch 

can be used to 

issue a veto 

decision. 

the DT outputs a 

probability for a 

given time span of 

data to contain a 

glitch. 

Must 

4.4-3 DT 

Operator 

make sure that 

the DT is able to 

reproduce 

transient noise 

(glitches) in 

incoming data. 

the information 

about an 

identified glitch 

can be used to 

denoise the 

incoming 

signal. 

the DT outputs a 

signal in which the 

glitch has been 

removed 

(denoised). 

Should 

4.4-4 DT 

Operator 

make sure that 

the DT delivers 

the correct veto 

flag to 

downstream 

pipelines. 

downstream 

pipelines can 

use this 

information to 

decide if 

further 

processing of 

the data or not. 

the DT delivers to 

downstream 

pipelines a veto 

decision in the 

expected format. 

Must 

4.4-5 DT 

Operator 

make sure that 

the DT is able to 

downstream 

pipelines can 

the DT delivers to 

downstream 

Should 
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denoise the 

incoming signal. 

search for a 

gravitational 

wave signal in 

incoming data 

without being 

biased by 

glitches.  

pipelines a stream 

of denoised data in 

the expected 

format. 

4.4-6 Physicist be able to use the 

DT veto 

information in 

downstream 

pipelines. 

data containing 

glitches are 

discarded from 

processing. 

the information 

about the 

probability for data 

to contain a glitch 

is received in the 

expected format. 

Must 

4.4-7 Physicist ensure that 

downstream 

detection 

pipelines receive 

an input of 

denoised data. 

the search for a 

gravitational 

wave signal is 

unbiased by 

glitches. 

the stream of 

denoised data is 

received in the 

expected format 

and the denoising 

procedure has not 

removed any 

astrophysical 

signal. 

Should 

 
 
 

3 DT Applications Design 

3.1 DT Application: Lattice QCD simulation 

 
The aim of Lattice QCD is shedding light on the properties of Quantum Chromodynamics in 
the limit of low energies/strong couplings, where perturbation theory breaks down, and 
numerical approaches become mandatory. In interTwin the objectives are exploring two use 
cases addressing the status of Lattice QCD simulations: a classical scenario, with large scale 
simulations in HPC; and a second scenario, Machine Learning-based simulations, an area 
under development in the community, at the proof of concept level, therefore requiring few 
resources. 
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3.1.1 Advanced Data management for Lattice QCD 

Simulations  are executed at large scale in HPC systems controlled by a batch system (such as 
slurm3). The workflow involves generation of configurations and data analysis, both are 
computing-intensive tasks.  
 
In order to facilitate data analysis, the configurations should be made readily available to the 
members of the collaboration in a controlled way, for example by using federated identities, 
and group-based access control. In the most frequent scenario the members of the 
collaboration should have group-access enabled to read the data. A few of them, those in 
charge of generating data, should also have writing access rights. A data sharing model 
following a Data Lake architecture (WP5) would be desirable.  

3.1.2 Generative models using Machine Learning 

 
Machine learning techniques are being explored in Lattice QCD in order to facilitate the 
generation of configurations in complex areas of the parameter space. In this respect, the 
training of the models is done by comparing the result of the ML technique, with the result of 
a standard Monte Carlo simulation as described in the  scenario above. The accessibility to 
Lattice configurations is therefore essential to perform the training of the model. 
 
The efficiency of general purpose Monte Carlo algorithms decreases dramatically when the 
simulations need to take place near critical points due to critical slowing down. This is a 
general phenomenon in simulations in Physics related to phase transitions, which happens as 
well in Lattice QCD, for example with simulations at very fine distances that are needed for 
extrapolation to the continuum limit. Simulations need to take place in areas of the parameter 
space where topology freezing (among other factors) induce very large autocorrelations. 

 
If Machine Learning could help speed-up the field configuration generation in those parts of 
the parameter space is a subject under investigation. A series of recent studies suggest that 
using Normalizing Flows (a class of deep generative models) may help to improve this 
situation ( a block diagram illustrating the method is shown in Figure 1). The underlying idea 
is using Machine Learning techniques to map the theory of interest to a “simpler” theory, 
easier to simulate.  This approach has the potential to become more efficient than traditional 
sampling especially when the concept of transfer learning is utilised.  
However, the costs associated with the (highly complex) sampling from the path integral, are 
transferred to the training of a model. The question under investigation is therefore how 
expensive it is to train a model compared with making a classical Monte Carlo simulation. 

 

 

 
3 https://slurm.schedmd.com  

https://slurm.schedmd.com/
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Figure 1. Upper part: Graphical representation of the classical generation of 
configurations using Monte Carlo algorithms; Lower part: Graphical representation 
of the Normalizing Flows method including a correcting accept/reject step to account 
for the fact that the model cannot be perfectly trained. 

 

The purpose of this work is designing better architectures for Machine Learning models so 
that the acceptance rates become reasonable (~50% or more) as the volume of the lattice 
increases. The requirements in terms of resources are not as in the classical Monte Carlo 
simulation since the methodology is still at the proof of concept level.  
 

3.2 DT Application: Detector simulation 

In Deliverable 7.2, the underlying challenges of detector simulation for CERN and the High 

Energy Physics (HEP) community, as well as the importance of developing a DT digital twin 

system that integrates simulation methods with machine learning, were analysed and 

described. 

This section provides a comprehensive overview of CERN’s digital twin application of a 

detector simulation. It describes the key steps, from particle simulations to event 

generation, and subsequent data comparison with real data. The process is explained in 

detail, highlighting the functionalities at each stage. Furthermore, it illustrates the 

flexibility in tuning the system to accurately represent various detectors’ responses. This 

explanation is designed to give readers an understanding of the entire workflow design, 

shedding light on current practices and potential areas of future improvement. It also 
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opens the way for a deeper discussion on the challenges faced, decisions made, and 

future strategies in the ongoing development of this innovative simulation application. 
This application consists of two components, the component that incorporates the 

Geant4-based simulation framework and the deep learning component, which uses deep 

generative models based on a specified particle detector set up. The two components are  

encapsulated into two main workflows, the training workflow and the inference workflow, 
as illustrated in Figure 2. Below, the application functionalities and their specifications 

included in each workflow are described. 

 
Figure 2 – Fast particle detector simulation using ML techniques high level workflow composition 

and its connections with other work packages’ components 

The Geant4 simulation toolkit that consists of an important component of CERN’s 
application, performs particle physics simulations based on Monte Carlo (MC) methods. 

It constitutes a set of components which include geometry and tracking descriptions, 

detector response modelling, event management, user interfaces and many other 
functionalities. Geant4 toolkit is typically used in HEP research projects for complex 

detectors of which single components (i.e. the calorimeters) are simulated using GANs, 

as an alternative to the classical MC techniques. Calorimeters are key components of the 

whole experimental setup, which are responsible for measuring the energy of the 

particles. Simulating the calorimeters’ response using Geant4 is usually a bottleneck for 

the related research projects. For that reason, generative AI based fast simulation is being 

leveraged, which generates directly the detector output, without reproducing, step by 

step, each single particle that interacts with the detector material, in contrast to MC 

methods. 
The training workflow design includes the following functionalities, which run on HPC 

systems managed by Kubeflow containerized components. Geant4 simulates particle 

interactions, producing data based on a detector-specific configuration. The produced 
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data consists of the energy measured by the detector sensors, the properties of the initial 

particle, such as its type, energy, and its trajectory angle with respect to the detector 

volume, and other metadata. The produced data, in ROOT format, is stored at different 

data centres, with CERN currently serving as the primary storage site. The Geant4 

application will run on HPC systems in a containerized environment. 
The data produced from the traditional Geant4 simulation in ROOT format requires 

conversion into the HDF5 format for further preprocessing before being input into the 

GAN model. This conversion is currently performed using a Python script, though future 

considerations include whether to incorporate this conversion within the GEANT4 

application or into the training loop or keep it as a separate process. The converted data 

will then be stored at data centres. Following the ROOT to HDF5 format conversion, the 

HDF5 data is further preprocessed and transformed into numpy arrays, a process 

currently incorporated within the model training scripts. 

A Generative Adversarial Network (GAN) is trained [R2] on the preprocessed data, 

conditioned on specific input describing the properties of the particles. The data is 

retrieved from the storage space where they reside. Hyperparameter optimization (HPO) 

is also employed to improve model performance. During validation and HPO, the model 

generated data and the Geant4 simulated data distributions will both be visualised. 

Additional validation techniques are currently being established. Training, validation and 

HPO processes will run on HPC systems. 
At the end, the training workflow stores the optimised models, selected based on 

validation results, and converts them into the ONNX format for use during inference. 

Currently, the transformation of the model architecture and weights is performed within 

a Python script. The model registry where the GAN models are stored is managed by Task 

6.5. 
The inference workflow design includes the following functionalities which run on HPC 

systems managed by Kubeflow containerized components. The Geant4 application at this 

stage initiates a particle, guiding it through the detector until it reaches the bottleneck 

detector part (the calorimeter), at which the GAN model performs inference. This 

functionality is incorporated within the Geant4 application, which of course requires the 

retrieval of the stored ONNX formatted models. The model's output undergoes a 

detector-specific transformation to convert it into a Geant4 suitable input: the 3D images 

that the model generates are mapped into the so-called "hits" data consisting of the 

position (x, y, z coordinates) in the detector (i.e. the sensors positions) and the 

corresponding energy measurements.  
The transformed data is used by the Geant4 framework to complete the process of 

generating events, simulating the passage of particles through the remaining 

components of the detector. Data distribution comparisons are drawn between the GAN-

generated data and real data (either derived from a traditional Geant4 simulation or data 

derived from accelerator test beams). These comparisons are essential for validating the 

efficacy and accuracy of the GAN-generated data. 
Finally, based on the results visualised, two possible workflows are proposed for 

simulation tuning, shown in Figure 3. The model can either be re-inferred with different 

model input parameter values, provided these parameter values have been accounted 

for during model training. Alternatively, if a different value range of the conditional 

parameters is needed, the training workflow must be re-run from the beginning. These 
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two possible workflows allow for greater flexibility and adaptability in tuning the 

detector's responses to various particle interactions. 

 

Figure 3 – Detailed graph representation of the training and inference workflows composition (as 

described above) of the fast particle detector simulation DT utilising 3DGAN approach 

 

3.3 DT Application: Noise simulation for radio 

astronomy 

This DT application addresses the challenge of identifying radio signals from intermittent 

astrophysical sources, so called ‘transients’ and ‘pulsars’, from large-volume data streams 

during the data acquisition phase. One of the main tasks is to identify noise and 

interference signals coming from different sources. The DT recreates the propagation of 

pulsar signals from the source to radio astronomical antennas and then processing them 

by radio telescope electronics (see Figure 4), aiming to generate synthetic output signals 

identical to the data recorded by real telescopes.  
It is a part of the development effort of a larger framework called ML-PPA for Machine 

Learning-based Pipeline for Pulsar Analysis4. In addition to the DT, it includes a CNN-

based ML classifier of the pulsar data, which can be trained using the DT-supplied data. 

An essential part of this project is analysis of real astronomical data collected in a 

dedicated observation (about 20 minutes of data collected by the Effelsberg 100m radio 

telescope5 observing one of the brightest and well-studied pulsars, the Crab pulsar) and 

 
4 Andrei Kazantsev, Tim Oelkers, Yurii Pidopryhora, Tanumoy Saha, Marcel Trattner, and Hermann Heßling, 

“ML-based Pipeline for Pulsar Analysis (ML-PPA)” (~50pp, in preparation) 
5 Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg 

https://www.mpifr-bonn.mpg.de/en/effelsberg
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creation of empirical simulated data based on it, which provides the material for testing 

both the ML-classifier and the DT. 

 
Figure 4: General outline of the DT structure: modelling the astrophysical source (pulsar), 

transmission of the signal through the interstellar matter, receiving and processing by a radio 

telescope, adding sources of both natural and artificial interference and noise.  
  

The overall software architecture follows the 3-layer design (see Figure 5). The top layer 

provides interfaces for the user to develop pipelines, which are developed in WP4, by 

combining tools and algorithms that are held in the middle layer, which has been already 

documented in D7.2. The bottom layer enables the creation of containers that can be 

distributed to data centres via the integration of Workflow tools developed in WP6, where 

the built-in pipelines can be used to analyse or generate data. For logistical reasons most 

components are first developed and tested in Python, and then some parts are rewritten 

in C++ to ensure the best speed and efficiency. 
The ultimate goal of this framework is to empower astronomers in their pursuit of 

uncovering non-trivial astronomical signals and enhancing their ability to process, 

analyse, and interpret huge volumes of data coming from the next generation of radio 

telescopes, such as Square Kilometer Array (SKA)6 "pathfinders", for example South 

African MeerKAT7 or Australian ASKAP8, and then the SKA itself, when it comes online. In 

the near future we plan to add  MeerKAT datasets to the materials used in this project. 
It is necessary to clarify that this is a future goal, not implemented in the current task. Here 
we just build a data-classification tool assigning a label9 to each data fragment. These labels 
can be used to filter the data flow in real time, which in turn should diminish significantly the 
recorded volume of data. But this is not our problem at the moment. Our tool on its own does 
not require the ability to work with large volumes of data, a trained ML model can handle a 
typical data acquisition rate of a radio telescope even when running on a mediocre computer. 
And the computationally intensive task of training the model (where the DT is used) is 
independent of the data acquisition. 

 
6 SKAO: https://www.skao.int/en 
7 MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/ 
8 ASKAP radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope 
9 In the simplest terms boiling down to “scientifically important” and “can be discarded”. 

https://www.skao.int/en
https://www.sarao.ac.za/gallery/meerkat/
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope


D4.2 First Architecture design of the DTs capabilities for High Energy Physics, Radio 

astronomy and Gravitational-wave Astrophysics 

interTwin – 101058386                          21 

 
Figure 5: Layered software architecture of the framework ML–PPA 

The development also tries to address the issue of poor scalability of available radio 

astronomical software tools, the aim is to create a package that can be efficiently used 

for massively parallel computing over the resources offered by the WP5 infrastructure 

3.4 DT Application: VIRGO Noise detector 

The core of the VIRGO Noise detector DT is a Generative Adversarial Network used to find 

the transfer function of the system producing non-linear noise in the detector output. 

The information produced by the GAN is used to identify the presence of transient noise 

(glitches) in incoming data, which could mimic a signal of astrophysical origin (the 

gravitational wave). 
This is achieved by feeding the GAN with two samples of input data: 

● the strain signal measures the change in the relative distance between two test 

masses, which is indicative of  the deformation of the fabric of space-time induced 

by the passage of a gravitational wave. This signal results from the composition of 

several other signals coming from different detector subsystems, and 
● the auxiliary signals from thousands of sensors that monitor the status of the 

detector’s subsystems as well as the environmental conditions (wind, 

temperature, seismic motions). Although a subset of these signals is used to 

compose the strain, the rest is expected to be blind to the astrophysical signal and 

witness only noise.  

The GAN model should learn to simulate the signal in the strain channel starting from the 

signal in a subset of auxiliary channels, therefore reproducing the noise component of 
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the strain signal only. By comparing the simulated strain signal with the real signal, one 

should be able to infer the presence of an astrophysical signal.  
The DT is organised as a pipeline operating in quasi real-time (low-latency), with the goal 

of identifying a glitch in the incoming data and passing the information to downstream 

low-latency pipelines that search for transient astrophysical signals. In the first phase, the 

information will be passed as a veto decision not to process the data if  they contain a 

glitch. In a second phase, also in view of the Einstein Telescope, the DT will output 

denoised data, in which the glitch has been removed, to be further processed by the 

search pipelines. 
Original Virgo data is in the form of 1D time series, but can be preprocessed in 2D time-

frequency representations, which better capture the signal’s properties at a visual 

inspection and are well suited for image-to-image translation GANs.  
The usage of 1D or 2D representations of the data will depend on the latency constraints 

of the DT and has not been decided yet.  
Also, in the first phase, data will be handled as files containing a defined time lapse of the 

signal. In a second phase, they will be handled as streams. 
The DT is composed of two main subsystems, one for training and one for inference. 
The Training subsystem is responsible for the periodic re-training of the DT model on a 

buffered (on disk) subsample of most recent data. The stream of detector data, including 

the strain and a set of auxiliary channels, needs to be converted to files and stored on a 

POSIX filesystem. Data is then preprocessed in a format suited for the GAN. We expect 

the preprocessing step to be executed on distributed resources, possibly the training step 

as well. From the infrastructure point of view, the DT will leverage the capabilities offered 

by Tasks 5.1, 5.2 and 5.4. Moreover, it will rely on Task 6.1 for the workflow composition, 

real-time acquisition and processing. The trained model could be passed to the Inference 

subsystem either via storage or through a model catalogue. The training step is executed 

asynchronously to the rest of the pipeline and time constraints are not very stringent. 
The Inference subsystem, besides applying the trained GAN model to simulate the strain 

data starting from the auxiliary channels, should also include a functionality to compare 

the real and simulated signals to extract the probability for data to contain a glitch or to 

denoise the signal in a later stage. These functionalities will not necessarily be covered by 

ML models. A preprocessing step is needed to convert the stream of input data in a 

format suitable for the GAN model, as well as a post processing step to prepare the DT 

output in a format suitable to be used by the downstream pipelines. Also in this case, 

there is a dependency from the capabilities provided by Tasks 5.1, 5.2, 5.4 and 6.1. 
Both subsystems need to be connected to a monitoring system that collects and displays 

metrics on training convergence and inference accuracy, to make sure that the DT 

realistically simulates the detector response following any change in the experimental 

conditions. The monitoring system should also be capable of sending alerts (e-mail, sms 

etc..). The functionalities will be provided by the WP6 in particular by the task T6.5 delivering 
the AI workflow subsystem. 
The DT Operator is an expert user that monitors and reacts to any problems occurring 

within the pipeline. In the first phase, we also expect him/her to trigger the re-training 

step when something  is known to have changed in the experimental conditions. In a later 

stage, we plan to develop an event-driven procedure, leveraging the framework to be 
provided by Task 6.1,  to automatically trigger the re-training procedure. 
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Finally, the DT should be interfaced with the Virgo low-latency pipelines, which need to 

be able to consume the DT output in form of a veto decision (i.e. probability for a given 

time lapse of data to contain a glitch) or a stream of denoised  data. In the latter case, 

particular care should be taken in making sure that the denoising procedure does not 

bias the capability to detect a gravitational wave signal in case it is overlapping with a 

glitch. FIgure 6 already presented in D7.2 [R3] shows the C4 model of the DT veto pipeline. 

 
Figure 6:  System Context diagram (in the C4 model) of the DT for the veto pipeline. 

4 Conclusions 

The first version of the design of interTwin DTs applications for WP4 concerned with the 

physics domain was developed during the first year of the project. In the current 

deliverable 4.2, the main focus is on defining a preliminary workflow and identifying 

possible beneficiaries for each DTs application. As part of each task (T4.1, T4.2, T4.3, and 

T4.4), we described user stories, key requirements, expected outcomes, and the steps 

that are planned to accomplish their specific goals. Additionally, in Section 3, we outlined 

the layout and necessary steps that should be considered when designing an individual 

digital twin. 

The next step will be to complete the development of  the first version of each DT 

Application, followed by their release and integration with the DTE corresponding to the 

deliverable 4.4 planned for April 2024. That deliverable will also serve as feedback for the 

first DTE components to be released in December 2023, and integrated by the DTs. 
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