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Abstract 
Key Words digital twin, environment, climate change, impacts, tools 

This deliverable describes the release of Digital Twin (DT) Applications that support 

the climate change use cases and the implementation of the related impact decision 

support tools. It details the capabilities, characteristics, and describes the functional 

specifications of the DT applications and the status of their integration into the DTE 

architecture. Finally, it provides the information about the next steps in the 

development and integration of those DTs. 
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Executive summary 
This document is deliverable 4.3 of the interTwin project, part of work package 4. It is a 

report collectively written by the partners of tasks 4.5, 4.6 and 4.7, who are directly 

involved in designing DT Applications for the environmental domain (climate projections 

& extreme events). This report aims to describe the Digital Twins (DTs) capabilities, as well 

as their integration status into the Digital Twin Engine (DTE), especially for the integration 

with the infrastructure and with the Core Components of the architecture. 

First, each DT application is described to explain their specific capabilities that support 

the use cases, and which capabilities the user will be able to access in order to explore 

what-if scenarios. These DT applications will enable users to assess some specific aspects 

of the climate change impacts in various geographical regions by covering tropical 

storms, wildfires, floods, droughts and other extreme weather events.  

In addition to the capabilities, the current status of the integration of each DT application 

with the main Core as well as with the infrastructure components is described. The next 

steps that are planned toward full integration are also discussed. 

Overall, each DT is specifically designed and linked to address specific climate change 

impacts and provide valuable insights for assessing climate risks, identifying early 

warning signals, and implementing mitigation measures. It provides invaluable tools 

enabling users to explore several future possible specific impacts of climate change. 
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1 Introduction 

1.1 Aim of this deliverable 

The overall objective of deliverable 4.3 is to provide information about the capabilities of 

DT Applications related to climate change and impact decision support tools. Those DTs 

are from the environmental domain (T4.5, T4.6, T4.7).  A Digital Twin Application is a 

user-facing implementation of a DT. DT applications are the consumers of the capabilities 

offered by the interTwin DTE, thus introducing use case-specific requirements. 

1.2 For whom is this document 

The deliverable 4.3 could be useful for both developers and end users as described 

below: 

For developers: the current deliverable provides them with an opportunity to be 

informed on how the integration of DTs is being planned and implemented. This 

integration is also linked to the different capabilities and features of each specific DT. It 

gives insights on how those DTs will fit into the overall interTwin architecture by using 

specific core components. 

For end users: the specified deliverable provides information on what are the capabilities 

of each specific DT in the environmental domain. It provides insights to the users on what 

can be achieved by using those DTs: what it can be used for, and eventually what are the 

parameters and configurations that can be set by the end users for tailoring those DTs to 

their specific needs. By establishing a common framework for communication, 

researchers and stakeholders will be able to exchange information, validate models, and 

collaboratively address climate change impacts and suggest mitigation measures. 

1.3 Structure of the document 

The structure of this deliverable is as follows. Section 2 describes the capabilities of each 

digital twin. Section 3 explains how the integration is planned and what the current status 

of the integration is. The reader should refer to D4.11 for a description of the architecture. 

 

  

 
1 D4.1 First Architecture design of the DTs capabilities for climate change and impact decision support tools 
https://doi.org/10.5281/zenodo.10417135  
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2 DTs Application 

2.1 Generic Detection of Climate Extremes 

This DT is aimed at the detection and characterization of climate extremes to assess their 

impacts and provide useful information for the decision making process. The DT enables 

users to quantify and evaluate the changes of climate extremes, such as changes in the 

frequency of occurrence, as well as their spatial extent, duration, and intensity. In the first 

version of the DT, the maximum daily temperature will be the variable used to calculate 

extreme temperatures compared to the normal values, according to a specific season or 

monthly period. In future versions of the DT, users will be able to select other variables 

such as precipitation and wind speed. 

The end users will be able to select specific greenhouse gas scenarios to explore different 

impacts according to the evolution of those emissions that are driven by national and 

international policies. Users will also have the capability to select a region of interest to 

focus on specific areas and better evaluate regional and local impacts. It will also be 

possible to select a specific time period and a season (or a monthly period), as well as 

several datasets coming from different types of future climate simulations, such as global 

circulation coupled models, regional climate models, and any other relevant datasets. 

To evaluate the changes, the end users will define a time period of reference to compare 

with. Typically, a period of 25 to 30 years is used as a climate reference, in order to better 

evaluate the needed adaptation compared to a specific state of the climate. 

In more details, the Deep Learning method that is used consists of a Convolutional 

Variational Autoencoder (CVAE). Autoencoder and decoder are a pair of unsupervised 

trained neural networks where autoencoders are trained to compress the data and 

decoders are trained to decompress the compressed data with a minimal loss. This can 

be used for anomaly detection, hence also for climate extremes. When input data is 

compressed, the main features of the data are kept, and there is some loss since, after 

compression, data is stored in a lower dimensional space (called latent space) before 

being decompressed. Variational autoencoders (VAE) model the latent space as a 

probability distribution. CVAEs use Convolutional Neural Networks (CNN) for both 

encoder and decoder parts.  

In this implementation, CVAE input data is a subset of CMIP6 data: a time sequence of 32 

X 32 square images of a daily average of a specific atmospheric surface variable over a 

specific spatial subset region. Training is done by season, for each specific climate model 

separately, using a time period long enough to have sufficient samplings (typically 50 

years or more) and in which the greenhouse gas emissions have a weak tendency (e.g. 

1850-1950). The CVAE model can then be applied to any time period of interest to the 

user, using any CMIP6 simulation data of this specific global climate model. For each daily 

image reconstructed by the CVAE, there is a loss, corresponding to the error in the 

reconstructed image. This loss value is used for anomaly detection (climate extremes are 

anomalies).  
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This DT is based on artificial intelligence techniques, and implements a method based on 

unsupervised Deep Learning (CVAE). This unlocks the possibility for users to better 

quantify the uncertainties associated with different sources such as greenhouse gas 

emission scenarios, specific climate models and also inherent climate variability. This is 

possible thanks to the high performance of DL methods to process large datasets. 

Typically, using analytical methods, users would only use a small subset of all available 

simulations, leading to partial uncertainty assessments resulting in incomplete impact 

assessments. This could lead to less than optimal adaptation and mitigation decisions. 

2.2 Wildfire danger prediction in response to climate 

change 

The DT related to the wildfires application focuses on the generation of fire danger maps 

on a global domain that resemble the burned area spatial distribution learnt from 

historical records. Output fire danger maps are produced through ML models, in 

particular using the UNET++2 architecture, but the evaluation will be spread to several 

Deep Neural Networks. The networks are trained to learn the non-linear spatial 

relationship between multiple environmental variables and the hectares of burned areas. 

Such variables include climatic, weather and potentially vegetation conditions and are 

provided as predictors for the trained models. The hectares of burned areas produced 

by wildfires events, instead, expressed as the percentage of burned area compared to 

the theoretical maximum burnable area per pixel (in the geographical domain of interest) 

are used as targets. Trained ML models will be applied on future projection scenarios to 

give an indication on how climate change is affecting geographical areas and the extent 

of wildfires. 

Several architectures have been investigated for learning complex relationships between 

the chosen input variables and extracting global fire danger maps containing the 

percentage of wildfire burned areas for each pixel. In particular, the UNET++ architecture 

has been identified as a possible solution to the problem about the wildfire danger maps 

prediction. Other deep learning architectures could be considered during the remainder 

of the project to improve the prediction capabilities. 

The data used came from SeasFire Cube3, a scientific datacube containing 21 years of 

data (2001-2021) with an 8-day temporal resolution and 0.25° spatial resolution, designed 

to forecast seasonal fires around the world. It contains 59 seasonal fire drivers, including 

atmospheric and climatic variables, vegetation, socioeconomic drivers, burned areas, fire 

radiative power, as well as wildfire-related CO2 emissions. 

The proposed ML architecture takes as input and produces as output a stack of several 

climatic variables. The stack has a generic dimension of 𝐻 × 𝑊 × 𝐶, where H is the height 

and it is equal to 720, W is the width and it is equal to 1440, C is the number of climatic 

variables and it depends on whether the stack is made of drivers or targets: C is (currently) 

 
2 https://arxiv.org/pdf/1807.10165  
3 https://zenodo.org/records/8055879 

 

https://arxiv.org/pdf/1807.10165
https://zenodo.org/records/8055879
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equal to 8 if the stack is composed of drivers (Leaf Area Index, Land-Sea mask, Land 

Surface temperature at day, Relative humidity, Surface net solar radiation, Sea Surface 

Temperature, Temperature at 2 metres - Min, Total precipitation), otherwise, C is equal 

to 1 if the stack is composed of targets (Burned Areas from FCCI). 

The hyperparameter fine tuning has been carried on in order to calibrate the ML 

architecture to achieve good results. A set of hyperparameters (the base filter 

dimensions, losses and optimizers) has been chosen and evaluated, for a total of 9 

different model configurations. 

The workflow and the ML model are implemented in Python using PyTorch as ML 

framework. The trained model and the inference workflow will be made available to end-

users (e.g., scientists and policy makers) through Jupyter notebooks interacting with the 

core and thematic modules from the project. In particular, the end-users can exploit the 

workflow for running what-if analyses about wildfire burned area predictions (Figure 1) 

made with climate projection data. Users will interact with the model to provide the 

projection scenarios from a given list, the temporal (and potentially geographical) extents 

and ML models from a set of pre-trained model architectures. The output of the DT will 

be visualised through the notebook and downloaded/saved as NetCDF files. Additionally, 

customised maps and charts will be made available. 

 

 
Figure 1 - Comparison of real (right) and predicted (left) burned areas on the test dataset (2019-2020): the neural network's 

predicted burned areas resemble the real data in terms of spatial pattern as well as the amount of hectares burnt. 

2.3 Tropical storms change in response to climate 

change 

This DT focuses on the detection of tropical cyclones (TCs) and consists in classifying the 

absence or presence of a cyclone in gridded climate fields and in a specific time instant 

and, if present, localising its centre (or “eye”) in terms of latitude/longitude geographical 

coordinates. ML models allow learning the mapping between climatic fields significant to 

the cyclogenesis and the positions and trajectories that storms follow during their lifetime 

in historical records. Trained models will be exploited to predict the occurrence of storms 

in future projection scenarios in order to give an indication, across both space and time, 

about the areas of the world that will be more susceptible to experience such 

phenomena, according to different levels of climate change. 
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Since the variable describing the cyclogenesis consists of a set of 2-dimensional (2D) data, 

each variable can be easily considered as a 2D image, where each pixel corresponds to a 

cell of the lat-lon grid. Starting from this consideration, two different approaches are 

being explored for the detection of TCs: Convolutional Neural Networks (CNNs) and 

Graph Convolutional Neural Networks (GCNNs). 

Concerning the geographical domain, the joint North Atlantic-North Pacific formation 

basin was targeted because it is considered the one with the highest number of TCs 

occurrences every year. Six input climatic variables (i.e., mean sea level pressure, 10 m 

wind gust since previous post-processing, instantaneous 10 m wind gust, relative vorticity 

at 850 mb, and temperature at 300 and 500 mb) have been gathered from Copernicus 

Climate Change Service ERA5 reanalysis datasets for the region of interest and used as 

predictors of the presence of TCs: they were stacked together and treated as image 

channels. The temporal extent considered is 1980–2019 with a temporal resolution of 6 

h. These ERA5 maps (size: 280 × 880 grid points) were preliminary divided into 7 × 22 non-

overlapping patches of fixed size 40 × 40. Each patch is fed to the CNN; thus, the final 

dimension of the input is 6 × 40 × 40. This pre-processing step is performed to improve 

the model efficiency and, more importantly, to ensure that each patch contains at most 

one TC. The ML model architectures are configured to output the (row,col) coordinates of 

a TC within the patch. The model can output a (row,col) coordinate in the range ([0-39], 

[0-39]) if a TC is detected (i.e., positive patch). Instead, negative labels (e.g., (-1, -1)) are 

predicted when no cyclone is found within the patch (i.e., negative patch). The IBTrACS 

historical dataset has been used to map each positive patch with the corresponding TC 

historical occurrence. Concerning the dataset split, the years 2010, 2011, 2012, 2013 were 

reserved for validation, the years 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 for test 

and the remaining for training. By construction, the training set is imbalanced towards 

negative patches (only 20% of them contain a TC). A data augmentation procedure was 

applied to address the imbalance and reach a 50/50 ratio.  

In the CNN approach, the ML model identified for the DT is a Visual Geometry Group 

(VGG)-like CNN [R1, R2]. In this case, an ensemble approach has been implemented to 

combine the predictions made by different models with the aim of improving the overall 

accuracy skills. To this extent, 13 VGG-like NNs were developed and trained for the TC 

centre localization task. They differ in convolutional block complexities (i.e., composition 

and number of parameters) and hyperparameters configurations (e.g., loss function, 

kernel size), thus each of them learns distinct characteristics and high-level features. At 

first, for each patch, the approach consists in evaluating how many models agree on 

classifying it as positive. To classify a specific patch as positive, a minimum number of 7 

models that predict the presence of a TC are needed. Subsequently, the Interquartile 

Range (IQR) method is applied on the locations predicted by the models to keep only the 

estimates closer to their median value and remove the outliers. Finally, the position of 

the TC centre is computed as the ensemble average of the inliers estimates. In terms of 

software infrastructure, it has been coded in Python v3.11.2 based on Keras and using 

Tensorflow as a back-end. 
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Figure 2 - Inference of ML model on Keoni TC (from the test set). Red markers represent the positions identified by the ML 

model that was fed with six climatic variable patches for each time step of the TC trajectory. Blue markers denote the actual 

positions of the TC throughout its trajectory extracted from IBTrACS. 

In the second case a CGNN-based approach has been investigated. The pre-processing 

works in a similar way as for the CNNs. While the stacking of the atmospheric variables 

and the division into patches is identical to the CNNs case, the data at this stage is 

organised in grids, not in graphs. An additional step is hence needed to make the patches 

readable by the CGNN, and it consists of retrieving the adjacency information from these 

matrices, linking together the pixels as if they were nodes in a graph. Along with this 

information, the features are permuted from their current dimension, C x H x W, to L x C, 

where L is the list of graph nodes with dimension W x H, rather than a matrix. 

Together with the coordinates (lat, lon) information of the cyclones, the dataset also 

provides probability density maps that are still derived from IBTrACS and range from 1.0 

(the pixel with the cyclone) to 0.0 (the furthest locations from the eye of the turbulence). 

To maintain the compatibility of the pipeline with a previous version of the code, while in 

the CNN supervised training we make use of the matrix coordinates, in the CGNN learning 

we use the probability density maps instead. Therefore, the CGNN will be trained to find 

a non-linear mapping between 3D input graphs and the position of the corresponding 

maximum probability value in output. 

 

 
Figure 3 - Four example patches were taken from the test set and fed to the trained model. The top row shows the actual 

positions of the cyclones, while the bottom contains the probability estimates of the positions produced by the CGNN 
model. The colour bars represent the confidence of the prediction from 0 to 1. 
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End-users can interact with the DT use case through a notebook for running analysis 

concerning TCs on future projection data (e.g., trends about frequency of events). 

Similarly to the wildfire case, the workflow and the ML model are implemented in Python 

using PyTorch as ML framework. The user can run the workflow for what-if analyses about 

TC trends based on climate projection data, visualise the results through customizable 

maps and charts as well as download/save them as NetCDF files.  

2.4 Flood early warning in coastal and inland regions 

The DT for flood early warning in coastal and inland regions will focus on the generation 

of flood risk maps that can be used by early warning systems to trigger alerts when a 

flood is predicted. The DT enables users to monitor floods using satellite remote sensing 

and operationally predict compound floods using a flood inundation and a hydrological 

model providing river discharges. 

End users will be able to specify a geographic region of interest and interTwin’s core and 

thematic modules will enable setting up the flood inundation SFINCS and hydrological 

model Wflow (Figure 4), including necessary Earth Observation data processing pipelines 

to monitor and predict floods for the user-defined region of interest. The DT runs the 

models and processing pipelines operationally to generate flood risk forecasts and 

prepares and standardises the data for easy ingestion into an early warning system. 

Users will also have the capability to add their own local data to the model 

schematisations, thus enhancing model accuracy (e.g. Digital Elevation Models based on 

local LiDAR surveys). 

 

 
Figure 4 - Base configuration for the Humber estuary and catchment of the DT’s physics-based models. a) SFINCS basemap 
showing the DEM used, the rivers in the area and user-defined observation points. b) Wflow basemap showing the rivers 

and the DEM of the full catchment and the points where river discharges are provided for SFINCS. 

The DT’s flood risk maps are produced by SFINCS4, a reduced-complexity model for super-

fast dynamic modelling of compound flooding, which receives river discharge data from 

Wflow5, a hydrological model. Both SFINCS and Wflow are forced by weather forecasts. 

Additionally, the DT will combine the SFINCS flood maps with Sentinel-1 based flood maps 

 
4 https://github.com/Deltares/SFINCS 
5 https://github.com/Deltares/Wflow.jl  

https://www.deltares.nl/en/software-and-data/products/sfincs
https://github.com/Deltares/Wflow.jl
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generated by the openEO implementation of the TU Wien flood mapping algorithm [R7].  

This algorithm enables near real-time mapping of the flood extent through Bayesian 

inference from Sentinel-1 Synthetic-Aperture Radar (SAR) microwave backscattering. 

Globally applicable flood signatures are obtained through establishing predefined 

probability distributions of pixels under flood and non-flood conditions. These conditions 

are inferred on generalised backscattering characteristics of water and land. The end user 

can run the openEO implementation and derive flood maps for the targeted region 

(Figure 5). An example of the openEO workflow for Sentinel- 1 based flood mapping in the 

Python syntax has been published under the following link: https://intertwin-

eu.github.io/openeo-flood-mapper-local/ . 

 
Figure 5 - Flood map for Thessaly (Greece) on 28th of February 2018 with openEO implementation of TU Wien flood 

mapping algorithm. 

The core and thematic modules of interTwin will support the implementation of flood 

early warning systems anywhere on Earth and enable easy, rapid, and streamlined 

deployment of flood early warning digital twins. 

2.5 Alpine droughts early warning 

This DT aims at developing a drought early warning system for the Alpine region, 

providing seasonal forecasts of daily time series and maps of key hydrological variables 

such as surface soil moisture (SSM, %), actual evapotranspiration (ET, mm) and 

https://intertwin-eu.github.io/openeo-flood-mapper-local/
https://intertwin-eu.github.io/openeo-flood-mapper-local/
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streamflow (Q, m3/s). SSM and ET are produced at 1 km over the entire Alpine region 

whereas Q is produced at the outlets of the Alpine River basins (Figure 6). 

 
Figure 6 - interTwin region and river basins in red. 

In summary, the DT receives meteorological variables from the ECMWF’s SEAS5 

seasonal forecast system [R3] and feeds them into a hydrological workflow to predict 

hydrological variables up to 6 months in the future. New seasonal forecasts are 

produced every beginning of the month, enabling the monitoring of the onset, 

propagation and termination of hydrological droughts. 

The users will be able to set up and customise the DT’s hydrological workflow through 

the openEO interface and run experiments and visualise the outputs by means of 

Jupyter Notebooks. 

The DT draws inspiration from the recent progress in hybrid modelling, where the 

relative strengths of data-driven algorithms and physical knowledge are combined and 

complemented. In the current design, the injection of physical knowledge occurs in the 

initialisation of the data-driven model parameters, an approach that is known as 

physics-guided machine learning [R4]. The data-driven surrogate is trained to emulate 

the input-output mappings of a distributed hydrological model, wflow_sbm. The 
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surrogate inputs are wflow_sbm’s effective parameters and meteorological variables. 

Once the surrogate successfully emulates wflow_sbm, it can be further fine-tuned by 

means of observations or, as it is currently done in the DT, it can replace wflow_sbm for 

performing extensive calibration of its parameters. 

There are two properties of the physics-guided approach that are particularly 

advantageous: the computational performance and the flexible nature of deep learning 

architectures. The surrogate can run, in prediction, several orders of magnitudes faster 

than wflow_sbm, increasing the possibility of exploring larger regions of the parameter 

space to find optimal parameter sets. The deep learning models are also flexible as they 

can be adapted to different types and numbers of inputs, and they can be (relatively 

easily) composed and coupled with other neural networks or differentiable models [R5]. 

The DT hydrological workflow consists of several logically linked components (Figure 6), 

which are to some degree customisable by the users. The workflow starts with the 

ingestion of SEAS5 and ends with the prediction of hydrological droughts. 

 

 
Figure 7 - DT hydrological workflow linked components diagram. 

The first component of the workflow initially downscales meteorological variables from 

the SEAS5 forecast for better skills in the Alpine region using the 'downscaleML' python 

package. This package, stemming from WP7.4, currently includes routines for data 

preprocessing and for building statistical downscaling models for temperature and 

precipitation fields using a predefined dataset as a reference.  
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The second component is responsible for setting up and building the hydrological model, 

wflow_sbm, leveraging on the HydroMT6 application, a software for automating model 

building based on configuration files. The current release offers the option to select two 

precipitation inputs (E-OBS7 and CERRA-LAND8), to change model resolution, and to filter 

input data temporally and spatially.  

The third component deals with running wflow_sbm, which is a semi-distributed 

hydrological model developed by Deltares and recently rewritten from Python to the Julia 

language, to boost performance. One of the strengths of the model is that most of the 

effective parameters can be estimated by pedo-transfer functions using readily available 

global datasets. The effective parameters of the model are conceptual constructs that 

can’t be observed. Nonetheless they can be functionally derived from properties and 

attributes of the basin (i.e. topography, vegetation structure, etc.). 

The fourth component is responsible for 

training the surrogate model. The surrogate is 

a Long Short-Term Memory (LSTM) Neural 

Network which has been outperforming 

established physically based hydrological 

models in streamflow prediction tasks [R6]. As 

wflow_sbm spatial support is a grid of 1 km 

resolution, the LSTM model is trained over a 

representative subsample of its grid cells, to 

improve the training efficiency (maximise 

learned information and minimise training time). In every training loop, LSTM learns 

both SSM and ET at each grid cell (Figure 8) and Q at the outlet of the river basin. The 

loss function is a weighted sum of the individual losses of SSM, ET and Q. 

 

 
6 https://github.com/Deltares/hydromt  
7 https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe  
8 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land  

https://github.com/Deltares/hydromt
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land
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Figure 8 - Simulated Evapotranspiration and Surface Soil Moisture time series at three locations over the Alpine region. 

The fifth component deals with the parameter learning 

task. This task enables the calibration of the wflow_sbm 

parameters by training the surrogate model coupled with 

a NN that is responsible for learning the transfer function 

between the catchment attributes and the effective 

parameters. In this task the surrogate model weights are 

freezed and a CNN encoder is trained end-to-end to 

produce the optimal set of effective parameters. The 

CNN encoder is learning a transfer function from 

observations to effective model parameters. The loss 

function is based on the MSE between the simulated SM 

and the satellite based SM retrievals (produced by TU 

Wien), and the simulated Q and the observed Q from the 

Alpine Drought Observatory (ADO)9 database. 

Finally, the set of optimal parameters can be used with 

the surrogate or with wflow_sbm to predict the seasonal forecasts of SSM, ET and Q. 

 
 
 
 
 
 

 
9 https://ado.eurac.edu/  

https://ado.eurac.edu/
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2.6 Flood climate impact in coastal and inland regions 

The DT for Flood Climate Impact in Coastal and Inland regions focus on simulating 

(compound10) flood events by producing their flood hazard and risk maps and assessing 

their impact on building, utilities, roads, and accessibility. Additionally, the DT enables 

end users to assess the efficacy of flood adaptation and mitigation measures for historic 

events and for future climate and socio-economic scenarios, such as sea level rise and 

population growth. 

End users can define a geographic region of interest which will configure the necessary 

hazard and impact models and processing workflows using interTwin’s core and thematic 

modules. Additionally, users can:  

• Select weather events to be simulated  

• Select future changes to scenarios including physical projections (such as sea 

level rise or land subsidence)  

• Select socio-economic projections (such as population growth and economic 

growth),  

• Select adaptation and mitigation measures to be implemented for a given 

scenario (e.g. Flood walls, pumps, levees, culverts, buyouts, flood proofing, 

and/or raising properties).  

Aside from using data provided through interTwin’s data lake, users also have the 

capability to add their own local datasets (e.g. local DEM, building footprints, critical 

infrastructure) into the DT workflow, enhancing the models’ accuracy. 

The DT model chain comprises four different models. Firstly, the flood hazard maps are 

produced by SFINCS, a reduced-complexity hydrodynamic model calculating flood 

extents. The user describes an event to simulate which determines the meteorological 

data used as boundary conditions for SFINCS and for the second model Wflow, a 

hydrological model calculating river discharges for SFINCS to use. The flood maps 

produced by SFINCS are then ingested into the third and fourth models, Delft-FIAT11 and 

RA2CE12, which for example assess the direct damage to buildings and roads and the 

compounding impact on infrastructure networks respectively. The climate and/or socio-

economic scenarios and flood adaptation measures described by the user are translated 

into updated boundary conditions for these models by the FloodAdapt backend. 

The end user is provided with Jupyter notebooks as an interface to the DT, which guides 

a user through the steps for configuring and running the DT. First, the user provides an 

 
10 Compound flooding refers to a situation where multiple flooding sources combine to exacerbate the overall 
flood impact. These sources can include: 

● Fluvial Flooding: Flooding from rivers and streams due to heavy rainfall or snowmelt. 
● Coastal Flooding: Flooding from storm surges, high tides, or sea-level rise affecting coastal areas. 
● Pluvial Flooding: Flooding caused by intense rainfall overwhelming drainage systems, not necessarily 

linked to a body of water like a river or sea. 
When these sources coincide, their combined effects can lead to more severe flooding than would occur from 
any single source alone. 
11  https://www.deltares.nl/en/software-and-data/products/delft-fiat-flood-impact-assessment-tool  
12 https://github.com/Deltares/ra2ce 

https://www.deltares.nl/en/software-and-data/products/delft-fiat-flood-impact-assessment-tool
https://github.com/Deltares/ra2ce
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area of interest based on which the models are configured (Figure 3 and Figure 9). Next, 

the user describes the event to run by selecting meteorological data and providing a 

description of a climate and/or socio-economic scenario. The event will then be run by 

the model chain. Finally, the user can visualise and interact with the output data, either 

through the provided visualisation notebook, examples of which are shown in Figure 10, 

or by accessing the output data directly. 

 
Figure 9 - Delft-FIAT basemap for the Humber estuary based on building footprints fetched from OpenStreetMap 

 
Figure 10 - a) Floodmap produced by SFINCS showing which areas are inundated and by how much. b) Damage map 

produced by Delft-FIAT based on a SFINCS floodmap. 
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3 DTs Application First release 

3.1 Generic Detection of Climate Extremes 

3.1.1 DTs Application Integrations 

Model requirements  

The ML model uses as input data a subset of daily climate variables from the CMIP6 

dataset. The current implementation is for the maximum daily surface temperature, in 

order to address heatwaves. It will be extended to other temperature, precipitation and 

wind variables in the next implementation steps. 

Table 1 - Initial set of variables considered for training. 

Full name CMIP6 variable name Unit 

Daily Maximum Surface Temperature tasmax Kelvin 

Daily Total Precipitation prtot kg/m^2/

s 

Daily Near Surface Wind Speed uvas m/s 

 

Workflow 

 
Figure 11 - Overview of the workflow for DT on extreme events. 

The workflow about the Generic Detection of Climate Extremes DT will exploit the 

following components from the project: 
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● WP7: The workflow depends on the modules available in the xtclim thematic 

module13. The Jupyter notebook implementation will directly use the functions 

made available by the library.  

● WP6: The integration has not started yet with the itwinai framework. Currently, 

only the preliminary work to prepare the integration has been done. The 

integration work will be gradually done during the remainder of the project; 

● WP5: Data for training and inference will be accessed from the interTwin Data Lake 

based on RUCIO, possibly by using a data cataloguing tool (e.g., STAC or intake). 

Initial feasibility tests have been successfully performed to evaluate the access to 

a sample set of CMIP6 data using the RUCIO and Xarray Python modules. 

3.1.2 Scope and limitations 

The current implementation of this DT targets climate extremes and impacts that can be 

calculated daily, and that are related to climate indices and percentile-based indicators. 

In the future implementations it can be extended to climate extremes that involve a time 

dimension, such as droughts, or also to compound extreme events. 

Main Limitations: 

● Hyperparameters need to be optimised and adjusted for each atmospheric 

variable. 

● Training must be over a region in which atmospheric variables are relatively 

homogeneous and must be done season by season and separately for each 

climate model, using a long enough time period in which the climate change signal 

is relatively low. 

● Current configuration of the implementation is for a 32x32 input data array only. 

3.2 Wildfire danger prediction in response to climate 

change 

3.2.1 DTs Application Integrations 

Model requirements  

The ML model uses as input data a subset of climate and environmental variables from 

the SeasFire Cube datacube. The SeasFire Cube contains 59 seasonal fire drivers on a 

temporal extent of 21 years (2001-2021), with a 8-day temporal resolution and 0.25° 

spatial resolution. The initial set of variables considered for training is reported in Table 
2. The set is still susceptible to change as the model evaluation progresses. 

 

 
13 https://github.com/cerfacs-globc/xtclim  

https://github.com/cerfacs-globc/xtclim
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Table 2 - Initial set of variables considered for training. 

Full name SeasFire Cube name Unit 

Leaf Area Index lai unitless 

Land-Sea mask lsm 0-1 

Land Surface temperature at day lst_day K 

Relative humidity rel_hum % 

Surface net solar radiation ssr MJ m-2 

Sea Surface Temperature sst K 

Temperature at 2 metres - Min t2m_min K 

Total precipitation tp m 

Burned Areas from FCCI fcci_ba ha 

 

Workflow 

Figure 12 depicts the high level workflow related to the digital twin use case on wildfires 

prediction and links with the project components/infrastructure. 
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Figure 12 - Overview of the wildfires DT application. 

In particular, the workflow about the wildfires DT has been exploiting (or will exploit) the 

following components from the project: 

● WP7: The workflow depends on the functionalities from the ML4Fires thematic 

module14. The current implementation of the notebooks is strictly linked with the 

library from the Python module15. 

● WP6:  

○ Integration with a workflow management system (e.g., PyOphidia) and 

support for provenance will be added in the upcoming months;  

○ Model training will also be integrated with the itwinai framework; 

○ Integration with the SQaaS platform will be evaluated in order to validate 

the workflow and/or the trained model quality; 

● WP5: Data for training and inference will be accessed from the interTwin Data Lake 

based on RUCIO. Initial feasibility tests have been performed to evaluate access to 

the data via Python modules. 

3.2.2 Scope and limitations 

The goal is to provide Jupyter Notebooks for expert users (climate/environmental 

scientists) in order to: 

1. Select: 

 
14 https://github.com/CMCC-Foundation/ML4Fires  
15 https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks  

https://github.com/CMCC-Foundation/ML4Fires
https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks
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a. future projection scenarios from a given list; 

b. temporal extents; 

c. ML models from a set of pre-trained models; 

2. Run the DT workflows on the selected input data and pre-trained models; 

3. Download/save as NetCDF and/or visualise the results. Maps and charts can be 

potentially customised through widgets. Different indicators can be provided, for 

example: 

a. Average fire danger maps on a monthly/seasonal/annual basis, 

b. Areas more affected by wildfires seasonally/annually (by threshold), 

c. The trend of wildfire annually. 

At the time of writing this document, testing of the model on climate projection data has 

not started yet. However, the model's successful prediction of burned area maps using 

2019-2020 test data suggests that promising results could be achieved when applied to 

future projection data. Additionally, correlation analysis using the Pearson coefficient 

indicates that incorporating additional climate and atmospheric variables and exhibiting 

stronger correlations with the output variable, might be beneficial for future iterations of 

the model.  

3.2.3 Preconditions 

Users have access to DT data, pre-trained ML models, thematic components and Jupyter 

notebook, as well as the interTwin platform. 

3.3 Tropical storms change in response to climate 

change 

3.3.1 DTs Application Integrations 

Model requirements 

The ML model uses as input data a subset of climate and environmental variables from 

ERA5, combined with IBTrACS information to be used during the supervised training. The 

portion of ERA5 data is divided as follows: 

● Training: 30 years — from 1980 to 2009 — 70% of the data 

● Validation: 4 years — from 2010 to 2013 — 10% of the data 

● Testing: 8 years — from 2014 to 2021 — 20% of the data 

As reported in Table 3, this data occurs with a 6-hour temporal resolution and a 0.25 

degree spatial resolution. The set of variables considered for training is reported in Table 
3. The set is still susceptible to change as the model evaluation progresses. 
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Table 3 - Input parameters to the ML model. 

Full name Temporal 

Resolution 

Spatial 

Resolution 

ERA5 name Unit 

10 m wind gust since 

previous post-processing 

6-hourly 0.25°x0.25° fg10 m/s 

instantaneous 10 m wind 

gust 

6-hourly 0.25°x0.25° i10fg m/s 

temperature at 500 mb 6-hourly 0.25°x0.25° t_500 K 

temperature at 300 mb 6-hourly 0.25°x0.25° t_300 K 

relative vorticity at 850 mb 6-hourly 0.25°x0.25° vo_850 1/s 

mean sea level pressure 6-hourly 0.25°x0.25° msl Pa 

 

Workflow 

Figure 13 shows the high level view of the workflow related to the digital twin use case on 

TCs detection and links with the project components/infrastructure. 

 

 
Figure 13 - Overview of the TC DT application. 

 

In particular, the workflow about the tropical cyclones DT exploits (or will exploit) the 

following components from the project: 
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● WP7: The workflow depends on the modules available in the ML TC Detection 

thematic module16. The Jupyter notebook implementation uses directly the 

functions made available by the library.  

● WP6:  

○ Preliminary integration of the ML for training with the itwinai framework 

has been successfully performed17. The integration will be further 

strengthened during the remainder of the project; 

○ Similarly to the wildfires use case, the integration with a workflow 

management system (e.g., PyOphidia) and support for provenance will be 

added and integration with the SQaaS platform will be evaluated; 

○ For the CGNN workflow, the preliminary version of a provenance tracker 

developed at UNITN has been already integrated within the TC detection 

modules to track information about the ML process (i.e., loss values, 

system metrics, and more). This contribution is built on top of the yProv 

service developed in WP618; 

● WP5: Data for training and inference will be accessed from the interTwin Data Lake 

based on RUCIO, possibly by using a data cataloguing tool (e.g., STAC or intake). 

Initial feasibility tests have been performed to evaluate access to a sample set of 

ERA5 data using the RUCIO and Xarray Python modules. 

3.3.2 Scope and limitations 

The goal is to provide Jupyter Notebooks for expert users (climate/environmental 

scientists) in order to: 

1. Select: 

a. future projection scenarios from a given list; 

b. temporal and geographical extents; 

c. ML models from a set of pre-trained models, and when available the 

configuration of the ML ensemble (number of models to be involved); 

2. Run the DT workflows on the selected input data and pre-trained models; 

3. Download/save as NetCDF and/or visualise the results. Maps and charts can be 

potentially customised through widgets. Different indicators can be provided, for 

example: 

a. Frequency of TCs occurrences on a seasonal/annual basis; 

b. Trend of TCs per basin/year. 

At the current time, the DT application had limited testing with climate projection data. 

Preliminary testing has been carried out on the pre-trained CNN models on a few models 

 
16 https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/tree/torch  
17 https://github.com/interTwin-eu/itwinai/tree/cyclone_tf_dist/use-cases/cyclones 
18 https://github.com/HPCI-Lab/yProv  

https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/tree/torch
https://github.com/interTwin-eu/itwinai/tree/cyclone_tf_dist/use-cases/cyclones
https://github.com/HPCI-Lab/yProv
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from the CMIP6 experiments. This activity will continue in the following months and will 

also be extended to the graph-based GCNN model. 

3.3.3 Preconditions 

Users have access to DT data, pre-trained ML models, thematic components and Jupyter 

notebook, as well as the interTwin platform. 

3.4  Flood early warning in coastal and inland regions 

This DT application leverages on the models and tools listed in the next section. These 

are open source and can be found at the respective repositories listed in D7.119.  

Jupyter Notebooks and CWL workflows are available at the project’s repositories20 and 

describe how to set up the necessary models and run them for the DT application. 

The notebooks and workflows are still in development, with the main objective to 

streamline and simplify them for end-users by leveraging on the interTwin DTE. 

3.4.1 DTs Application Integrations 

Model requirements 

The flood early warning DT for coastal and inland regions relies on two process-based 

models combined with satellite observations of floods: 

1. Super-Fast INundation of CoastS (SFINCS): a reduced-complexity model designed 

for super-fast modelling of compound flooding in a dynamic way. 

2. Wflow: a framework for modelling hydrological processes, allowing users to 

account for precipitation, interception, snow accumulation and melt, 

evapotranspiration, soil water, surface water and groundwater recharge in a fully 

distributed environment. 

3. HydroMT: an open-source Python package that facilitates the process of building 

and analysing spatial geoscientific models with a focus on water system models. 

It does so by automating the workflow to go from raw data to a complete model 

instance which is ready to run and to analyse model results once the simulation 

has finished. 

4. openEO satellite-based flood monitoring: an existing workflow for flood 

monitoring has been re-developed in the openEO syntax ensuring interoperability 

on several platform backends. Publicly available datasets stored at the EODC 

facilitate the openEO implementation of Sentinel-1based flood maps. These 

datasets are published as SpatioTemporal Asset Catalogues (STAC) — a common 

language to describe geospatial information, which ensures discoverability and 

interoperability of the data. The STAC catalogues and openEO platform at EODC 

 
19 D7.1 Report on requirements and thematic modules definition for the environment domain 
https://doi.org/10.5281/zenodo.10417158  
20 https://github.com/interTwin-eu/DT-flood/tree/main/Notebooks;  

    https://github.com/interTwin-eu/DT-flood/tree/main/DT_flood/workflows  

https://doi.org/10.5281/zenodo.10417158
https://github.com/interTwin-eu/DT-flood/tree/main/Notebooks
https://github.com/interTwin-eu/DT-flood/tree/main/DT_flood/workflows
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can be accessed with common HTTP verbs, and clients are available for Python, R, 

and JavaScript. The openEO implementation consists of three datasets (or 

“collections'' in openEO terminology): 1) the σ0 backscatter data projected in 

Equi7Grid at 20 meter pixel spacing, 2) the projected local incidence angle (PLIA) 

values of those measurements, and 3) the harmonic parameters of a model fit on 

the pixel’s backscatter time series over land. This harmonic model fitted on 

historical data describes typical seasonal Sentinel-1 σ0 backscatter variation on a 

20 meter pixel level. These three collections of the STAC catalogue are respectively 

designated as: “SENTINEL1_SIG0_20M”, “SENTINEL1_HPAR”, and 

“SENTINEL1_MPLIA”. 

Workflow 

 
Figure 14 - High-level workflow diagram for the flood early warning DT. 

The workflow for the flood early warning DT is implemented in a Jupyter Notebook (Figure 
18 in the Section on the flood climate impact DT) and has been exploiting / will exploit 

the following components from the project: 
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● WP7: The workflow depends on functionalities from the hydrological model data 

processing thematic module dependent on HydroMT21, SFINCS22, and Wflow23. 

Upcoming developments include: 

○ Addition of a workflow for probabilistic flood maps from SFINCS. 

○ Improved downscaling approach for SFINCS. 

○ Addition of validation methods for SFINCS. 

○ Examples and documentation for using local data in SFINCS. 

● WP6:  

○ CWL workflows have been developed integrating HydroMT, SFINCS and 

Wflow to preprocess and run WFLOW and SFINCS to generate flood maps. 

○ Discussions are ongoing regarding interTwin’s workflow composition 

interface and execution engine; integration of the CWL workflows will occur 

after the conclusion of these discussions. 

○ An exploratory activity is underway to understand how to exploit OSCAR, 

an open-source platform for serverless event-driven data processing of 

containerized applications for this DT. 

● WP5: Data for model building and preprocessing will be accessed from the 

interTwin Data Lake based on RUCIO, preferably by using a data cataloguing tool 

such as STAC. Example datasets have been uploaded for SFINCS and Delft-FIAT 

and tests are ongoing to access data for workflows. 

3.4.2 Scope and limitations 

The goal is to provide Jupyter Notebooks for expert users in order to: 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models and Earth Observation processing pipelines to produce 

deterministic and probabilistic flood maps for a user-defined region of interest 

and validate the resultant output data against observations. 

3. Prepare the data for easy ingestion into an early warning system. 

A demonstration will be provided for Humber, UK.  

The main limitation for Sentinel-1 based flood maps are the availability of suitable 

overpasses of the satellite. This means that flood events, or the peak flooding extent of 

an event, can be missed. 

3.4.3 Preconditions 

Users have access to DT data, models, thematic components and Jupyter Notebooks. 

1. Users can:  

 
21 https://github.com/Deltares/hydromt  
22 https://github.com/Deltares/SFINCS  
23 https://github.com/Deltares/Wflow.jl  

https://github.com/Deltares/hydromt
https://github.com/Deltares/SFINCS
https://github.com/Deltares/Wflow.jl
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a. specify a region of interest, 

b. specify a temporal period to simulate, 

c. select local data for the models if available. 

2. User runs the DT workflows for the specified region and period using default 

global data or selected local data if available. 

3. The output of the DT can be visualised in the Jupyter Notebooks and the data can 

be downloaded/saved as NetCDF data. 

3.5  Alpine droughts early warning 

3.5.1 DTs Application Integrations 

The datasets required by the DT should be available on STAC.  

The inputs of the wflow_sbm hydrological model are produced and processed from 

dynamical meteorological forcings and static parameter maps by running the HydroMT 

component. These inputs are open source datasets (Table 4) that are collected and 

registered into a Spatio-Temporal Assets Catalog.  

Table 4 - Input Parameters from Open Source Datasets 

Collection/D

ataset 

Parameter Source STAC 

CERRA Land total_precipitation  https://cds.climate.copernicus.eu

/cdsapp#!/dataset/reanalysis-

cerra-land?tab=overview 

stac.eurac.edu/co

llections/CERRA_L

AND 

surface_solar_radi

ation_downwards 

orography 

CERRA 2m_temperature https://cds.climate.copernicus.eu

/cdsapp#!/dataset/reanalysis-

cerra-single-levels?tab=overview 

stac.eurac.edu/co

llections/CERRA 
total_precipitation  

surface_pressure 

E-OBS precipitation https://cds.climate.copernicus.eu

/cdsapp#!/dataset/insitu-gridded-

observations-europe?tab=form 

stac.eurac.edu/co

llections/EOBSv28 

SoilGrid 2000 Bulk density https://files.isric.org/soilgrids/lat

est/data/bdod  

stac.eurac.edu:80

80/collections/SO

ILGRIDS  Organic carbon https://files.isric.org/soilgrids/lat

est/data/soc  

Clay https://files.isric.org/soilgrids/lat

est/data/clay  

Silt https://files.isric.org/soilgrids/lat

est/data/silt  

Sand https://files.isric.org/soilgrids/lat

est/data/sand  

pH https://files.isric.org/soilgrids/lat

est/data/phh2o  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land?tab=overview
https://stac.eurac.edu/collections/CERRA_LAND
https://stac.eurac.edu/collections/CERRA_LAND
https://stac.eurac.edu/collections/CERRA_LAND
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-single-levels?tab=overview
https://stac.eurac.edu/collections/CERRA
https://stac.eurac.edu/collections/CERRA
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe?tab=form
https://stac.eurac.edu/collections/EOBSv28
https://stac.eurac.edu/collections/EOBSv28
https://files.isric.org/soilgrids/latest/data/bdod
https://files.isric.org/soilgrids/latest/data/bdod
https://stac.eurac.edu:8080/collections/SOILGRIDS
https://stac.eurac.edu:8080/collections/SOILGRIDS
https://stac.eurac.edu:8080/collections/SOILGRIDS
https://files.isric.org/soilgrids/latest/data/soc
https://files.isric.org/soilgrids/latest/data/soc
https://files.isric.org/soilgrids/latest/data/clay
https://files.isric.org/soilgrids/latest/data/clay
https://files.isric.org/soilgrids/latest/data/silt
https://files.isric.org/soilgrids/latest/data/silt
https://files.isric.org/soilgrids/latest/data/sand
https://files.isric.org/soilgrids/latest/data/sand
https://files.isric.org/soilgrids/latest/data/phh2o
https://files.isric.org/soilgrids/latest/data/phh2o
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Soil thickness https://files.isric.org/soilgrids/for

mer/2017-03-

10/data/BDTICM_M_250m_ll.tif 

Ecodatacube land cover class http://s3.eu-central-

1.wasabisys.com/eumap/lcv/lcv_l

andcover.hcl_lucas.corine.rf_p_30

m_0..0cm_2018_eumap_epsg3035_

v0.1.tif  

No 

Merit hydro 

 

flow direction https://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_Hyd

ro/ 

stac.eurac.edu/co

llections/MERIT_H

YDRO  elevation 

HAND 

upstream area 

river width 

HydroLakes - https://www.hydrosheds.org/pro

ducts/hydrolakes 
No 

Grand v1.3 - https://ln.sync.com/dl/bd47eb6b0

/anhxaikr-62pmrgtq-k44xf84f-

pyz4atkm/view/default/44781952

0013 

No 

Randolph 

Glaciers 

inventory 

- https://cds.climate.copernicus.eu

/cdsapp#!/dataset/insitu-glaciers-

extent?tab=overview   

No 

Roughness 

river 

mapping 

- https://github.com/Deltares/hydr

omt_wflow/tree/main/hydromt_

wflow/data/wflow 

No 

Corine 

mapping 

- https://github.com/Deltares/hydr

omt_wflow/tree/main/hydromt_

wflow/data/lulc 

No 

river_ge30m - https://zenodo.org/records/35527

76#.YVbOrppByUk 
No 

 

The processed input-output of wflow_sbm is required for training the surrogate model 

(Table 5). 

Table 5 - Processed input-output of wflow_sbm. 

Collection/

Dataset 

Parameter Source STAC 

Wflow sbm 

forcings 

Precipitation  Processed by HydroMT No 

PET Processed by HydroMT No 

Temperature Processed by HydroMT No 

Wflow sbm 

static maps 

effective parameters24 Processed by HydroMT No 

 
24 https://deltares.github.io/Wflow.jl/stable/model_docs/params_vertical/  

https://files.isric.org/soilgrids/former/2017-03-10/data/BDTICM_M_250m_ll.tif
https://files.isric.org/soilgrids/former/2017-03-10/data/BDTICM_M_250m_ll.tif
https://files.isric.org/soilgrids/former/2017-03-10/data/BDTICM_M_250m_ll.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://stac.eurac.edu:8080/collections/MERIT_HYDRO
https://stac.eurac.edu:8080/collections/MERIT_HYDRO
https://stac.eurac.edu:8080/collections/MERIT_HYDRO
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/wflow
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/wflow
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/wflow
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/lulc
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/lulc
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/lulc
https://zenodo.org/records/3552776#.YVbOrppByUk
https://zenodo.org/records/3552776#.YVbOrppByUk
https://deltares.github.io/Wflow.jl/stable/model_docs/params_vertical/
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Wflow sbm 

outputs 

Actual 

evapotranspiration (ET) 

 No 

Surface Soil Moisture 

(SSM) 

 No 

River Discharge (Q)  No 

Runoff (R)  No 

 

The datasets for the parameter learning task are currently under review and will be 

documented in the next release. 

Workflow 
 

 
Figure 15 - High level diagram of the DT workflow’s application components. 

Downscaling component (WP 7.4). DownscaleML 

To streamline the downscaling process using downScaleML25 version 1.0.0 (WP 7.4), we've 

developed preprocessing and downscaling methodologies that use reanalysis datasets 

as both predictors and references. The current version introduces grid cell-wise statistical 

downscaling, employing ERA5 predictor fields and incorporating CERRA and CERRA-LAND 

reanalysis data as targets for 2m temperature and precipitation, respectively. This 

approach utilises the LGBM regressor and grid search capabilities for fine-tuning 

hyperparameters. Furthermore, we are currently refining and assessing seasonal 

forecast downscaling for upcoming releases. Our upcoming efforts are focused on 

seamlessly integrating with itwinAI, STAC, CWL, and OpenEO. 

 

 
25 https://github.com/interTwin-eu/downScaleML  

https://github.com/interTwin-eu/downScaleML
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Figure 16 - High level diagram that shows how DT’s application components are run. 

Model builder and model runner components (WP 7.6).  

The model builder (HydroMT) and model runner (wflow_sbm) are available as an OGC 

Application Package in the HyDroForm26 repository. The integration of HydroMT with 

STAC has been developed in a forked development branch27 waiting to be tested and 

integrated officially in the version 1.0.0 of HydroMT. The implementation currently allows 

the generation of wflow_sbm model with different spatial resolutions and precipitation 

inputs available on the STAC catalog. 

The plans for the future release are: 1) work with Deltares for the official implementation 

of STAC support in HydroMT 1.0.0, 2) work on the OpenEO integration (WP 6.1, 6.3), 

consisting in the definition of OpenEO processes that call the OGC Application Package.  

Surrogate training component.  

The deep learning surrogate has been successfully developed and it is available in the 

project repository Hython28, where demo notebooks are available for the interested 

users. The integration with ItwinAI (WP 6.5) framework is completed for the preprocessing 

and training steps. 

The plans for the future release are, 1) to additionally emulate discharge on top of SSM 

and ET, 2) to work on the integration with CWL, STAC and OpenEO, 3) to work on the 

integration of the prediction step in ItwinAI. 

Parameter learning component.  

The requirements for the production of surface soil moisture (SSM) data to perform the 

parameter learning task have been shared with TU Wien. TU Wien then produced a first 

version of SSM over the Alpine region (WP 7.5).  

 
26 https://github.com/interTwin-eu/HyDroForM  
27 https://github.com/iacopoff/hydromt  
28 https://github.com/interTwin-eu/hython  

https://github.com/interTwin-eu/HyDroForM
https://github.com/iacopoff/hydromt
https://github.com/interTwin-eu/hython
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This initial version uses a radiative transfer model to derive soil moisture data from 500 

m microwave backscatter and Leaf Area Index (LAI). For enhancing the accuracy of the 

soil moisture retrievals high-resolution information has been included from Sentinel-1 VV 

backscatter data (20 m). A novel soil moisture sensitivity dataset [R8] was used for a static 

spatial filtering technique at the 20 m scale. Also, extreme backscatter values (higher than 

-5dB or lower than -19dB) have been filtered out, assuming that they are unlikely to 

contain reliable soil moisture information. Both strategies amplify the soil moisture signal 

of the 500 m backscatter information, to which the 20m sub-pixels have been aggregated 

subsequently. Only those 500m target pixel were calculated that consisted of more than 

1% valid 20m pixels after the described filter processes. 

Based on this 500 m backscatter datacube and LAI data, the radiative transfer model 

parameters have been calibrated using 4 years of data from 2016 up to 2020 with ERA5-

Land swvl1 as reference data. During calibration, the frozen soil conditions indicated by 

ERA5-Land soil temperature layer 1 (stl1) and snow depth (sd) have been masked out to 

make sure only valid data is used during model inversion. 

After calibration, the parameters were used to estimate SSM at a 500 m resolution, 

without further masking to avoid losing valid data, especially over alpine valleys. This 

decision requires users to manually mask out data from frozen soils, and over steep and 

complex terrain. Despite its limitations in handling complex terrains, the initial version 

shows promising results, particularly in alpine valleys. By incorporating volume scattering 

using LAI and masking soil moisture insensitive pixels at high 20 m resolution, we 

anticipate significant improvements in SSM retrievals compared to earlier models. 

The plans for the future release are: 1) Select input datasets, 2) design and develop the 

parameter learning workflow 

Seasonal forecast component.  

The component is planned to be developed in future releases. 

3.5.2  Scope and limitations 

The goal is to provide a user interface, consisting in Jupyter Notebooks or others, that 

allows: 

1. Set up the wflow_sbm model, selecting the model resolution, choosing different 

data inputs, time period and spatial domain. 

2. Training the surrogate model. 

3. Perform the parameter learning. 

4. Run seasonal forecasts of hydrological variables. 

The DT presents three main limitations:  

● The DT predicts hydrological variables based on the type and level of detail of 

hydrological processes represented in the wflow_sbm model. This fact limits the 

variety of hydrological processes that could instead be better represented by 

running an ensemble of hydrological models.  
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● The Alpine region, with its complex terrain, vegetation cover and diverse climatic 

conditions, poses a great challenge for the retrieval of surface soil moisture and 

actual evapotranspiration from satellites. It is no surprise then that there are 

currently no products that satisfactorily cover the region. The products generated 

for the DT should therefore be considered as prototypes that require further 

research, developments and validation. The parameter learning task’s loss 

function is based on these satellite products and therefore depends on their 

quality. 

● The DT does not represent human processes, such as irrigation and hydropower 

generation, that affects the hydrologic cycle. 

3.6  Flood climate impact in coastal and inland 

regions 

3.6.1 DTs Application Integrations 

Model requirements 

The flood climate impact DT consists of two physics-based models, two impact models, 

and a python package facilitating processing the models: 

1. Super-Fast INundation of CoastS (SFINCS): a reduced-complexity model designed 

for super-fast modelling of compound flooding in a dynamic way. 

2. Wflow: a framework for modelling hydrological processes, allowing users to 

account for precipitation, interception, snow accumulation and melt, 

evapotranspiration, soil water, surface water and groundwater recharge in a fully 

distributed environment. 

3. Delft-FIAT: a fast, flexible, Python-based tool to rapidly assess direct economic 

impacts to buildings, utilities, and roads for user-input flood maps. 

4. RA2CE: a Resilience Assessment and Action perspective for Critical infrastructurE 

– model for mapping the exposure, criticality, and vulnerability as well as the 

forthcoming prioritisation of locations to take actions based on cost benefit 

assessment. 

5. HydroMT: an open-source Python package that facilitates the process of building 

and analysing spatial geoscientific models with a focus on water system models. 

It does so by automating the workflow to go from raw data to a complete model 

instance which is ready to run and to analyse model results once the simulation 

has finished. 
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Workflow 

 
Figure 17 - High-level workflow diagram for the flood early warning DT. 

The workflow for the flood climate impacts DT (Figure 17) is implemented in a Jupyter 

Notebook (Figure 18) and is exploiting / will exploit the following components from the 

project: 

● WP7: The workflow depends on functionalities from the hydrological model data 

processing thematic module dependent on HydroMT29, SFINCS30, and Wflow31. 

Upcoming developments include: 

○ Addition of RA2CE32 to the workflow. 

○ Addition of options for green infrastructure for SFINCS. 

○ Examples and documentation for using local data in Delft-FIAT. 

○ Docker container for Delft-FIAT. 

○ Improved quantification of Nature-based Solutions for Wflow. 

● WP6:  

○ CWL workflows have been developed integrating HydroMT, SFINCS and 

Wflow to preprocess and run WFLOW and SFINCS to generate flood maps. 

○ Discussions are ongoing regarding interTwin’s workflow composition 

interface and execution engine; integration of the CWL workflows will occur 

after the conclusion of these discussions. 

○ An exploratory activity is underway to understand how to exploit OSCAR, 

an open-source platform for serverless event-driven data processing of 

containerized applications for this DT. 

 
29 https://github.com/Deltares/hydromt  
30 https://github.com/Deltares/SFINCS  
31 https://github.com/Deltares/Wflow.jl  
32 https://github.com/Deltares/ra2ce  

https://github.com/Deltares/hydromt
https://github.com/Deltares/SFINCS
https://github.com/Deltares/Wflow.jl
https://github.com/Deltares/ra2ce
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● WP5: Data for model building and preprocessing will be accessed from the 

interTwin Data Lake based on RUCIO, preferably by using a data cataloguing tool 

such as STAC. Example datasets have been uploaded for SFINCS and Delft-FIAT 

and tests are ongoing to access data for workflows. 

 

 
Figure 18 - Architecture diagram highlighting integration and interaction between the Jupyter Notebook (the DT interface), 

the CWL workflows and interTwin’s RUCIO-based datalake. 

3.6.2 Data requirements 

The datasets currently used by the DT are listed in Table 6. These include both static 

parameters maps for SFINCS, WFLOW, Delft-FIAT and dynamic meteorological forcing 

data for SFINCS, WFLOW. 

Table 6 - Datasets used by the DT 

Dataset Name Source Parameter Name 

ERA5 https://doi.org/10.24381/cd

s.bd0915c6  

2m Temperature 

Mean Sea Level Pressure 

10m Wind u-component 

https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.bd0915c6
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10m Wind v-component 

Total Precipitation 

Surface net Solar Radiation 

Geopotential 

Copernicus 30m DEM https://spacedata.copernic

us.eu/documents/20123/12

1286/Copernicus+DEM+Ope

n+HTTPS+Access.pdf   

Topography 

GEBCO https://www.gebco.net/  Bathymetry 

GTSM reanalysis https://doi.org/10.24381/cd

s.8c59054f  

Waterlevel 

Surge 

Hydro Atlas https://www.hydrosheds.or

g/hydroatlas   

Basin atlas 

ESA worldcover https://doi.org/10.5281/zen

odo.5571936  

Landclass 

GCN250 Infiltration curves https://doi.org/10.6084/m9.

figshare.7756202.v1  

Average antecedent 

Dry Antecedent 

Wet Antecedent 

MERIT_HYDRO http://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERI

T_Hydro  

flwdir 

strord 

uparea 

MODIS Leaf Area Index https://lpdaac.usgs.gov/pro

ducts/mcd15a3hv006/  

lai 

Soilgrids https://www.isric.org/explo

re/soilgrids/faq-soilgrids-

2017  

soilmaps 

OpenStreetMap https://osmnx.readthedocs.

io/en/stable/   

Building footprints 

GADM https://gadm.org/data.html  level 3 

 

3.6.3 Scope and limitations 

This use case will provide Jupyter Notebooks for expert users in order to 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models to produce baseline flood maps for a user-defined 

region of interest and quantify impacts and damages to buildings, utilities, roads 

and accessibility. 

3. Select flood mitigation and adaptation measures and re-run flood scenarios to test 

their effectiveness at reducing flood-related impacts. 

A demonstration will be provided for Humber, UK. 

https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://www.gebco.net/
https://doi.org/10.24381/cds.8c59054f
https://doi.org/10.24381/cds.8c59054f
https://www.hydrosheds.org/hydroatlas
https://www.hydrosheds.org/hydroatlas
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.6084/m9.figshare.7756202.v1
https://doi.org/10.6084/m9.figshare.7756202.v1
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://www.isric.org/explore/soilgrids/faq-soilgrids-2017
https://www.isric.org/explore/soilgrids/faq-soilgrids-2017
https://www.isric.org/explore/soilgrids/faq-soilgrids-2017
https://osmnx.readthedocs.io/en/stable/
https://osmnx.readthedocs.io/en/stable/
https://gadm.org/data.html
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3.6.4 Preconditions 

The user has access to DT data, models, thematic components and Jupyter Notebooks. 

Users can: 

● specify a region of interest, 

● specify a temporal period to simulate, 

● select local data for the models, if available, 

● select and specify mitigation and adaptation measures. 

The user runs the DT workflows for the specified region and scenario using default global 

data or selected local data if available 

The output of the DT can be visualised in the Jupyter Notebooks and the data can be 

downloaded/saved as NetCDF and GeoPackage data. 
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4 Conclusions 

The first release of the interTwin DTs applications for WP4 concerned with the 

environmental domain was developed during the first 18 months of the project. In the 

current deliverable D4.3, the main focus is on specifying the capabilities of each specific 

DT and describing the current integration with the Infrastructure Components provided 

by WP5 and the Core Components provided by WP6, along with schematic high-level 

workflows. The current scope and limitations of this first release are also identified. 

The next step will be to complete the development and the integration of this first release 

of each DT Application. This deliverable is a first overview of the future prototypes of the 

DT applications for the environmental domain in the DTE architecture.  
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