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Abstract 
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This deliverable describes the final architecture design of the digital twin application 

for climate change and impact decision support tools. For each application it depicts 

their main capabilities and requirements, as well as the different steps included in their 

workflows. It highlights, thus, the needs of the climate change use cases from the 

interTwin Digital Twin Engine (DTE). To this end, links with the different components 

from the DTE are also presented in the document and showcased in workflow 

diagrams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

3 
interTwin – 101058386                          

Document Description 
D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

Work Package number 4 

Document type Deliverable 

Document status UNDER EC REVIEW Version 1.0 

Dissemination Level Public 

Copyright Status 
 

This material by Parties of the interTwin Consortium is licensed 

under a Creative Commons Attribution 4.0 International 

License. 

Lead Partner CMCC 

Document link https://documents.egi.eu/document/3941 

DOI https://zenodo.org/records/15096734 

Author(s) 

● Donatello Elia (CMCC) 

● Davide Donno (CMCC) 

● Emanuele Donno (CMCC) 

● Iacopo Ferrario (EURAC) 

● Massimiliano Fronza (UNITN) 

● Björn Backeberg (DELTARES) 

● Willem Tromp (DELTARES) 

● Christian Pagé (CERFACS) 

Reviewers 
● Mohammad Hussein Alasawedah (WWU) 

● Zdeněk Šustr (CESNET) 

 

Moderated by: 

● Donatello Elia (CMCC) 

● Andrea Cristofori (EGI) 

● Andrea Anzanello (EGI) 

Approved by ● Germán Moltó (UPV) on behalf of TCB 

  

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://documents.egi.eu/document/3941
https://zenodo.org/records/15096734


D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

4 
interTwin – 101058386                          

 

Revision History 
Version Date Description Contributors 

V0.1 05/12/2024 

Template creation 

from the 1st 

architecture design 

Andrea Cristofori (EGI) 

V0.2 03/02/2025 
ToC updated and 

sections assigned 
Donatello Elia (CMCC) 

V0.3 07/03/2025 
All main sections 

updated 
All contributors 

V0.4 24/03/2025 

Internal revision 

provided and 

comments addressed 

Reviewers & contributors 

V0.5 26/03/2025 TCB review Germán Moltó 

V1.0 28/03/2025 Final  

 
 

Terminology / Acronyms 
Term/Acronym Definition 

AI Artificial Intelligence 

CMIP Coupled Model Intercomparison Project Phase 

CNN Convolutional Neural Network 

CSV Comma Separated Values 

CVAE Convolutional Variational Auto-Encoder 

CWL Common Workflow Language 

DNN Deep Neural Network 

DT Digital Twin 

DTE Digital Twin Engine 

ECMWF European Centre for Medium-Range Weather Forecasts 

EMO European Meteorological Observations 

EO Earth Observations 

ERA5 Fifth generation ECMWF reanalysis for the global climate and 

weather 

FESOM2 Finite-Element/volumE Sea ice-Ocean Model 2 

GCNN Graph Convolutional Neural Network 

IBTrACS International Best Track Archive for Climate Stewardship 

LAI Leaf Area Index 

LSTM Long Short-Term Memory 

MODIS Moderate Resolution Imaging Spectroradiometer 

ML Machine Learning 

NetCDF Network Common Data Form 

RCP Representative Concentration Pathways 

SEAS5 Seasonal Ensemble Prediction System 5 

SFINCS Super-Fast INundation of CoastS  



D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

5 
interTwin – 101058386                          

SSH Sea Surface Height 

SSP Shared Socioeconomic Pathways 

TC Tropical Cyclone 

VAE Variational Auto-Encoder 

Wflow hydrological modelling framework 

WP Work Package 

xtclim Generic Climate Extreme characterization and detection AI-

based tool 

Terminology / Acronyms: https://confluence.egi.eu/display/EGIG  

https://confluence.egi.eu/display/EGIG


D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

6 
interTwin – 101058386                          

Table of Contents 

1 Introduction.................................................................................................... 9 

1.1 Aim of this deliverable ...................................................................................... 9 

1.2 Intended audience ............................................................................................. 9 

1.3 Structure of the document ............................................................................... 9 

2 DT Applications User Stories ........................................................................ 10 

2.1 DT Application: Changes in Tropical Storms in response to climate change

 10 

2.2 DT Application: Changes in wildfires in response to climate change ........ 12 

2.3 DT Application: Eddies prediction .................................................................. 15 

2.4 DT Application: Post-flood analysis in coastal regions ................................ 16 

2.5 DT Application: Alpine droughts early warning ........................................... 17 

2.6 DT Application: Extreme rainfall, temperature and wind weather event 

changes in response to climate change .................................................................... 19 

2.7 DT Application: Flood climate impact in coastal and inland regions ........ 21 

3 DT Applications Design ................................................................................. 23 

3.1 DT Application: Changes in Tropical Storms in response to climate change

 23 
3.1.1 ML Model Requirements ................................................................................................... 23 
3.1.2 Workflow Description......................................................................................................... 24 

3.2 DT Application: Changes in wildfires in response to climate change ........ 26 
3.2.1 ML Model Requirements ................................................................................................... 26 
3.2.2 Workflow Description......................................................................................................... 27 

3.3 DT Application: Eddies prediction .................................................................. 28 
3.3.1 ML Model Requirements ................................................................................................... 28 
3.3.2 Workflow Description......................................................................................................... 29 

3.4 DT Application: Post-flood analysis in coastal regions ................................ 30 
3.4.1 Model Requirements .......................................................................................................... 30 
3.4.2 Workflow Description......................................................................................................... 32 

3.5 DT Application: Alpine droughts early warning ........................................... 33 
3.5.1 Model Requirements .......................................................................................................... 33 
3.5.2 Workflow Description......................................................................................................... 34 

3.6 DT Application: Extreme rainfall, temperature, and wind weather event 

changes in response to climate change .................................................................... 36 
3.6.1 ML Model Requirements ................................................................................................... 36 
3.6.2 Workflow Description......................................................................................................... 37 

3.7 DT Application: Flood climate impact in coastal and inland regions ........ 38 
3.7.1 Model Requirements .......................................................................................................... 38 



D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

7 
interTwin – 101058386                          

3.7.2 Workflow Description......................................................................................................... 40 

4 Conclusions ................................................................................................... 43 

5 References .................................................................................................... 44 
 

List of Figures 
Figure 1 – Overview of the workflow for the DT application on TCs .................................. 25 
Figure 2 – Overview of the workflow for the DT application on wildfires prediction ....... 28 
Figure 3 – Overview of the workflow for the DT application on eddies detection ............ 30 
Figure 4 - Workflow components for the post-flood analysis in coastal regions .............. 33 

Figure 5 – Pre-training, Calibration and Inference ............................................................... 36 
Figure 6 – Schematic overview of the main components of the DT Application ............... 38 
Figure 7 – Overview of the workflow components for the DT application ........................ 42 

List of Tables 
Table 1 –  User stories for DT Application: Changes in Tropical Storms in response to 

climate change ........................................................................................................................ 11 
Table 2 –  User stories for DT Application: Changes in wildfires in response to climate 

change ..................................................................................................................................... 14 
Table 3 –  User stories for DT Application: Eddies prediction ............................................. 15 
Table 4 –  User stories for DT Application: Post-flood analysis in coastal regions ............ 17 

Table 5 –  User stories for DT Application: Alpine droughts early warning ....................... 18 
Table 6 –  User stories for DT Application: Extreme rainfall, temperature and wind 

weather event changes in response to climate change ...................................................... 20 
Table 7 –  User stories for DT Application: Flood climate impact in coastal and inland 

regions ..................................................................................................................................... 22 
Table 8 – List of data variables for the TC DT Application ................................................... 23 
Table 9 – SeasFire Cube and corresponding CMIP6 data variables identified to carry out 

the wildfires prediction case study ....................................................................................... 26 
Table 10 – Details of dynamic data used in this study and their sources .......................... 34 
Table 11 –  Details of seasonal forecast data used in the study and their sources .......... 34 
Table 12 – Preliminary list of data variables for the DT Application .................................. 37 

 

 

 

  



D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

8 
interTwin – 101058386                          

Executive summary 
This report presents the final architecture design of the different Digital Twin applications 

for the environmental domain (tasks 4.5, 4.6 and 4.7 in interTwin). Its main objective is to 

describe the motivation behind the development of specific DT applications, as well as 

the targeted user and the key capabilities envisioned. In this respect, it shows an updated 

view of the architecture design, main requirements and workflows with respect to what 

was presented in D4.1 “First Architecture design of the DTs capabilities for climate change 

and impact decision support tools”. 

The DT applications address a variety of aspects from the point of view of climate change 

analysis and impact decisions systems in various geographical regions and for different 

events including, among the others, tropical cyclones, wildfires, floods, drought and other 

extreme events. For each application a set of user stories considering various users, such 

as scientists, developers, decision makers or policy makers are presented, together with 

the key requirements. Moreover, each DT application dives into the workflow needed to 

implement the user stories, highlighting the main steps and the interactions with the 

interTwin DTE component. 

In order to simplify the usage of the DT applications, these are designed to provide the 

end users with either a graphical tool or a Jupyter Notebook-based interface to visualize 

the results from the DTs. Overall, the applications described in the document are 

designed to focus on specific climate change impacts and provide valuable insights for 

assessing climate risk, identifying early warning signals, and implementing mitigation 

measures.  
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1 Introduction 

1.1 Aim of this deliverable 

The goal of deliverable 4.5 is to present the final architecture design for the 

environmental domain Digital Twin Applications (T4.5, T4.6, T4.7) and their key 

requirements for the interTwin DTE. It provides an updated overview of the DT 

applications features and design concerning what was initially presented in D4.1 [R7]. In 

particular, as the developments on the DT applications have advanced in the meantime, 

the requirements and the workflow description have been refined and extended in 

several cases. To this end, the workflow steps and diagrams have been specialized to 

include links to the actual interTwin DTE components. Moreover, in some cases the user 

stories have also been further extended to better describe additional case studies not yet 

clearly identified in the first design. It is also worth mentioning that an additional DT 

application, the eddies one, has been introduced in the document.  

1.2 Intended audience 

Deliverable 4.5 is useful for both developers and end users as described below: 

For developers: it provides them with insight into different components, data integration 

strategies, and computational models required to build an effective digital twin. It would 

allow them to incorporate new features, leverage components and workflows, improve 

scalability, support evolving problems over time, and ensure interoperability. 

For end users: it facilitates data sharing, integration, and analysis among various 

stakeholders and scientists. By establishing a common framework, researchers and 

stakeholders will be able to exchange information, validate models, and collaboratively 

address climate change impacts and suggest mitigation measures. 

1.3 Structure of the document 

The structure of this deliverable is as follows. Section 2 describes the user stories and 

requirements for each digital twin application: a table is provided to describe the user 

goals and their requirements following the MoSCow (M - Must have, S - Should have, C - 

Could have, W - Won’t have) method1. Section 3 presents the architecture design and 

illustrates the workflow followed by each DT application. It depicts sequential or parallel 

steps involved in each DTs operations, highlighting the input, processing, and expected 

outcomes. Links with components of the DTE are also highlighted. Finally, section 4 

provides the conclusions for the document.  

 
1 https://en.wikipedia.org/wiki/MoSCoW_method    

https://en.wikipedia.org/wiki/MoSCoW_method
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2 DT Applications User Stories 

2.1 DT Application: Changes in Tropical Storms in 

response to climate change 

Geographical region of interest: North Pacific 

Summary: 

Tropical Cyclones (TCs) are among the most impactful weather phenomena posing 

significant risks to ecosystems and human life. Every year, an average of 90 TCs occur 

over tropical waters [R11] and global warming due to climate changes is making them 

larger, more intense and destructive [R12, R13, R14].  

The accurate detection and tracking of tropical cyclones (TCs) is challenging and a key 

research area in climate science. With the recent advancements in ML several research 

efforts have been started towards the development of data-driven TCs detection. Data-

driven models can learn non-linear correlations between the cyclogenesis weather 

variables and the occurrence of a TC and can be used to address the TC detection in an 

efficient and cost-effective manner. 

This DT will focus on the detection and tracking of tropical cyclones that consists of 

localizing, given some input drivers, the cyclone centre (or “eye”) in terms of latitude and 

longitude coordinates using a ML model. A deterministic tracking scheme is subsequently 

used for joining the different TCs centers in tracks. In particular, a “hybrid” approach is 

proposed [R9] by linking the data-driven model for detection with the deterministic 

tracker. 

ML models, such as CNNs and GCNNs, are used to learn the mapping between climatic 

variables and the positions that storms follow during their lifetime in historical records. 

Trained models will be then applied to predict the occurrence of storms using future 

projection data in order to give an indication across both space and time about how 

changes in climate affect the frequency and duration of this phenomena. 

The requirements have been refined in this updated version of the design document to 

better describe user interactions, targeting the configurability of the digital twin (DT) 

application, as reported in the following. To this end, the previous set of requirements 

reported in Table 1 in D4.1 [R7] has been extended with a new requirement (4.5-1), while 

the two requirements previously highlighted have been merged together in (4.5-2) as 

these were quite similar. 

Use case 

The aim is to support scientists and researchers in: 

1. configuring, training and testing pre-defined ML models (through scripts) for the 

detection of tropical cyclones using, for example, different driver variables. 

2. studying and analyzing changes in tropical cyclones due to climate change through 

interactive Jupyter notebooks. 
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Preconditions 

Users have access to DT data, ML models, DTE software infrastructure with core and 

thematic components (e.g., Docker images), scripts for training and notebooks for 

test/inference. 

To train and test a ML model for TC detection: 

1. Users can select from a configuration file the ML model hyperparameters (e.g., 

batch size, epochs, activation functions, loss, optimizer, scheduler, etc.), the driver 

variables, and the type of model (e.g., CNN, GCNN, Transformers); 

2. The user runs the training of the ML model for the DT application with the selected 

hyperparameters; 

3. The resulting trained model can be stored in a repository of models and tested 

through a notebook. The new model could then be used within the ensemble in 

the analysis case. 

To run the analysis on TCs with the trained ML models: 

1. Users can specify from the notebook: 

a. future projection, past and reanalysis climate data from a given list (e.g., 

CMIP6 or ERA5); 

b. temporal extents; 

c. ML models to be used in the ensemble from a set of pre-trained models; 

2. The user runs the DT workflows on the selected input data and ML models; 

3. The output of the DT (lists of detections, tracks and related plots and maps) can 

be downloaded as CSV file and images (e.g., png, jpeg). Maps and plots can be 

visualized in the notebook. Some examples include: Probability of Detection and 

False Alarm Rate (only on historical data), frequency/number of TC occurrences on 

a seasonal/annual basis, track duration, spatial distribution of TC 

tracks/detections. 

Table 1 –  User stories for DT Application: Changes in Tropical Storms in response to climate change 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.5-1 Scientist/ 

Researcher 

with good 

technical 

expertise 

Specify the 

hyperparamet

ers and type 

of ML model 

to be trained   

Can run 

training and 

validation of 

the data-

driven model 

for TC 

detection  

The resulting 

trained model 

is stored on 

the ML 

models 

repository 

Must have: 

- Access to ML training 

environment and 

scripts/software 

- Access to necessary 

data 

- Access to the ML 

model repository 

Should have: 
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- Functionalities to log 

and track the training 

process 

4.5-2 Scientist/ 

policy maker 

with some or 

little technical 

expertise 

Specify a 

period of 

interest, the 

climate data 

to be used for 

TC analysis 

and 

(optionally)  

the pre-

trained ML 

models to be 

used 

The DT can 

perform TC 

detection and 

tracking on 

the input 

climate data 

The resulting 

data with TC 

detections, 

tracks and 

plots are 

generated 

Must have: 

- Access to Jupyter 

Notebook as a service 

- Access to necessary 

data 

- Access to the ML 

models 

Could have: 

- Possibility to adjust the 

visualisation 

interactively 

- Possibility to download 

the results 

Won’t have: 

- An operational system, 

this is a demonstrator 

only 

 

2.2 DT Application: Changes in wildfires in response 

to climate change 

Geographical region of interest: Global 

Summary 

Several studies show that the effects related to climate change will affect both the 

frequency and severity of wildfires [R16, R18]. Modelling fire regimes represents, thus, 

an important tool for assessing future potential impacts on ecosystem functioning and 

society. Machine learning algorithms have emerged recently as effective alternatives for 

the prediction of wildfire occurrences compared to the traditional approaches (e.g., 

dynamic global vegetation models). Indeed, data driven models can learn complex 

interactions providing accurate predictions and unraveling potential relationships 

between variables. 

The DT application related to wildfires focuses on global-scale wildfire projections, 

predicting the extent of burned areas using ML-based techniques. The ML model is 

trained on historical burned areas and validated against the actual burned area at the 

given time.    

ML models, such as the UNet++ [R10], are trained to learn the non-linear relationship 

between different climatic, weather, and vegetation variables provided as input and the 
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likelihood of wildfires in the geographical domain of interest. Users can configure the 

model setup, for example, to assess the fitness of the model in predicting burned area 

with respect to different driver variables. The trained models are then applied to 

standardized climate projections to identify regions most vulnerable to wildfires due to 

escalating climate change under different scenarios such as the Shared Socio-economic 

Pathways (SSPs) [R8]. 

Also in this case, with respect to the initial version of the design, the requirements have 

been refined to also support a higher extensibility of the DT application. Thus, a new 

requirement 4.5-3 has been formalized in Table 2, while the two requirements previously 

highlighted in D4.3 have been merged together in 4.5-4 since these shared several 

commonalities. 

Use case 

The aim is to provide scientists and researchers with:  

1. tools (e.g., scripts, notebooks) to configure, train and test pre-defined ML models 

concerning the prediction of burned area maps on a global scale, for example with 

a subset of the driver variables. 

2. configurable Jupyter notebooks to analyse the results concerning burned area 

projection using climate data. 

Preconditions 

Users have access to DT data, ML models, DTE software infrastructure with core and 

thematic components (e.g., Docker images), scripts/configuration files for training and 

notebooks for testing/inference. 

To train and test a ML model for burned areas prediction: 

1. Users can select the ML model hyperparameters (e.g., batch size, epochs, loss 

functions) and the driver variables; 

2. The user runs the training of the ML model for the DT application with the selected 

hyperparameters; 

3. The resulting model can be stored in a repository of models and tested through a 

notebook with different metrics. 

To run the analysis on wildfires with the ML models: 

1. Users can specify from the notebook: 

a. future climate scenarios from a given list (e.g., CMIP6 model/scenarios); 

b. temporal and geographical extent (global/regional); 

c. pre-trained ML model (or use the default one); 

2. The user runs the DT workflows on the selected input data and trained model; 

3. The output of the DT can be downloaded/saved and visualized in the notebook. 

Maps and charts can be customized through widgets. Some examples include: 

seasonal/annual burned area maps; trends/interannual variability of burned 

areas; burned areas aggregated by region. 
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Table 2 –  User stories for DT Application: Changes in wildfires in response to climate change 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.5-3 Scientist/ 

Researcher 

with good 

technical 

expertise 

Specify the 

hyperparamet

ers and 

drivers to 

configure the 

ML model to 

be trained   

I can run 

training and 

validation of 

the ML model 

for burned 

areas 

prediction  

The resulting 

trained model 

is stored on 

the ML 

models 

repository 

Must have: 

- Access to ML 

training 

environment and 

scripts/software 

- Access to 

necessary data 

- Access to the ML 

model repository 

Should have: 

- Functionalities to 

log and track the 

training process 

Could have: 

- Functionalities to 

evaluate the ML 

model quality 

4.5-4 Scientist/ 

policy maker 

with 

some/little 

technical 

expertise 

Specify a 

period of 

interest, the 

climate 

projections 

for the 

burned area 

prediction 

maps and 

(optionally) 

the pre-

trained ML 

model to be 

used  

The ML model 

can predict 

the burned 

areas 

The resulting 

maps/plots of 

the burned 

areas  are 

produced 

Must have: 

- Access to Jupyter 

Notebook as a 

service 

- Access to 

necessary data 

- Access to the ML 

model repository 

Could have: 

- Options to 

interactively adjust 

the visualisation  

- Possibility to 

download the 

results 

Won’t have: 

- An operational 

system, this is a 

demonstrator only 
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2.3 DT Application: Eddies prediction 

Geographical region of interest: South Atlantic Ocean, Gulf Stream 

Summary 

This DT will focus on the detection of oceanic mesoscale eddies and their classification 

between cyclonic and anticyclonic, respective of the rotation verse. This consists in 

identifying, given the SSH information on an interpolated FESOM2 grid, the segmentation 

mask that contains the pixel information about presence or absence of eddies, and their 

type. This kind of approach involving trained Convolutional Neural Networks  allows to 

greatly improve the detection speed of oceanic eddies with respect to the classical 

mathematical models that have been used so far.  

Use case 

The goal is to provide scripts and notebooks to the scientists who will conduct analysis of 

oceanic eddies data. 

Preconditions 

Users have access to DT data, models, thematic components and scripts/notebooks. 

To train and test a ML model for eddies detection: 

1. Users can select: 

a. temporal extents; 

b. ML models and hyperparameters; 

2. The user runs the training of the ML model for the DT application with the selected 

hyperparameters; 

3. The resulting model can be stored on a repository of models and tested through 

a notebook. 

Table 3 –  User stories for DT Application: Eddies prediction 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.5-5 Scientist with 

good 

technical 

expertise 

Specify a 

period of 

interest, ML 

model to use 

and 

hyperparamet

ers to be used 

for eddies 

analysis 

I can train a 

ML model 

and/or use a 

pretrained 

one to 

perform 

eddies 

detection on 

the input 

FESOM2 

climate data 

The ML model 

is trained and 

the 

segmentation 

masks are 

generated 

Must have: 

- Access to Jupyter 

Notebook as a service 

- Access to necessary 

global data 

- Access to the ML 

models 
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2.4 DT Application: Post-flood analysis in coastal 

regions 

Geographical region of interest: Baltic Coast, Germany 

Summary 

The DT for post-flood analysis in coastal regions will focus on the generation of flood risk 

maps that trigger early warning alerts when a flood is predicted. The system will be 

demonstrated for historical flood events of the Baltic Coast, Northern Germany. 

Output flood risk maps are produced from SFINCS, a reduced-complexity model for 

super-fast dynamic modelling of compound flooding. SFINCS will be forced by example 

(historical) weather forecasts. Additionally, the DT will combine the SFINCS flood maps 

with Sentinel-1 based flood maps generated by the openEO implementation of the Global 

Flood Monitor. The mentioned software components are described in D7.1 [R6]. 

Use case 

The goal is to provide Jupyter Notebooks for scientists and decision-makers to: 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models and Earth Observation processing pipelines to produce 

deterministic and probabilistic flood maps for a user-defined region of interest 

and validate the resultant output data against observations. 

3. Prepare the data for easy ingestion into an early warning system. 

Preconditions 

Users have access to DT data, models, thematic components and Jupyter Notebooks. 

1. Users can: 

a. specify a region of interest; 

b. specify a temporal period to simulate; 

c. select local data for the models if available; 

2. User runs the DT workflows for the specified region and period using default 

global data or selected local data if available; 

3. The output of the DT can be visualised in the Jupyter Notebooks and the data can 

be downloaded/saved as NetCDF data.  
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Table 4 –  User stories for DT Application: Post-flood analysis in coastal regions 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.6-1 Decision 

maker with 

little technical 

expertise 

Specify a 

geographic 

region and 

temporal 

period of 

interest 

I can set up 

the 

automated 

processing of 

data for flood 

inundation 

models and 

hydrological 

models and 

access 

relevant EO 

data for flood 

monitoring 

and 

forecasting 

When the 

system 

simulates a 

historic flood 

event and 

data is 

automatically 

prepared, so 

an automated 

early warning 

system can 

access it in a 

standardised 

form 

 

Must have: 

- Access to Jupyter 

Notebook as a service 

- Access to necessary 

global data 

Should have: 

- Example visualisations 

of output to support 

validation 

- trigger sending alert 

based on flood extent 

Could have: 

– option to upload local 

data 

–  interactive Solara2-

based front-end  

Won’t have: 

–  Operational early 

warning system. This is 

a demonstrator only. 

4.6-2 Expert user 

with good 

technical 

expertise but 

little domain 

knowledge 

Process and 

combine 

modelled and 

EO-based 

flood-related 

data for 

specific 

regions of 

interest  

I can get 

tailored 

information 

on flood 

monitoring 

and 

forecasting 

I can provide 

decision 

makers with a 

thorough 

overview of 

the expected 

flood event 

 

2.5 DT Application: Alpine droughts early warning 

Geographical region of interest: Alps 

Summary  

This DT aims to develop a prototype of a seasonal hydrological forecasting system for the 

Alps at the river basin scale. A deep learning model (surrogate model) is trained to 

replicate the Wflow_sbm process-based hydrological model. The static input parameters 

of the surrogate model will be calibrated by minimising a loss function between model 

output and targets (i.e., satellite surface soil moisture) over the area of interest. Once the 

model is trained, seasonal forecasts from ECMWF will be used to produce hydrological 

forecasts and identify regions affected by low water availability. To increase the spatial 

resolution of hydrological forecasts, a machine learning algorithm to downscale seasonal 

forecasts is also developed. 

 
2 https://solara.dev/docs/  

https://solara.dev/docs/
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Use case 

The prototype of a drought early warning system is developed and integrated into 

openEO as a user interface for researchers and decision makers. Through openEO the 

user should be able to: 

1) Run a trained model for a specific area of interest and temporal extent. The 

detailed information about openEO is already described and is available in 

Deliverable D6.1[R3]. 

2) Validate results using historical observations.  

3) Run the model driven by seasonal forecasts to identify areas affected by low water 

availability. 

Preconditions 

1) Users have to access the DT using openEO, available global data, or upload their 

regional data. 

2) The module for downscaling climate data and the trained surrogate model should 

be implemented and available in openEO.  

3) Modules for coregistering and formatting all the required input data have to be 

available in openEO. 

4) The output from DT can be directly examined using openEO and can also be 

downloaded for later use. 

Table 5 –  User stories for DT Application: Alpine droughts early warning 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.6-3 Researchers  

 

 

 

 

 

 

Use openEO 

to build a 

process graph 

to load 

different 

inputs and 

train a 

surrogate 

model that 

emulates a 

hydrologicAl 

model 

 

 

 

I can study 

the drought 

generating 

processes 

I can 

investigate 

the 

uncertainty of 

the model 

output 

I can perform 

sensitivity of 

model output 

to different 

inputs 

I can leverage 

cloud-based 

processing 

capabilities 

When 

simulated 

results are in  

good 

agreement 

with historical 

observations 

and the 

trained model 

is able to 

reproduce 

observations 

Must have: 

- Access to openEO 

Authentication and 

Access Control 

- Access to modules to 

ingest and pre-process 

EO and climate data 

- Access to the trained 

surrogate model 

- Graphical visualization 

of the output 

Should have: 

- Estimation of model 

uncertainty 

Could have: 
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4.6-4 Local/ 

Regional 

public 

authority in 

the field of 

agriculture, 

hydrology and 

river basin 

management 

Know the 

water 

available on 

the use case’s 

basins for the 

next 

7 months 

I can have an 

overview of 

the regions 

with low(er) 

water 

availability 

It is possible 

to visualise 

maps of the 

output 

The accuracy 

of the 

prediction is 

high 

- Access to hydrological 

data for validation. 

Won't have: 

- Operational drought 

early warning system 

 

 

2.6 DT Application: Extreme rainfall, temperature and 

wind weather event changes in response to 

climate change 

Geographical region of interest: Europe, but could be applied anywhere in the world 

Summary 

The DT for impacts of extreme weather event changes in response to climate change 

focus on providing to the users information on the changes of the characteristic of those 

events and impacts compared to a reference period and a specific region. The focus is on 

temperature, but can be applied as well to other climate variables such as precipitation 

and wind. The change of characteristics is assessed, such as intensity (if relevant), 

duration, and frequency of occurrence. This DT uses an innovative Artificial Intelligence 

(AI) method based on a Convolutional Variational Auto-Encoder (CVAE) method to detect 

anomalies. 

Use Case 

The goal is to provide Jupyter Notebooks for scientists and advanced users to: 

1. Assess the changes of characteristics of specific weather extreme events and 

assess their impacts. 

2. Assess over a selected geographical region, a specific climate reference period, a 

specific future time period with one or several greenhouse gas scenarios. 

Preconditions 

1. Set up the necessary CVAE model for a user-defined extreme weather event, 

geographical region of interest, climate reference time period (historical 20-30 

years), season, future climate scenarios (RCPs) and climate time period of interest. 

2. Train the CVAE model according to end users’ choices of step 1, on separate 

climate models from the CMIP6 archive, using several climate model ensemble 

members. 

3. Run the CVAE model on the end users’ choices of extreme weather events, 

geographical regions, future climate scenarios (RCPs), and climate time periods of 
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interest, for several climate models using specific training information according 

to each climate model and specific reference period. 

4. Generate end users’ products related to the changes in characteristics of those 

events: intensity (if relevant), duration, and frequency of occurrence. Those 

products will be specific plots and maps. Output data is also available to end users 

for further data processing. Multiple climate models and RCPs can be used to 

provide uncertainties evaluation with a range of characteristic changes. 

Table 6 –  User stories for DT Application: Extreme rainfall, temperature and wind weather event changes in 

response to climate change 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.7-1 Policy maker 

with little 

technical 

expertise 

Specify an 

extreme 

weather 

event, a 

geographical 

region, a 

reference 

historical 

climate time 

period, a 

future time 

period of 

interest, and 

the CMIP6 

SSP scenarios 

to be used for 

extreme 

event analysis 

The CVAE 

model will be 

automatically 

trained and 

applied on 

the input 

climate data 

The resulting 

datasets with 

extreme 

events change 

of 

characteristics 

will be 

calculated 

and plots are 

generated 

Must have: 

–  Access to Jupyter 

Notebook as a service 

–  Access to necessary 

global data 

–  Access to the CVAE 

model 

Could have: 

–  Possibility to adjust 

the visualisation 

interactively 

–  Possibility to 

download the results 

4.7-2 Scientist with 

some 

technical 

expertise 

Specify an 

extreme 

weather 

event, a 

geographical 

region, a 

reference 

historical 

climate time 

period, a 

future time 

period of 

interest, and 

the CMIP6 

RCP scenarios 

as well as 

CMIP6 specific 

Can run 

complex 

analysis with 

specific CMIP6 

climate 

models to 

better assess 

uncertainties 

The resulting 

datasets with 

extreme 

events 

characteristics 

and plots are 

generated 

Must have: 

–  Access to Jupyter 

Notebook as a service 

–  Access to necessary 

global data 

–  Access to the VAE 

model 

Could have: 

–  Interfaces to adapt 

the visualisation 

–  Possibility to 

download the results 
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climate 

models to be 

used for 

extreme 

event analysis 

 

2.7 DT Application: Flood climate impact in coastal 

and inland regions 

Geographical region of interest: Humber, United Kingdom 

Summary 

The DT for flood climate impact in coastal and inland regions will focus on the generation 

of flood maps and quantifying impacts on buildings, utilities, roads and accessibility 

under future climate conditions. Additionally, end-users can select flood mitigation and 

adaptation measures and test their effectiveness. The system will be demonstrated for 

flood scenarios under climate change for Humber, United Kingdom. 

Flood maps under future climate scenarios are produced from SFINCS, a reduced-

complexity model for super-fast dynamic modelling of compound flooding, which 

receives river discharge data from Wflow, a hydrological model. The flood maps are then 

used by Delft-FIAT, a flood impact assessment tool, and RA2CE, a Resilience Assessment 

and Adaptation for Critical infrastructurE – model, to quantify impacts and damages to 

buildings, utilities, roads and accessibility. 

Additionally, end-users will be able to select flood mitigation and adaptation measures 

and re-run flood scenarios to test their effectiveness in reducing flood-related impacts. 

Use case 

The goal is to provide Jupyter Notebooks for scientists and decision-makers to: 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models to produce baseline flood maps for a user-defined 

region of interest and quantify impacts and damages to buildings, utilities, roads 

and accessibility. 

3. Select flood mitigation and adaptation measures and re-run flood scenarios to test 

their effectiveness at reducing flood-related impacts. 

Preconditions 

The user has access to DT data, models, thematic components and Jupyter Notebooks. 

1. Users can: 

a. specify a region of interest; 

b. specify a temporal period to simulate; 

c. select local data for the models, if available; 
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d. select and specify mitigation and adaptation measures;  

2. The user runs the DT workflows for the specified region and scenario using default 

global data or selected local data if available; 

3. The output of the DT can be visualised in the Jupyter Notebooks and the data can 

be downloaded/saved as NetCDF and GeoPackage data. 

Table 7 –  User stories for DT Application: Flood climate impact in coastal and inland regions 

Ref N  As a 

Stakeholder 

I want to So that And it’s 

considered 

done when 

MoSCoW 

4.7-3 Decision 

maker or 

planner with 

little technical 

expertise 

Specify a 

geographic 

region, a 

climate 

change 

scenario and 

select 

mitigation / 

adaptation 

measures of 

interest. 

I can set up 

the flood 

inundation 

and 

hydrological 

models and 

run flood 

scenarios 

under future 

climate 

conditions 

and test the 

impact of the 

selected 

mitigation / 

adaptation 

measures 

When the 

system 

simulates a 

flood scenario 

and quantifies 

the impacts 

and damages 

to buildings, 

utilities, roads 

and 

accessibility. 

Must have: 

- Access to Jupyter 

Notebook as a service 

- Access to necessary 

climate projection data 

Should have: 

- Flood and related 

impact visualisations 

and data to support 

decision-making 

- Options to select 

future climate change 

scenarios 

- Options to select 

mitigation and 

adaptation measures 

Could have: 

- Option to upload local 

data 

- Interactive Solara-

based front-end  

Won’t have: 

- An extensive list of 

adaptation and 

mitigation measures 

- An operational system, 

this is a demonstrator 

only 

4.7-4 Expert user 

with good 

technical 

expertise but 

little domain 

knowledge 

Process and 

combine 

different 

models and 

tools needed 

for flood 

related 

adaptation 

planning for 

specific 

regions of 

interest 

I can get 

tailored 

information 

on flood 

scenarios 

under future 

climate 

conditions 

and make 

decisions on 

what 

adaptation 

and 

mitigation 

measures to 

invest in 

I can provide 

decision 

makers with a 

thorough 

overview of 

the expected 

flood 

scenarios and 

their impact 

under future 

climate 

conditions 
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3 DT Applications Design 

3.1 DT Application: Changes in Tropical Storms in 

response to climate change 

3.1.1 ML Model Requirements 

The application input consists of a set of 2-dimensional data and each variable can be 

easily considered as a 2D image, where each pixel corresponds to a cell of the lat-lon grid. 

Based on this consideration the ML architecture identified for the DT is a Convolutional 

Neural Network (CNN) or a Graph Convolutional Graph Neural Network (GCNN). Besides 

traditional convolutional networks, Transformer-based models are considered too. In the 

following, Deep Neural Network (DNN) is used to refer to either approach.  

The input climatic drivers are linked with the records provided by IBTrACS. In order to 

feed the DNN with the images, the input variables are stacked together and tiled into non-

overlapping patches of fixed size, generating an input of dimension 𝐻 ×  𝑊 ×  𝐶 (where 

H and W are height and width, respectively, and C is the number of input drivers). Each 

patch containing a cyclone is associated with the corresponding (row,col) local 

coordinates, while each patch without a cyclone is associated with a negative value, e.g., 

(-1,-1). In the case of Graph-based networks, an additional step is performed to convert 

the patches in a graph structure. This partitioning is used to improve the model efficiency 

and, more importantly, to ensure that each patch is more likely to contain at most a single 

TC. In terms of software infrastructure, solutions like Lightning and PyTorch are exploited. 

The list of identified data variables is available in Table 8. Note that different subsets of 

variables can be used for training. 

Table 8 – List of data variables for the TC DT Application 

Variable name Temporal 

Resolution 

Spatial 

Resolution 

Unit ERA5 

Name 

CMIP6 Name 

10 m wind gust since 

previous post-

processing 

6-hourly 0.25°✕0.25° m/s fg10 N.A. 

10 m instantaneous 

wind gust 

6-hourly 0.25°✕0.25° m/s i10fg wsgmax10m 

temperature at 500 

mb  

6-hourly 0.25°✕0.25° K t_500 ta 

temperature at 300 

mb 

6-hourly 0.25°✕0.25° K t_300 ta 

relative vorticity at 

850 mb 

6-hourly 0.25°✕0.25° 1/s vo_850 rv850 (can be 

derived from 

eastward “ua” 

and westward 

“va” wind 
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components) 

mean sea level 

pressure 

6-hourly 0.25°✕0.25° Pa msl psl 

 

3.1.2 Workflow Description 

This section describes the logical flow of operations the DT on TCs needs to perform to 

carry out user requests. The links WP5 (infrastructure), WP6 (core) and WP7 (thematic) 

modules are highlighted also in the text. With respect to the workflow presented in D4.1 

[R7], the description has been specialized for the two different use cases presented in 

Section 2.1.  

In terms in computing workflow, the DT on TCs includes the following steps (refer to 

Section to 2.1 for the use case description): 

To train and test a ML model for TC detection: 

1. Users can define the training hyperparameters, the type of ML model and the 

subset of variables used as drivers from the training dataset (ERA5 single and 

pressure levels). To this end solutions from WP5 could be used to manage access 

to the training and validation data; 

2. Data is partitioned in patches and normalised based on the training set. In addition 

data augmentation procedures of ERA5 data are also required to increase the 

number of training examples. Steps for generating the graph structure could also 

be applied. The capabilities from the ML TC detection thematic module are used 

(WP7); 

3. Training of the ML model can be offloaded on HPC resources (WP5) and 

distributed on multiple GPUs and nodes. During training stage, metrics could be 

logged on MLFlow and provenance could be tracked by using components from 

WP6 (e.g., yProv4ML, itwinai); 

4. At the end of the training stage, the trained ML model together with other useful 

artifacts can be stored on MLFlow (WP6).  

For the analysis test case: 

1. Users can select the proper data for running their analysis; i.e., specifying the 

temporal extensions to be considered and the CMIP dataset. Specific thematic 

module (WP7) jointly with the WP5 infrastructure can be used for accessing the 

data; 

2. Selected data is pre-processed (e.g., subsetting, re-gridding, partitioning in non-

overlapping patches, conversion to graphs for GNNs, etc.) so that it can be used 

as input to the pre-trained ML models. Furthermore, the data will be normalized 

with the training scaler, using components from the ML TC detection thematic 

modules (WP7);  

3. One or more ML models from the repository of pre-trained models (WP6) is 

executed on the data from step 2, potentially on a HPC infrastructure (WP5);  
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4. Results from different models can be combined together with an ensemble 

approach, according to the user's input. When using the ensemble of ML models, 

the resulting detections from the ensemble are then aggregated; 

5. Results from the inference stage are then post-processed to build the final results. 

A deterministic tracking scheme is applied to the detections in order to align them 

and produce the TC tracks, using again the capabilities from WP7 (i.e., ML TC 

detection); 

6. Final results can be stored as output files or visualised in the notebook interface. 

Figure 1 shows the TC DT application workflow diagram. 

 

 

Figure 1 – Overview of the workflow for the DT application on TCs 
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3.2 DT Application: Changes in wildfires in response 

to climate change 

3.2.1 ML Model Requirements 

The main goal of the wildfires DT case study is to develop Convolutional Neural Network-

like architectures capable of learning complex relationships between chosen input 

variables and and the burned areas on a global scale. These networks output the burned 

areas in hectares, which indicate the severity of wildfires in different regions on the global 

map.  

Multiple architectures have been investigated, such as UNet [R15] and UNet++ [R10]. The 

proposed ML architectures take as input a stack of climatic variables of dimension 

𝐻 × 𝑊 × 𝐶, where H and W are, respectively, the height and width of the input map and 

C is the number of input drivers, and provide as output a map of dimension 𝐻 ×  𝑊 with 

the percentage of burned areas per each pixel of the map. Also in this case solutions like 

Lightning and PyTorch are used to implement the ML models. 

List of currently identified data variables is available in Table 9. 

Table 9 – SeasFire Cube and corresponding CMIP6 data variables identified to carry out the wildfires prediction 

case study 

Full name SeasFire Cube name Unit CMIP6 name 

 ERA5 Meteo Reanalysis Data 

Total precipitation tp m pr 

Relative humidity rel_hum % hur 

Sea Surface Temperature sst K tos 

Temperature at 2 meters – Min t2m_min K tasmin 

Land-Sea mask lsm 0-1 sftlf 

Nasa MODIS MOD11C1, MOD13C1, MCD15A2 

Land Surface temperature at day lst_day K ts 

Leaf Area Index lai m2m-2 lai 
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Global Wildfire Information System  (GWIS) 

Burned Areas from FCCI fcci_ba ha Used only for 

training 

 

3.2.2 Workflow Description 

Similarly to the previous DT application, the workflow description has been specialized to 

better describe the two different use cases presented in Section 2.2. In terms of 

computing workflow, the DT on wildfires comprises these steps: 

To train and test a ML model: 

1. Users can define the training hyperparameters, the subset of variables used as 

drivers and the time period of the training data (e.g., SeasFireCube [R17]) to be 

used for training a ML model. Training/validation data can be accessed from WP5 

infrastructure;  

2. Data is normalised based on the training set. In addition data augmentation 

techniques can be applied using the features from the thematic modules (WP7), 

i.e. ML4Fires; 

3. Training of the defined ML model can be executed on HPC resources and 

distributed on multiple GPUs/nodes. During training stage, metrics can be logged 

on solutions like MLFlow and provenance can be tracked by using the DTE core 

component from WP6 (e.g., yProv4ML, itwinai); 

4. At the end of the training stage the trained ML model, together with scaler and 

provenance documents can be stored on MLFlow (WP6);  

5. The Software Quality Assessment core module (WP6) can be used to evaluate 

different skills/metrics of the trained model on a small test set.   

For the analysis test case, the workflow of the application will be orchestrated by one of 

the workflow engine solutions from WP6, and comprises the following steps: 

1. Users can select the proper data for running their analysis; i.e., specifying the 

temporal extensions to be considered or the models from CMIP experiments. 

Thematic modules such as esgpull_rucio (WP7) can be used for uploading, 

beforehand, the climate projection data on the infrastructure (WP5); 

2. Selected data is pre-processed so that it can be used as input to the  ML models. 

Capabilities from thematic modules (WP7), i.e., ML4Fires, are used for running pre-

processing functions. In particular, the input data is normalised according to the 

training scaler and pre-processed to be compatible with the training data 

structure; 

3. A ML model from the repository of pre-trained models (WP6) will be retrieved, 

deployed and executed, potentially on a HPC infrastructure (WP5), on the data 

from step 2; 



D4.5 Final Architecture design of the DTs capabilities for climate change and impact 

decision support tools 

28 
interTwin – 101058386                          

4. Results from the inference stage on projection data (e.g., CMIP6) will then be post-

processed to build the final results. Results from multiple models can be also 

combined; 

5. Final results can be stored as output files or visualised in the notebook interface. 

Figure 2 shows the overall DT workflow. As it can be seen it shares some similarities with 

the one shown in Figure 1. 

 

 

Figure 2 – Overview of the workflow for the DT application on wildfires prediction 

 

3.3 DT Application: Eddies prediction 

3.3.1 ML Model Requirements 

The eddies DT application goal is to provide climate scientists and, in general, people with 

technical knowledge with the tools to quickly obtain segmentation masks for FESOM2 

oceanic data. Due to the nature of the 2-dimensional input data, the main deep 

architecture included with the application is the Convolutional Neural Network (CNN). 

Specifically, the chosen model was the UNet [R15], but many convolutional combinations 
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may be used to learn the complex relationships between the input variable Sea Surface 

Height and the presence of eddies on the ocean surface. 

The proposed ML architecture will take as input a series of 2-dimensional maps with 

dimension 𝐻 ×  𝑊 and provide as output a segmentation mask of dimension 𝐻 ×  𝑊 with 

each pixel being classified as: 

● 0 – background 

● 1 – cyclonic eddy 

● 2 – anticyclonic eddy 

In terms of software infrastructure, solutions like Keras/Tensorflow will be exploited. 

 

3.3.2 Workflow Description 

This section describes the logical flow of operations the eddies DT needs to perform to 

carry out user requests. The links to WP6 core modules and WP7 thematic modules are 

highlighted. 

In terms of computing workflow, the DT on oceanic eddies comprises these steps: 

1. Users can select the proper data for running their analysis; i.e., specifying the 

temporal extensions to be considered. The Interpolation to regular grid (part of the 

eddiesML thematic module – WP7) will be used to convert the unstructured 

FESOM2 grids into structured images. Selected data will be pre-processed via the 

Ground Truth Generation (py-eddy-tracker) (WP7) in order to generate the 

segmentation masks that will be used as the label information during the ML 

process. Alternatively, the user can start the process by taking already pre-

processed data (WP5); 

2. Once the SSH information and the segmentation masks are put together, the 

training phase can begin. The U-Net model defined inside the eddiesML module 

(WP7) will be exploited for this step. Within the same module, yProv4ML will be 

used to track ML metrics (WP6); 

3. Only for the training workflow: training of a ML model can be triggered in order to 

use different hyper-parameters if results from testing are not satisfactory in terms 

of evaluation metrics (e.g., error and classification metrics). The trained models  

will be stored in a ML model repository for future usage (MLFlow – WP6); 

4. Only for the inference stage: a ML model will be executed on the data from the 

first step; 

5. Final results can be visualised in the notebook interface using different Python 

visualisation modules. 

The overall workflow of the application will be executed on the WP5 infrastructure (e.g., 

Vega HPC system). Figure 3 shows a diagram with the DT workflow main steps. 
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Figure 3 – Overview of the workflow for the DT application on eddies detection 

 

3.4 DT Application: Post-flood analysis in coastal 

regions 

3.4.1 Model Requirements 

The post-flood analysis DT for coastal regions relies on a process-based model combined 

with satellite observations of floods: 

1. Super-Fast INundation of CoastS (SFINCS): a reduced-complexity model designed 

for super-fast modelling of compound flooding in a dynamic way. 

2. openEO satellite-based flood monitoring: An existing workflow for flood 

monitoring [R4] will be re-developed in the openEO syntax [R5] for being usable 

on several platform backends. The process graph will be gradually enhanced to 

create a fully automatic processing chain, based on Sentinel-1 σ₀ and Projected 

Local Incidence Angle image collections. 

The flood inundation model (SFINCS) simulates how extreme coastal water levels might 

spread during flood events. The flow and spread of water is affected by the geometry of 

the floodplain (usually derived from Digital Elevation Models), the upstream inflow, 
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downstream water levels, location of levees, dams, and channels and how these are 

operated.  

For coastal flooding factors and data need to be considered, including tides, storm surges, 

sea level rise projections, waves, beach morphology and dynamics, coastal infrastructure 

and defenses, wind speed and direction and atmospheric pressure. 

An overview of data requirements to run SFINCS can be found in Table 4 and Table 6 of 

interTwin D7.1 [R6]. 

To produce deterministic flood maps for a given scenario or event, a specific (extreme) 

rainfall or surge event is selected. These, together with the aforementioned data 

representing relevant processes associated with coastal flooding, are fed into the flood 

inundation model (SFINCS) which simulates the flood extent and depth. The combined 

EO-model workflow is then used to do post-flood assessments, for example to run what-

if scenarios to understand where dike breaches might have occurred.  

To ensure accurate simulations models are usually calibrated and validated against 

historical data from in situ measurements and / or satellites. Those value-added satellite 

data will be processed using a global flood monitoring workflow that is being adapted to 

project specific requirements and that is being automated. In the first iteration the flood 

monitoring workflow is based on Bayesian decision making, exploiting data cubes of 

Sentinel-1 data with its orbit repetition and a-priori generated probability parameters for 

flood and non-flood conditions. Therefore, local seasonal non-flood conditions for each 

day-of-year are defined by pre-processing harmonic parameters of each pixel’s full time 

series. As a stretched goal, processing this firstly static information can be embedded as 

a dynamic workflow into the operational process chain, only analysing, e.g., the recent 

two years and thus considering possible changes in the backscatter by, e.g., changes of 

land use / land cover. Another stretched goal is the usage of ML-based training instead 

of the lightweight Bayesian approach, making use of the available big data processing 

capabilities within the project. A data cube based masking of no-sensitivity resulting from 

ill-posted satellite geometries or impeding land cover further enhances the process’ 

robustness. Implementing the described stretched goals will depend on 1) analyses on 

their potential to increase the product’s accuracy, and 2) on decisions throughout the 

project regarding implementing redundant processing libraries, usable for this and for 

other workflows. 

To set up SFINCS, the Digital Elevation Model is used to define the floodplain, i.e. the 

geometry of the rivers and floodplains. Boundary condition points are determined for the 

upstream inflows, downstream water levels or tidal conditions. The influence of bridges, 

dams, levees, and other infrastructure on flow dynamics should also be included. 

An overview of data requirements to set up SFINCS can be found in Tables 3 and 5 of 

interTwin D7.1 [R6]. 

In this digital twin application functionality is being developed that enables an end user  

1. Easily set up SFINCS for a user-defined region of interest; 

2. Easily run the models and produce deterministic flood maps. 
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3.4.2 Workflow Description 

Two workflows are described in this section: 

1. Setting up the necessary SFINCS models 

2. Producing a deterministic flood map 

Setting up SFINCS models for a specific region of interest comprises the following steps: 

1. Set up SFINCS 

a. A user defines a geographic region of interest; 

b. A user defines the SFINCS model resolution; 

c. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of the global data. 

Once the SFINCS model has been set up they can be run to produce deterministic and 

probabilistic flood maps as follows. 

For deterministic flood maps: 

1. A user selects a time period to simulate, e.g., a specific historical event; 

2. A user selects the preferred forcing data for SFINCS, e.g. 

a. SFINCS – in addition to precipitation, for a coastal flood, select data for 

tides, surges, waves, and sea level. 

3. A user then runs SFINCS; 

4. The water levels produced by SFINCS are interpolated to the digital elevation 

model selected by the user in the Set up SFINCS step 1c (see above), to estimate 

flood depths and extent. 

In the above workflows, this DT application will leverage the following capabilities from 

other WPs of interTwin (summarised in Figure 4): 

● The DT will leverage capabilities developed in WP7, T7.6: Hydrological model data 

processing thematic module. 

● To run the models using containers, this DT will rely on functionality from WP6, 

specifically OSCAR.  

● For workflow composition and execution, this DT will leverage developments from 

WP6, T6.1 Workflow composition and WP6, T6.4 Workflow backend, specifically 

the CWL workflows developed for this application. 

● Finally, all data and compute resources are leveraged from WP5, the DTE 

infrastructure including Notebooks as a Service. 
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Figure 4 - Workflow components for the post-flood analysis in coastal regions 

 

3.5 DT Application: Alpine droughts early warning 

3.5.1 Model Requirements 

The aim is to develop a deep learning model capable of emulating the hydrological 

processes of the physical based Wflow_sbm model. The surrogate is used to simulate 

hydrological states and fluxes (soil moisture, evapotranspiration and snow water 

equivalent). To train the surrogate the required inputs are static, such as the Wflow_sbm 

parameters that should be calibrated, and dynamic, such as the meteorological variables 

(temperature, precipitation and potential evapotranspiration). Meteorological daily 

inputs are derived from EMO1 (~1.5 km). Both the dynamic and static data are resampled 

to the resolution of the hydrological model grid (~1 km). Once trained, the deep learning 

surrogate can be used to calibrate the less computationally efficient physical based 

model by using spatially distributed estimates derived from EO. Currently, the DT enables 

calibrating the model using the satellite surface soil moisture estimates provided by TU 

Wien. After obtaining calibrated static parameters, these can be used as inputs to the 

surrogate, or to the original Wflow_sbm model, for inference. The hydrological forecasts 

are generated by forcing either models with SEAS5 seasonal forecasts. The SEAS5 

forecasts are first downscaled to match statistics and spatial resolution of EMO1. The 

downscaling of forecast fields is performed through a GAN-based neural network 

specialized for each input variable. Table 10 and Table 11presents the type of dynamic 
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and seasonal forecast data used in this study. The description of static data is already 

available in D7.1[R6]. 

Table 10 – Details of dynamic data used in this study and their sources 

Dynamic Data Data 

Source 

Time Temporal 

Resolution 

Spatial 

Resolution 

Product 

Description 

2m_temperature  

EMO1 

 

2000-2022 

 

Daily 

  

~1.5✕1.5 

km 

  

Climate Total precipitation 

Surface solar 

radiation downwards 

Potential 

evapotranspiration 

derived 

from 

EMO1 

2000-2022 Daily ~1.5✕1.5 

km 

PET 

computed 

using the 

Jensen-

Haise 

method  

surface soil moisture TU Wien 2017-2024 Sub-daily ~1 km RT0 

     

Table 11 –  Details of seasonal forecast data used in the study and their sources 

Variable Spatial 

Resolution 

Temporal 

Resolution 

Product 

Description 

2m_temperature 36 ✕ 36 km Daily Seasonal Forecast 

ECMWF Total precipitation 

Surface solar radiation downwards 

 

3.5.2 Workflow Description  

The purpose of this section is to describe the DT developer and user workflows.  

 

DT developer workflow 

Four primary steps are involved: 

i) Setting up physical based model Wflow_sbm; 

ii) Pre-training the surrogate model to emulate Wflow_sbm; 

iii) Calibrate static parameters of the Wflow_sbm model through the surrogate; 

iv) Predict water availability using a trained surrogate model or wflow_sbm with 

calibrated static input parameters and downscaled seasonal forecast.  
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This activity will use the spatially semi-distributed hydrologic model Wflow_sbm [R1, R2] 

to estimate hydrological states and fluxes including actual evapotranspiration, soil 

moisture and snow water equivalent. One model is developed for the entire Alpine region 

with a 0.008333-degree cell resolution, which corresponds to approximately one 

kilometer. In this study, a surrogate model is developed in two phases as shown in Figure 

5. The first phase involves training the LSTM to reproduce the performance of the 

process-based model Wflow_sbm by minimising the loss function (RMSE). The LSTM 

surrogate model is trained using Wflow_sbm’s dynamic forcings, static attributes and 

dynamic targets such as soil moisture, evapotranspiration and snow water equivalent. As 

soon as the model is trained and the parameters are calibrated, seasonal forecast data 

from ECMWF at daily scale will be used in order to forecast hydrological conditions over 

the next 7 months 

DT user workflow 

1.     Defining Geographical Extent 

The user must specify the geographical area of interest.  

2.      Data Selection and Preprocessing 

The DT Application provides flexibility to their users to choose globally available data, 

such as digital elevation model, forcings, etc. The user must preprocess and harmonise 

the data according to model resolution. This process ensures that the surrogate model 

receives clean and standardised data for simulation. 

3.     Model Selection 

Following the preprocessing of the data, the user can select the trained surrogate model 

or the wflow_sbm model, with calibrated parameters, to simulate historical hydrological 

conditions or forecast hydrological conditions for the next 7 months. The current 

surrogate model is trained and validated on the Alps. If the user wishes to run the model 

on a different region it will be necessary to retrain the model. If the user wants to 

recalibrate the parameters using additional datasets, e.g., snow water equivalent, he has 

to rerun the calibration. 

4.     Visualisations 

Final results can be visualised thanks to dedicated user defined openEO processes. 

Results can also be downloaded for further analysis or communication. 
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Figure 5 – 1) Pre-training: A deep learning model is trained to emulate the Wflow_sbm physical based hydrological 

model 2) Calibration: The static parameters are calibrated using satellite soil moisture 3) Inference: the surrogate 

model or the original Wflow_sbm with calibrated parameters, is forced with downscaled seasonal forecasts to 

provide seasonal forecast of hydrological conditions. 

3.6 DT Application: Extreme rainfall, temperature, and 

wind weather event changes in response to 

climate change 

3.6.1 ML Model Requirements 

The application inputs are sets of 2-dimensional data for each climate variable. Each of 

them can therefore be considered as a 2D image, where each pixel coincides with a cell 

of the lat-lon grid. Considering three climate variables (temperature, precipitation, and 

wind), the images take the form of “RGB” (Red Green Blue) images, carrying three 

components for each pixel when compound extreme events are analysed. In the current 

implementation only one variable is chosen to be analysed, which is temperature, but 

any variable can be chosen depending on the application. Based on this consideration, 

the deep learning model identified for the DT is based on convolutional layers. Given the 

unsupervised learning conditions, the model used for anomaly detection is a 

Convolutional Variational Auto-Encoder – an image-compressing/rebuilding neural 

network (CVAE). Its inputs are daily squares over Western Europe, with the three climate 

variables values for each pixel – dimension nlat ✕ nlon ✕ 3. The tool can be extended to 

any geographical zone. The CVAE compresses (encodes) the input with convolutional 

layers to a smaller latent space. Distribution parameters are sampled from the encoded 

space, and the image is rebuilt with symmetrically transposed convolutional layers. A 

backward loop assesses the loss between the original and reconstruction image. The 

model is trained on historical data (about 30 years), assuming that history is the “normal” 

situation. The trained network is then applied to projection data: when the reconstruction 

loss is unusually high, the situation is considered an anomaly. Post-processing these 

findings helps characterise the events with their duration, frequency, and intensity. 

The software framework is PyTorch. 
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A list of used data variables is available in Table 12. Any variable can be used and also at 

any spatial resolution. In the current implementation extreme hot days were explored 

using the Daily Maximum Near-Surface Air Temperature.  

Table 12 – Preliminary list of data variables for the DT Application 

Variable name 
Temporal 

Resolution 

Spatial 

Resolution 
Unit 

Daily Maximum Near-Surface Air 

Temperature daily 100km ✕ 100km K 

Daily Precipitation daily 100km ✕ 100km kg m-2 s-1 

Daily-Mean Near-Surface Wind Speed daily 100km ✕ 100km m s-1 

 

3.6.2 Workflow Description 

This section describes the logical flow of operations the DT needs to perform to carry out 

user requests. 

In terms of computing workflow, the DT on extreme events follows those steps: 

1. Data Selection Users select the relevant data to run their analysis; i.e., specify the 

geographical region of interest, climate reference time period (~30 years), time 

period of interest, season, and future climate scenarios (RCPs). 

2. Data Preprocessing Selected data will be pre-processed so that it can be used as 

input to the  ML model. In particular, data will be normalised with respect to the 

full dataset, and split into four season datasets. 

3. Model Training The network will be pre-trained for Western Europe on a specific 

climate model, but for any other location or model it will have to be trained again. 

The training is based on 30 years of historical data. The hyperparameters are 

tuned to reach a trade-off between various applications. 

4. Projection Data Inference The weights of the trained network are saved and 

applied to projection data of the same climate model –  to avoid detecting biases 

between climate models as anomalies. 

5. Post-processing The daily reconstruction errors will be analysed with respect to 

history or other IPCC scenarios, for each season. Percentiles and other statistical 

methods are used to determine the behaviour changes of historically rare events: 

their frequency of occurrence, duration, intensity (when relevant).  

6. Improving results Only one climate model can be studied at a time, but variants 

of the same model (ensemble members) can be used simultaneously and 
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therefore augment available data by providing uncertainty quantification. A 

trained network on more data will generate more accurate results and reduce 

uncertainty – it can be evaluated depending on climate models and RCPs. Results 

from different models (and therefore different networks) can also be aggregated. 

7. Visualising Final results can be stored as output files or visualised in the notebook 

interface using different Python visualisation modules, e.g., plots, maps. 

The script of the core model is available on GitHub (in progress): 

https://github.com/cerfacs-globc/xtclim. 

 

 
Figure 6 – Schematic overview of the main components of the DT Application: Extreme weather event changes in response 

to climate change. It uses a Convolutional Variational Auto-Encoder method to detect anomalies 

 

3.7 DT Application: Flood climate impact in coastal 

and inland regions 

3.7.1 Model Requirements 

In addition to the flood inundation models and workflow described in Section 3.4, the 

flood climate impact DT for coastal and inland regions uses models and tools to quantify 

https://github.com/cerfacs-globc/xtclim
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impacts on buildings, utilities, roads and accessibility under different future climate 

scenarios applying different mitigation and adaptation strategies. 

The climate impact DT relies on an additional process-based model: 

1. WFLOW: A framework for modelling hydrological processes, allowing users to 

account for precipitation, interception, snow accumulation and melt, 

evapotranspiration, soil water, surface water and groundwater recharge in a fully 

distributed environment. 

Wflow simulates the volume and timing of water flow (runoff) from a catchment into a 

river system, based on meteorological inputs and the catchment characteristics. To do so 

a user has to define catchment boundaries, set up hydrological response units based on 

combining, e.g., soil, land cover and topography data. Simulations are forced using 

precipitation data, and results are affected by land use / land cover, soil types, topography 

and evapotranspiration rates. 

Instead of using the meteorological data referred to in Section 3.4 to run the hydrological 

models (Wflow) and the flood inundation model (SFINCS), here climate projection data 

will be used to simulate flood depth and extent under future climate conditions. The 

requirements and workflow to arrive at the deterministic are the same as in Section 3.4, 

but using climate projection data instead of weather forecasts. 

Once the deterministic flood maps have been generated, these are fed into the flood 

impact assessment tool (Delft-FIAT), and the Resilience Assessment and Action 

perspective for Critical infrastructurE (RA2CE) model. 

Using the flood maps, and additional inputs such as depth-damage functions, asset 

locations and their maximum potential damages, Delft-FIAT derives asset-level and 

aggregated damages and risk. For each asset specified in the exposure dataset, the water 

depth or elevation is subtracted from the flood map at the location of the assets; water 

elevations are converted to water depths using the ground elevation of each asset. When 

calculating partial flooding, Delft-FIAT will extract either the average or maximum water 

depth and the fraction of the building that is flooded. The inundation depth within 

buildings is obtained by subtracting from the water depth the ground floor height. Delft-

FIAT derives the damage fraction for each asset using its inundation depth and 

interpolating over its depth-damage curve. The damage to the asset is then calculated as 

the product of the maximum potential damage and the damage fraction. When 

calculating partial flooding, the damages will be reduced by the fraction of the building 

that is dry. When the user inputs return-period flood maps, Delft-FIAT will calculate the 

associated return-period damages, and then integrate these to derive the expected 

annual damages. 

Similarly to Delft-FIAT, RA2CE uses the flood maps combined with road network data, 

road damage functions, road depth damage curves, population data, and important 

locations to calculate damages to road networks including the cascading effects on 

society due to disruptions of the infrastructure network. 

Additionally for this DT, users can select and input flood mitigation and adaptation 

strategies such as flood walls, levees, pumps and culverts, raising properties and flood 
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proofing properties and run scenarios to estimate the impact said strategies have on 

mitigating damages related to floods. 

Setting up Delft-FIAT for the purposes described above requires exposure data including 

building footprints, roads, and asset classification data, as well as vulnerability data 

including depth damage curves and functions. 

To set up RA2CE, additionally requires road infrastructure data as well as data on 

population and important locations. 

An overview of data requirements to set up Delft-FIAT and RA2CE can be found in Table 

7 and Table 10 of interTwin D7.1 [R6]. 

 

3.7.2 Workflow Description 

The workflow to set up SFINCS is described in Section 3.4.2. For the flood climate impact 

DT,  there are 3 additional workflows, namely: 

1. Setting up the WFLOW, Delft-FIAT and RA2CE models; 

2. Producing a baseline damage and impact assessment, based on flood depth and 

extent from running Wflow and SFINCS with future climate projection data; 

3. Selecting flood mitigation and adaptation strategies and rerunning the models. 

Setting up the Delft-FIAT and RA2CE models for a specific region of interest comprises the 

following steps: 

1. Set up WFLOW 

a. The area of interest defined for the SFINCS model is used to define the 

upstream catchment area for WFLOW; 

b. A user defines the WFLOW model resolution; 

c. A user selects available global datasets from which to build the model. 

Optionally, a user can upload and use local data instead of the global data. 

2. Set up Delft-FIAT 

a. A user defines a geographic region of interest; 

b. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of global data; 

c. A user checks and/or links the classification of the assets to the asset 

damage functions. 

3. Set up RA2CE 

a. A user defines a geographic region of interest; 

b. A user selects available global datasets from which to build the model. 

Optionally a user can upload and use local data instead of global data; 

c. A user selects the road types to include; 
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d. A user checks and/or links the road types to the road damage functions. 

Once the SFINCS, Wflow, Delft-FIAT and RA2CE models have been set up, they can be run 

to produce baseline damage assessments under future climate scenarios as follows: 

1. A user selects a time period to simulate, e.g., a specific historical event; 

2. A user selects the preferred forcing data for SFINCS and Wflow, e.g., 

a. Wflow –  temperature, precipitation, and potential evapotranspiration 

b. SFINCS – in addition to precipitation, select data for tides, surges, waves, 

and sea level 

3. A user then runs Wflow; 

4. A user then runs SFINCS with river discharges from Wflow; 

5. The water levels produced by SFINCS are interpolated to the digital elevation 

model selected by the user in the Setup SFINCS step 1c (Section 3.4.2), to estimate 

flood depths and extent; 

6. A user then runs Delft-FIAT with the flood depth maps from SFINCS; 

7. A user then runs RA2CE with the flood depth maps from SFINCS; 

8. A user can visualise the resulting damages and impacts spatially in the Jupyter 

Notebook or in any GIS software. 

Once the baseline damage assessments under a future climate scenario have been run, 

the workflow to assess the impact of selecting mitigation and adaptation strategies can 

be run as follows: 

1. A user selects the measures and specifies the properties of the measures that they 

want to test; 

2. A user runs a FloodAdapt module that implements the changes in the models 

corresponding to the measures. It is currently possible to implement measures 

that make changes to the SFINCS and Delft-FIAT models; 

3. Depending on the choice of measures, the user must rerun the following models 

with the updated model data: 

a. If the user selected a flood wall, pump, levee, and/or culvert, the user must 

rerun SFINCS, Delft-FIAT and RA2CE with the updated models. 

b. If the user selected buyouts, flood proofing, and/or raising properties, the 

user can just rerun Delft-FIAT. 

4. A user can visualise the resulting changes in damages and impacts spatially in the 

Jupyter Notebook or in any GIS software. 

In the above workflows, this DT application will leverage the following capabilities from 

other WPs of interTwin (summarised in Figure 7) 

● The DT will leverage capabilities developed in WP7, T7.6: Hydrological model data 

processing thematic module. 
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● To run the models using containers, this DT will rely on functionality from WP6, 

specifically OSCAR 

● For workflow composition and execution, this DT will leverage developments from 

WP6, T6.1 Workflow composition and WP6, T6.4 Workflow backend, specifically 

the CWL workflows developed for this application 

● Finally, all data and compute resources are leveraged from WP5, the DTE 

infrastructure including Notebooks as a Service. 

 
Figure 7 – Overview of the workflow components for the DT application: Flood climate impact in coastal and 

inland regions 
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4 Conclusions 

This document presented the final version of the architecture design of interTwin DTs 

applications (WP4) from the environmental domain. It updates the first version of the 

capabilities presented in D4.1 [R7], by refining the initial design and providing a revised 

version of the workflow and their links with the DTE.  More specifically, D4.5 defines the 

different user stories and key requirements, as well as the workflow and possible 

beneficiaries for each DTs application. Moreover, the necessary steps that should be 

considered when designing an individual DT application are also outlined, together with 

a visual representation of the workflow and the connection with the components 

provided by the DTE. 

As next steps the DT application development and integration with the DTE will be 

finalized and presented in D4.7 “Final version of the DTs capabilities for climate change 

and impact decision support tools including validation reports” due by the end of the 

project. 
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