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Abstract 
Key Words digital twin, environment, climate change, impacts, tools 

This deliverable describes the release of Digital Twin (DT) Applications that support the 

climate change use cases detailing their implementation and validation report. It 

details the capabilities, characteristics, and describes the functional specifications of 

the DT applications and their integration into the DTE architecture. Finally, it provides 

the final validation of the developed and integrated DTs. 
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Executive summary 
This document is deliverable 4.7 of the interTwin project, part of work package 4. It is a 

report collectively written by the partners of tasks 4.5, 4.6 and 4.7, who have been directly 

involved in the design and implementation of Digital Twin (DT) Applications for the 

environmental domain (climate projections & extreme events). In the deliverable, for 

each DT, there is a description of integration with the DTE, the data used, followed by 

discussions on the scope and limitations of each implementation. A discussion on the 

validation of each DT is also described. The integration with the Infrastructure 

Components provided by WP5 and the Core Components provided by WP6, along with 

schematic high-level workflows are shown. 

Overall, each DT is specifically designed and linked to address climate change impacts 

and provide valuable insights for assessing climate risks, identifying early warning signals, 

and implementing mitigation measures. It provides invaluable tools enabling users to 

explore several possible specific impacts of climate change. 
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1 Introduction 

1.1 Aim of this deliverable 

The overall objective of deliverable 4.7 is to provide information about the capabilities of 

DT Applications related to climate change and impact decision support tools. Those DTs 

are from the environmental domain (T4.5, T4.6, T4.7). A DT Application is a user-facing 

implementation of a DT. DT applications are the consumers of the capabilities offered by 

the interTwin DTE, thus introducing use case-specific requirements. 

1.2 For whom is this document 

The deliverable 4.7 can be useful for both developers and end users as described below: 

For developers: the deliverable provides them with an opportunity to be informed on 

how the integration of DTs has been planned and implemented. This integration is also 

linked to the different capabilities and features of each specific DT. It gives insights on 

how those DTs fit into the overall interTwin architecture by using specific core 

components. 

For end users: the specified deliverable provides information on the capabilities of each 

specific DT in the environmental domain. It provides insights to the users on what can be 

achieved by using those DTs: what they can be used for, and eventually what are the 

parameters and configurations that the end users can set for tailoring those DTs to their 

specific needs. By establishing a common framework for communication, researchers 

and stakeholders will be able to exchange information, validate models, and 

collaboratively address climate change impacts and suggest mitigation measures. 

1.3 Structure of the document 

The structure of this deliverable is as follows. Section 2 describes the capabilities of each 

DT application. Section 3 explains how the integration with the DTE has been performed 

and the results obtained. The reader should refer to D4.5 [R12] for a description of the 

architecture. 
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2 DT Applications 

2.1 Generic Detection of Climate Extremes 

This DT is aimed at the detection and characterization of climate extremes to assess their 

impacts and provide useful information for the decision-making process. The DT enables 

users to quantify and evaluate the changes of climate extremes, such as changes in the 

frequency of occurrence, as well as their spatial extent, duration, and intensity. The DT is 

using the maximum daily temperature variable to calculate extreme temperatures 

compared to the normal values, according to a specific season or monthly period, 

depending on users’ choices. The method is an anomaly detection method that is generic 

and can be applied to any other atmospheric climate variables such as precipitation and 

wind speed. 

The end users are able to select specific greenhouse gas scenarios to explore different 

impacts according to the evolution of those emissions that are driven by national and 

international policies. Users also have the capability to select a region of interest to focus 

on specific areas and better evaluate regional and local impacts. It is also possible to 

select a specific time period and a season (or a monthly period), as well as several 

datasets coming from different types of future climate simulations, such as global 

circulation coupled models, regional climate models, and any other relevant datasets. 

To evaluate the changes, the end users define a time period of reference to compare 

with. Typically, a period of 25 to 30 years is used as a climate reference, in order to better 

evaluate the needed adaptation compared to a specific state of the climate. 

This DT is based on Artificial Intelligence (AI) techniques. It is a novel technique for this 

kind of analysis. It unlocks the possibility for users to better quantify the uncertainties 

associated with different sources such as greenhouse gas emission scenarios, specific 

climate models and also inherent climate variability. This is possible thanks to the high 

performance of Deep Learning (DL) methods in processing large datasets. Typically, using 

analytical methods, users would only use a small subset of all available simulations, 

leading to partial uncertainty assessments resulting in incomplete impact assessments. 

This could lead to less-than-optimal adaptation and mitigation decisions. 

In more detail, the DL method that is used consists of a Convolutional Variational 

Autoencoder (CVAE). Autoencoder and decoder are a pair of unsupervised trained Neural 

Networks (NNs) where autoencoders are trained to compress the data and decoders are 

trained to decompress the compressed data with a minimal loss. This can be used for 

anomaly detection, hence also for climate extremes. When input data is compressed, the 

main features of the data are kept, and there is some loss since, after compression, data 

is stored in a lower-dimensional space (called latent space) before being decompressed. 

Variational Autoencoders (VAE) model the latent space as a probability distribution. 

CVAEs use Convolutional Neural Networks (CNN) for both the encoder and decoder parts.  

In this implementation, CVAE input data is a subset of CMIP6 [R9] data: a time sequence 

of 32 X 32 square images of a daily average of a specific atmospheric surface variable 
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over a specific spatial subset region. Training is done by season, for each specific climate 

model separately, using a time period long enough to have sufficient samplings (typically 

50 years or more) and in which the greenhouse gas emissions have a weak tendency (e.g., 

1850-1950). The CVAE model can then be applied to any time period of interest to the 

user, using any CMIP6 simulation data of this specific global climate model. For each daily 

image reconstructed by the CVAE, there is a loss, corresponding to the error in the 

reconstructed image. This loss value is used for anomaly detection (climate extremes are 

anomalies).  

2.2 Wildfire danger prediction in response to climate 

change 

Several studies show that climate change will affect both the frequency and severity of 

wildfires. Modelling fire regimes therefore is important in assessing future potential 

impacts on the social and economic aspects of society. Machine Learning (ML) algorithms 

have emerged recently as effective alternatives for the prediction of wildfire occurrences 

compared to the traditional approaches (e.g., dynamic global vegetation models). The 

advantage ML models enjoy over traditional models is due to the fact that data-driven 

models can learn complex interactions allowing them to provide accurate predictions and 

unravel potential relationships between variables. 

The DT related to the wildfires application focuses on the generation maps of areas 

burned due to forest fires on a global scale. These maps are generated using ML models 

which learn the spatial distribution of historical burned areas on a global scale from their 

correlation with certain predictors. While we have experimented with several ML 

architectures, the principal architecture adopted in this work has been the UNET++1.. The 

networks are trained to learn the non-linear spatial relationship between multiple 

environmental variables and the percentage of the pixel area burned. The variables used 

as covariates for percentage burned area include weather and vegetation conditions.  

The data for training and validation is derived from SeasFire Cube2, a scientific datacube 

containing 21 years of data (2001-2021) with an 8-day temporal resolution and 0.25° 

spatial resolution, designed to forecast seasonal fires around the world. The fire 

predictors are upscaled to 100 km resolution (~1o). The fire predictors from the SeaFire 

cube are stacked of dimension of 𝐻 × 𝑊 × 𝐶, where H is the height and it is equal to 720, 

W is the width and it is equal to 1440, C is the number of climatic variables. In the final 

model implemented, 5 fire predictors have been used namely, Leaf Area Index, Land-Sea 

mask, Relative humidity, Temperature at 2 metres - Min, Total precipitation), The target 

is Burned Areas from the ESA Fire Climate Change Initiative (FCCI)3. 

The trained ML model can then be applied to past data from the SeasFire Cube or on 

future climate projection data. Such data has been ingested from the ScenarioMIP project 

of the Coupled Model Intercomparison Project, phase 6 (CMIP6) initiative, which collects 

 
1 https://arxiv.org/pdf/1807.10165  
2 https://zenodo.org/records/8055879 
3 https://climate.esa.int/en/projects/fire/  

https://arxiv.org/pdf/1807.10165
https://zenodo.org/records/8055879
https://climate.esa.int/en/projects/fire/
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Earth system model simulations according to alternative plausible emissions and land 

use future scenarios [R11]. The esgf_rucio component from WP7 has been configured to 

consume the data from the ESGF data nodes4 and upload it on the interTwin Data Lake 

(WP5). 

The DT application addresses two types of end-users: scientists with technical skills that 

want to train a new ML model and less technically skilled users that want just to run the 

DT application. Details of the training process, the architecture, data preparation and 

target users are provided in D4.5 [R12]. 

Keeping in view the target end-users from the first group: researchers and developers, 

the training pipeline is made highly configurable. The hyperparameters of the training, 

and other related parameters (like using a different architecture) are easy to configure. 

For instance, different use cases might be interested in different performance metrics. 

Such metrics can consist of (i) well-known metrics from a Python library (torchmetric5, 

scikit-learn6, etc.) or (ii) “customized” metrics coded in Python to be used within the 

ML4Fires thematic module (WP7) and tracked during the model training and validation. 

Training of the ML model can be performed through a simple bash script. MLflow library7 

is used to track the training progress and log the models, their hyperparameters, and 

other artifacts. The model logging helps track different ML experiments and analyze the 

results. Moreover, provenance of the model is also tracked during the training workflows. 

These two features are enabled thanks to the integration of the itwinai (WP6) logger 

capabilities. 

Inference is an important part of the validation of the ML model. Moreover the inference 

plays an important role in the work of both policy makers and researchers. The interface 

for performing inference for a logged model is also provided in the form of a Jupyter 

notebook8. Multiple notebooks are available in particular:  

● One notebook allows the end-user to create inference maps for a period in the 

Seafire dataset. This allows the user to perform inference and validation of the 

trained model with respect to the observation data available in the SeaFire 

dataset. The notebook is configured with easy-to-use widgets and tools to post-

process the inference, enabling them to draw various conclusions from the 

inference maps of burned areas.  

● The second notebook allows the second class of users to run the model on the 

CMIP6 dataset. The Jupyter Notebook allows the researcher to produce inferences 

using the climate projection data from the ScenarioMIP CMIP6 dataset as the input 

to the ML model. The notebook includes a flexible way to choose the CMIP6 model, 

scenario and range of years for which the forecast is needed. The post-processing 

of the inference (how to aggregate the 8-day burned area over the yearly or 

decadal scale) can also be performed. Such processes can be executed on multiple 

 
4 https://esgf.github.io/nodes.html  
5 https://github.com/Lightning-AI/torchmetrics  
6 https://github.com/scikit-learn/scikit-learn  
7 https://mlflow.org  
8 https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks  

https://esgf.github.io/nodes.html
https://github.com/Lightning-AI/torchmetrics
https://github.com/scikit-learn/scikit-learn
https://mlflow.org/
https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks
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files using Ophidia9 workflows10. An example of a map produced by the notebook 

is shown in Figure 1. 

 

 

Figure 1 Results from the application of a trained ML model on CMIP6 data for the scenario SSP126, model CMCC-

ESM2. The 8-day burned area prediction is aggregated over the selected 5 years time range 

2.3 Tropical storms change in response to climate 

change 

Tropical Cyclones (TCs) rank among the most powerful and destructive natural hazards, 

often leading to severe disruptions and extensive losses across the globe. Their 

pronounced sensitivity to climate variability and their considerable socio-economic 

consequences make the precise tracking and forecasting of TCs a persistent and complex 

challenge in both meteorology and climate research. This DT focuses on the detection 

and tracking of TCs and consists of classifying the absence or presence of a cyclone in 

gridded climate fields and in a specific time instant and, if present, localising its centre (or 

“eye”) in terms of latitude/longitude geographical coordinates.  

ML models are used to learn the mapping between climatic fields significant to the 

cyclogenesis and the positions and trajectories that storms follow during their lifetime in 

historical records. Trained models are exploited to detect the occurrence of storms in 

future projection scenarios to indicate, across both space and time, the occurrence of 

such phenomena. 

Since the variable representing cyclogenesis is composed of a set of 2-dimensional (2D) 

data, this can be interpreted as a 2D image, where each pixel corresponds to a cell of the 

 
9 https://ophidia.cmcc.it/  
10 https://github.com/CMCC-Foundation/ML4Fires/tree/main/workflows  

https://ophidia.cmcc.it/
https://github.com/CMCC-Foundation/ML4Fires/tree/main/workflows
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lat-lon grid. Starting from this consideration, two different approaches have been 

explored for the detection of TCs: CNNs and Graph Convolutional Networks (GCNs). 

Concerning the geographical domain, the joint North Pacific formation basin was 

targeted because it is considered the one with the highest number of TCs occurrences 

yearly. Six input climatic variables (i.e., mean sea level pressure, 10m wind gust since 

previous post-processing, instantaneous 10m wind gust, relative vorticity at 850 mb, and 

temperature at 300 and 500 mb) have been initially gathered from the ERA5 reanalysis 

datasets11 for the region of interest. Data has been downloaded from the Copernicus 

Climate Change Service12. These variables were used as predictors of TC presence, 

stacked together, and treated as separate channels of a multi-channel image. The 

temporal extent considered is 1980–2019, using ERA5 data with a temporal extent of 6 

hours. To improve model efficiency and, crucially, to ensure that each sample presented 

to the NN contains at most one tropical cyclone, a patch-based segmentation is applied 

as a pre-processing step. Each reanalysis map, composed of 280 × 880 grid points, is 

preliminarily divided into 7 × 22 non-overlapping patches of 40 × 40. 

In the CNN approach, the ML model identified for the DT is a Visual Geometry Group 

(VGG)-like CNN [R1, R2]. The final version of the model has been trained on just two 

drivers (i.e., mean sea level pressure and relative vorticity at 850 mb) allowing to reduce 

the volume of data to be fed to the network. The experimental workflow is structured in 

two main stages:  

I. A combination of two DL models (i.e., a classification model and a localization 

model) is employed to identify the position of TC centers;  

II. A multi-object tracking algorithm is applied to associate TC detections over time, 

thereby reconstructing complete TC trajectories (Figure 2).  

In the first stage, the classification model assigns a probability of TC presence to each 

spatial patch, using a detection threshold of 0.5. For patches classified as positive, the 

localization model estimates the coordinates of the TC eye within the patch. In the second 

stage, the tracking algorithm links these spatial detections across consecutive time steps 

to form consistent spatiotemporal cyclone tracks. Previous implementations have 

explored the use of an ensemble of ML models for improving the ML models' results (see 

previous deliverable D4.5 [R12]). 

 

 
11 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5  
12 C3S: https://climate.copernicus.eu  

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://climate.copernicus.eu/
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Figure 2 Inference of ML model on TCs occurrence in 2014 for the basin of interest. Red markers represent the 

positions identified by the ML model that was fed with two climatic variable patches for each time step of the TC 

trajectory.  Blue markers denote the actual positions of the TC throughout its trajectory extracted from IBTrACS. 

In the second case a GCN-based approach has been investigated. The model can output 

a (row, col) coordinate in the range ([0-39], [0-39]) if a TC is detected (i.e., positive patch). 

Instead, negative labels (e.g., (-1, -1)) are predicted when no cyclone is found within the 

patch (i.e., negative patch). The IBTrACS13 dataset has been used to map each positive 

patch with the corresponding TC’s historical occurrence. While the stacking of the 

atmospheric variables and the division into patches is identical to the CNNs case, the data 

at this stage is organised in grids, not in graphs. An additional step is hence needed to 

make the patches readable by the GCN, and it consists of retrieving the adjacency 

information from these matrices, linking together the pixels as if they were nodes in a 

graph. Along with this information, the features are permuted from their current 

dimension, C x H x W, to L x C, where L is the list of graph nodes with dimension W x H, 

rather than a matrix. 

Together with the coordinates (lat, lon) information of the cyclones, the dataset also 

provides probability density maps that are still derived from IBTrACS and range from 1.0 

(the pixel with the cyclone) to 0.0 (the furthest locations from the eye of the turbulence). 

To maintain the compatibility of the pipeline with a previous version of the code, during 

CNN supervised training we use the matrix coordinates, whereas in GCN learning we use 

the probability density maps instead. Therefore, the GCN will be trained to find a non-

linear mapping between 3D input graphs and the position of the corresponding 

maximum probability value in output. 

 

 
13 https://www.ncei.noaa.gov/products/international-best-track-archive  

https://www.ncei.noaa.gov/products/international-best-track-archive
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Figure 3 Four example patches were taken from the test set and fed to the trained model. The top row shows the 

actual positions of the cyclones, while the bottom contains the probability estimates of the positions produced by 

the GCN model. The colour bars represent the confidence of the prediction from 0 to 1 

The ML models can be trained through a simple bash script. The configuration in ML TC 

detection modules (WP7) is used to identify the model setup (i.e., CNN or GCN). itwinai 

(WP6) logging capabilities are used to track the training progress on MLflow, jointly with 

the main model hyperparameters and the resulting artifacts. Provenance is also logged 

using yProv4ML (WP6).  

End-users can run the trained ML models through notebooks14 to perform analysis of TCs 

on current and future climate data and visualise the results through maps and charts as 

well as download/save them as NetCDF files. Multiple notebooks are available in 

particular:  

● The first notebook allows users to create inference maps of TCs on ERA5 data and 

compare them with IBTrACS observations. This allows the user to visually validate 

the model results. Widgets are provided to select the time period of interest 

among the test data. Additional plots are provided to further validate the data 

according to different metrics (e.g., duration of tracks, percentage of tracks 

detected, etc.); 

● The second notebook allows the end-users to run the model on the CMIP6 dataset. 

Before running the inference in the notebook, a preprocessing pipeline needs to 

be executed. This has been implemented as a Python script and as an Ophidia 

workflow for processing multiple datasets together. The notebook allows the 

researcher to produce inferences using the climate projection data from the 

HighResMIP CMIP6 dataset15 as the input to the ML models. Similarly to the 

wildfires use case, it includes a flexible way to choose the CMIP6 model and the 

range of years for which the detection is needed.  

 
14 https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/tree/main/notebook  
15 https://highresmip.org/experiments/experiment_cmip6   

https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/tree/main/notebook
https://highresmip.org/experiments/experiment_cmip6
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2.4 Oceanic mesoscale eddies analysis 

The Eddies DT addresses oceanic mesoscale eddies analysis. Ocean mesoscale eddies are 

the “weather” of the ocean, with typical horizontal scales of less than 100 km and 

timescales on the order of a month. 

This DT can be considered an example of “exploitation” use case, as it applies interTwin 

technologies to a DT provided by an external institution during the project lifetime; in 

particular the ML pipeline comes from the Alfred Wegener Institut (AWI) and it is based 

on unstructured grid data from the FESOM2 model (Figure 4 shows an example of 

topology and mesh of a FESOM2 setup). 

  

Figure 4 Topography and mesh of a FESOM2 setup with study region (black box). Image courtesy of AWI 

The goal is to provide Jupyter Notebooks for expert users (environmental scientists) in 

order to select the input data, spatial domain, temporal target, pre-trained ML model and 

then run the DT inference step. By properly configuring the input parameters in the 

Jupyter Notebook the users can then run the Eddies DT to perform the ML task. 

 

Figure 5 Eddies detected in the Mediterranean from Sea Level Anomaly (SLA) with py-eddy tracking. Image courtesy 

of AWI 
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One key aspect of the approach introduced by interTwin has been to move towards a 

data-driven paradigm. A ML algorithm learns from the ground truth generated by the py-

eddies-tracking package, which can be considered the state of the art algorithm to detect 

eddies and it is based on the closed contours of SSH. The inference is then much faster 

than the data-intensive application of thepy-eddies-tracker. The two workflows are easily 

implemented by leveraging interTwin technologies. Extra features like provenance 

support further document the ML training process. 

The DT reduces the complexity for the end users to perform eddies analysis. To this end, 

the thematic modules of interTwin facilitate the setup of the necessary models and 

workflows. 

In the scope of these activities on eddy detections, a researcher from UNITN spent three 

weeks in Bremerhaven, Germany, at the Alfred Wegener Institut, working with the other 

researchers on the Eddies DT workflow. 

2.5 Flood early warning in coastal and inland regions 

This DT focuses on the post event analysis of flood events, integrating flood maps derived 

from satellite observations with those of a numerical inundation model. Identifying the 

mismatches between the two types of flood maps allows a user to fine-tune their 

numerical inundation model, for instance by fine-tuning the location of potential dike 

breaches. 

End users will be able to specify a geographic region of interest and interTwin’s core and 

thematic modules will enable setting up the flood inundation SFINCS (Figure 6), including 

necessary Earth Observation data processing pipelines to monitor and predict floods for 

the user-defined region of interest. The DT runs the models and processing pipelines to 

generate flood maps, provide indicators for the overlap between the two types of flood 

maps, and allows a user to adjust the inundation model with dike breach or overtop 

locations. Users will also have the capability to add their own local data to the model 

schematisations, thus enhancing model accuracy (e.g., Digital Elevation Models based on 

local LiDAR surveys). 
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Figure 6 - a) Base configuration of the SFINCS model for the Darss peninsula built using local data. b) Example 

flood map produced by the SFINCS model from figure a) 

The DT’s flood maps are produced by SFINCS16 (Super-Fast Inundation of CoastS), a 

reduced-complexity model for super-fast dynamic modelling of compound flooding. 

SFINCS is forced by weather forecasts. Additionally, the DT combines the SFINCS flood 

maps with Sentinel-1-based flood maps generated by the Dask-flood-mapper, which 

implements the TU Wien flood mapping algorithm [R7]. This algorithm enables near real-

time mapping of the flood extent through Bayesian inference from Sentinel-1 Synthetic-

Aperture Radar (SAR) microwave backscattering. Globally applicable flood signatures are 

obtained through establishing predefined probability distributions of pixels under flood 

and non-flood conditions. These conditions are inferred on the generalised 

backscattering characteristics of water and land. The end user can run the dask-flood-

mapper and derive flood maps for the targeted region (Figure 7). An example of the 

workflow for Sentinel-1-based flood mapping in Python syntax has been published on the 

interTwin GitHub17.  

 
16 https://www.intertwin.eu/article/thematic-module-sfincs 
17 https://intertwin-eu.github.io/dask-flood-mapper/  

https://www.intertwin.eu/article/thematic-module-sfincs
https://intertwin-eu.github.io/dask-flood-mapper/
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Figure 7 Flood map for the Darss peninsula Germany on 21th of October 2023 using the TU Wien flood mapping 

algorithm 

The thematic modules of interTwin facilitate the setup of the necessary models and 

workflows anywhere on Earth. Workflow execution and offloading to remote compute 

infrastructure (WP5) is facilitated by the core modules (WP6). 

 

2.6 Alpine droughts early warning 

This DT aims at developing a drought early warning system for the Alpine region, 

providing seasonal forecasts of daily time series and maps of key hydrological variables 

such as Surface Soil Moisture (SSM, %), actual EvapoTranspiration (ET, mm) and 

streamflow (Q, m3/s). SSM and ET are produced at 1 km over the entire Alpine region 

whereas Q is produced at the outlets of the Alpine River basins (Figure 8). 
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Figure 8 DT Application region and river basins in red 

In summary, the DT receives meteorological variables from the ECMWF’s SEAS5 seasonal 

forecast system [R3] and feeds them into a hydrological workflow to predict hydrological 

variables up to 6 months in the future. New seasonal forecasts are produced at every 

beginning of the month, enabling the monitoring of the onset, propagation and 

termination of hydrological droughts. 

The users are able to set up and customise the DT’s hydrological workflow through the 

openEO interface (WP6) and run experiments and visualise the outputs by means of 

Jupyter Notebooks. 

The DT draws inspiration from the recent progress in hybrid modelling, where the relative 

strengths of data-driven algorithms and physical knowledge are combined and 

complemented. The injection of physical knowledge occurs in the initialisation of the 

data-driven model parameters, an approach that is known as physics-guided machine 

learning [R4]. The data-driven surrogate is trained to emulate the input-output mappings 

of a distributed hydrological model, wflow_sbm (WP7). The surrogate inputs are 

wflow_sbm’s effective parameters and meteorological variables. Once the surrogate 

successfully emulates wflow_sbm, it can be further fine-tuned by means of observations 
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or, as it is currently done in the DT, it can replace wflow_sbm for performing extensive 

calibration of its parameters. 

There are two properties of the physics-guided approach that are particularly 

advantageous: the computational performance and the flexible nature of DL 

architectures. The surrogate can run, in prediction, several orders of magnitudes faster 

than wflow_sbm, increasing the possibility of exploring larger regions of the parameter 

space to find optimal parameter sets. The DL models are also flexible as they can be 

adapted to different types and numbers of inputs, and they can be (relatively easily) 

composed and coupled with other NNs or differentiable models [R5]. 

The DT hydrological workflow consists of several logically linked components (Figure 9), 

which are to some degree customisable by the users. The workflow starts with the 

ingestion of SEAS5 and ends with the prediction of hydrological droughts. 

 

 
Figure 9 DT hydrological workflow linked components diagram 

The first component of the workflow initially downscales meteorological variables from 

the SEAS5 forecast for better skills in the Alpine region using the 'downscaleML' python 

package (WP7). This package, stemming from WP7.4, currently includes routines for data 

preprocessing and for building statistical downscaling models for temperature and 

precipitation fields using a predefined dataset as a reference.  
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The second component is responsible for setting up and building the hydrological model, 

wflow_sbm, leveraging on the HydroMT18 application, a software for automating model 

building based on configuration files. The current release offers the option to select two 

precipitation inputs (E-OBS19 and CERRA-LAND20), to change model resolution, and to 

filter input data temporally and spatially.  

The third component deals with running wflow_sbm, which is a semi-distributed 

hydrological model developed by Deltares and recently rewritten from Python to the Julia 

language, to boost performance. One of the strengths of the model is that most of the 

effective parameters can be estimated by pedo-transfer functions using readily available 

global datasets. The effective parameters of the model are conceptual constructs that 

cannot be observed. Nonetheless they can be functionally derived from properties and 

attributes of the basin (i.e. topography, vegetation structure, etc.). 

The fourth component is responsible for 

training the surrogate model. The surrogate is 

a Long Short-Term Memory (LSTM) NN which 

has been outperforming established physically 

based hydrological models in streamflow 

prediction tasks [R6]. As wflow_sbm spatial 

support is a grid of 1 km resolution, the LSTM 

model is trained over a representative 

subsample of its grid cells, to improve the 

training efficiency (maximise learned 

information and minimise training time). In every training loop, LSTM learns both SSM 

and ET at each grid cell (Figure 10) and Q at the outlet of the river basin. The loss function 

is a weighted sum of the individual losses of SSM, ET and Q. 

 

 
18 https://github.com/Deltares/hydromt  
19 https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe  
20 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land  

https://github.com/Deltares/hydromt
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-cerra-land
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Figure 10 Simulated Evapotranspiration and SSM time series at three locations over the Alpine region 

The fifth component deals with the parameter learning 

task. This task enables the calibration of the wflow_sbm 

parameters by training the surrogate model coupled with 

a NN that is responsible for learning the transfer function 

between the catchment attributes and the effective 

parameters. In this task the surrogate model weights are 

frozen and a CNN encoder is trained end-to-end to 

produce the optimal set of effective parameters. The CNN 

encoder is learning a transfer function from observations 

to effective model parameters. The loss function is based 

on the Mean Squared Error (MSE) between the simulated 

SM and the satellite-based SM retrievals (produced by TU 

Wien), and the simulated Q and the observed Q from the 

Alpine Drought Observatory (ADO)21 database. 

Finally, the set of optimal parameters can be used with the 

surrogate or with wflow_sbm to predict the seasonal forecasts of SSM, ET and Q. 

 
 
 
 
 
 

 
21 https://ado.eurac.edu/  

https://ado.eurac.edu/
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2.7 Flood climate impact in coastal and inland regions 

The DT for Flood Climate Impact in Coastal and Inland regions focus on simulating 

(compound22) flood events by producing their flood hazard maps and assessing their 

impact on building, utilities, roads, and accessibility. Additionally, the DT enables end 

users to assess the efficacy of flood adaptation and mitigation measures for historic 

events and for future climate and socio-economic scenarios, such as sea level rise and 

population growth. 

End users can define a geographic region of interest which will configure the necessary 

hazard and impact models and processing workflows using interTwin’s core and thematic 

modules. Additionally, users can:  

● Select weather events to be simulated  

● Select future changes to scenarios including physical projections (such as sea 

level rise or land subsidence)  

● Select socio-economic projections (such as population growth and economic 

growth),  

● Select adaptation and mitigation measures to be implemented for a given 

scenario (e.g., flood walls, pumps, levees, culverts, buyouts, flood proofing, 

and/or raising properties).  

Aside from using data provided through interTwin’s Data Lake, users also have the 

capability to add their own local datasets (e.g., local DEM, building footprints, critical 

infrastructure) into the DT workflow, enhancing the models’ accuracy. 

The DT model chain comprises four different models. Firstly, the flood hazard maps are 

produced by SFINCS, a reduced-complexity hydrodynamic model calculating flood 

extents. The user describes an event to simulate which determines the meteorological 

data used as boundary conditions for SFINCS and for the second model Wflow23, a 

hydrological model calculating river discharges for SFINCS to use. The flood maps 

produced by SFINCS are then ingested into the third and fourth models, Delft-FIAT24 and 

RA2CE25, which assess the direct damage to buildings and roads and the compounding 

impact on infrastructure networks respectively. The climate and/or socio-economic 

 
22 Compound flooding refers to a situation where multiple flooding sources combine to 

exacerbate the overall flood impact. These sources can include: 

● Fluvial Flooding: Flooding from rivers and streams due to heavy rainfall or snowmelt. 

● Coastal Flooding: Flooding from storm surges, high tides, or sea-level rise affecting coastal 

areas. 

● Pluvial Flooding: Flooding caused by intense rainfall overwhelming drainage systems, not 

necessarily linked to a body of water like a river or sea. 

When these sources coincide, their combined effects can lead to more severe flooding than 

would occur from any single source alone. 
23 https://www.intertwin.eu/article/thematic-module-wflow 
24 https://www.intertwin.eu/article/thematic-module-delft-fiat 
25 https://www.intertwin.eu/article/thematic-module-ra2ce 

https://www.intertwin.eu/article/thematic-module-wflow
https://www.intertwin.eu/article/thematic-module-delft-fiat
https://www.intertwin.eu/article/thematic-module-ra2ce
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scenarios and flood adaptation measures described by the user are translated into 

updated boundary conditions for these models by the FloodAdapt backend. 

The end user is provided with Jupyter Notebooks as an interface to the DT, which guides 

a user through the steps for configuring and running the DT. First, the user provides an 

area of interest based on which the models are configured (Figure 11). Next, the user 

describes the event to run by selecting meteorological data and providing a description 

of a climate and/or socio-economic scenario. The event will then be run by the model 

chain. Finally, the user can visualise and interact with the output data, either through the 

provided interactive visualisation notebook, examples of which are shown in Figure 12. 

 
Figure 11 SFINCS model configuration for the Humber estuary, UK as shown in the notebook showing the 

topography, rivers, and discharge time series in a) and the coastal waterlevel timeseries and floodmap output in 

b) 
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Figure 12 DT impact visualization showing the aggregated direct damage calculated by Delft-FIAT in a) and 

optimal routes in the (un)disrupted road networks calculated by RA2CE in b)  
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3 DT Applications Final release and 

Validation 

3.1 Generic Detection of Climate Extremes 

3.1.1 DT Application Integrations 

Model requirements  

The ML model uses as input data a subset of daily climate variables from the CMIP6 

dataset. The implementation is for the maximum daily surface temperature, in order to 

address heatwaves and very hot days. This DT can be used with other temperature, 

precipitation and wind atmospheric variables, using the fact that the anomaly detection 

method is generic. 

Table 1 Initial set of variables considered for training 

Full name CMIP6 

variable 

name 

Unit Implemented 

Daily Maximum Surface Temperature tasmax Kelvin Yes 

Daily Total Precipitation prtot kg/m^2/s No, but 

supported 

Daily Near Surface Wind Speed uvas m/s No, but 

supported 
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Workflow 

 
Figure 13 Overview of the workflow for DT on extreme events 

The workflow about the Generic Detection of Climate Extremes DT exploits the following 

components from the project: 

● WP7: The workflow depends on the modules available in the xtclim thematic 

module26. The Jupyter Notebook implementation directly uses the functions made 

available by the library.  

● WP6: The integration has been completed with the itwinai framework. xtclim is 

integrated as a plug-in to the DTE framework. 

● WP5: Data for training and inference are accessed from a local demonstration 

dataset (CMCC-ESM2 GCM CMIP6 data: historical, ssp126, ssp245, ssp370, ssp585 

for the period 1950-2100). The integration with the interTwin Data Lake is 

implemented as an alpha stage: initial feasibility tests have been successfully 

performed to evaluate the access to a sample set of CMIP6 data using the RUCIO 

and xarray Python modules. Implementation is not done due to the late availability 

of the data and technical issues with the cluster that delayed development and 

testing. 

3.1.2 Scope and limitations 

The current implementation of this DT targets climate extremes and impacts that can be 

calculated daily, and that are related to climate indices and percentile-based indicators. 

This DT can serve as a base to extend the current implementation to other climate 

extremes that involve a time dimension, such as droughts, or also to compound extreme 

 
26 https://github.com/interTwin-eu/xtclim  

https://github.com/interTwin-eu/xtclim
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events. 

Main limitations: 

● Hyperparameters need to be optimised and adjusted for each atmospheric 

variable. 

● Training must be conducted over a region with relatively homogeneous 

atmospheric variables and must be done season by season and separately for 

each climate model, using a long enough time period in which the climate change 

signal is relatively low and stable. 

● Current configuration of the implementation is for a 32x32 input data array only. 

This is suitable to ensure that the statistics of the climate variable is sufficiently 

uniform in order for the DL method to detect anomalies. 

The notebook is used for pre-processing the input data, performing the training of the 

ML model and to perform projection of the model using the CMIP6 dataset. Scripts are 

provided for running all or parts of the workflow. The configuration of the parameters 

(Figure 14 and Figure 15) and the workflow (Figure 16) is done through a self-described 

config.yaml file. Main user parameters are also described in the notebook and in the 

documentation README.md. A sample config.yaml file is provided to users to modify 

according to their input data and atmospheric variables they want to analyze. 

 
Figure 14 Template for the main configuration of the input data to the DT 
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Figure 15 Template for the configuration of Training and Model configurations and parameters 

 

 
Figure 16 Template for the description of the DT workflow with parameters for each step 
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3.1.3 Preconditions 

Users have access to DT input data (CMIP6). No pre-trained ML model is provided because 

it depends on specific users’ choices (climate model, region, atmospheric variable). The 

end user is expected to have basic python level knowledge about notebooks, and also to 

understand climate model simulation datasets. 

3.1.4 Validation and Results 

The DT application has been validated using 2m Daily Maximum Temperature input data 

from one GCM and several SSPs27. First, the loss function was analyzed over the training 

and the test period, to ensure its stability. The inference results for several SSPs were 

compared to results of the percentile-based climate indices resulting from a classical 

analysis (icclim28 software which is not using AI). The loss value is correlated to the 

percentage of anomalies (extremes) in the analyzed atmospheric variable. 

Examples of output can be seen in both Figure 17 and Figure 18. Those results can be 

used to study the trends in climate extremes over the regions and variables of interest. 

 

 
Figure 17 Annual Mean Losses for the 2m Daily Maximum Temperature 

 
27 https://gmd.copernicus.org/articles/9/3461/2016/)  
28 https://icclim.readthedocs.io/en/stable/   

https://gmd.copernicus.org/articles/9/3461/2016/
https://icclim.readthedocs.io/en/stable/
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Figure 18 Number of days above threshold anomaly detection per year for the 2m Daily Maximum Temperature. 

Those anomalies represent climate extremes (very hot days) 

3.2 Wildfire danger prediction in response to climate 

change 

3.2.1 DTs Application Integrations 

Model requirements 
 
The primary objective of the wildfires DT case study is to design DL architectures, inspired 

by CNNs, that can capture complex relationships between selected input variables and 

burned areas at a global scale. These models produce outputs in theoretical percentage 

hectares of burned area, providing an indication of wildfire severity across different 

regions of the world. 

The ML model uses as input data a subset of climate and environmental variables from 

the SeasFire Cube datacube for training (see section 2.2 for more details). Among the fire 

drivers provided in the SeaFire dataset, Table 2 lists the fire predictors for which we have 

trained our UNet++ model to demonstrate the use case. The SeasFire Cube data can be 

downloaded from Zenodo29. 

 
Table 2 SeasFire Cube and corresponding CMIP6 data variables identified to carry out the wildfires prediction case 

study 

Full name SeasFire Cube name Unit CMIP6 name 

 ERA5 Reanalysis Data 

Total precipitation tp m pr 

Relative humidity rel_hum % hur 

 
29 SeasFire Cube: https://zenodo.org/records/8055879  

https://zenodo.org/records/8055879
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Temperature at 2 meters – Min t2m_min K tasmin 

Land-Sea mask lsm 0-1 sftlf 

Nasa MODIS MOD11C1, MOD13C1, MCD15A2 

Leaf Area Index lai m2m-2 lai 

Global Wildfire Information System (GWIS) 

Burned Areas from FCCI fcci_ba ha Used only for 

training 

 

The trained model can be applied either on SeasFire cube data or CMIP6 data. A RUCIO 

“dataset” in the interTwin Data Lake called ScenarioMIP (under the CMIP6 scope) has been 

created with the following variables at daily resolution and 100 km scale: sftlf, hur, lay, 

sfcWinds, pr, tasmin and tasmax (more details on the data are reported in section 2.2). 

Table 3 shows a breakdown of the different model and climate scenarios considered for 

the DT application demonstration. Such data can be accessed by simply querying the 

interTwin Data Lake infrastructure and by other DT applications (i.e., generic detection of 

climate extremes). The ML4Fires thematic module supports direct access to data on the 

interTwin Data Lake based on RUCIO. Additional CMIP data can be downloaded from 

ESGF30 and uploaded to the interTwin Data Lake using the esgpull_rucio (WP7) toolkit 

from the DTE.  
 

Table 3 CMIP6 data from ScenarioMIP project made available on the interTwin Data Lake 

Model name Scenarios available Volume 

CMCC-ESM2 ssp126, ssp245, ssp585 

 

167GB 

NorESM2-MM 

 

ssp126, ssp245 138GB 

CESM2 ssp126, ssp245, ssp585 256GB 

MPI-ESM1-2-HR ssp126, ssp245, ssp585 316GB 

 

 
30 ESGF Search portal at IPSL: https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/  

https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/
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In the use case of wildfires, distinction is not made between the cause of the fire. That is 

to say that burned areas caused by human intervention (directly - such as arson - or 

indirectly caused due power grids etc.) or natural (lightning).  

Furthermore, for stable model learning, the target variable is not directly the area burned 

hectares but instead the theoretical percentage of the pixel burned to forest fires. This 

limits the range of the output value between 0 and 1.  

 

Workflow 

Figure 19 depicts the high level workflow related to the DT application on burned areas 

prediction and the links with the project components and infrastructure.

 

Figure 19 Overview of the wildfires DT application workflow 

In particular, wildfires DT exploits the following components from the project: 

● WP5:  

○ RUCIO: All the data needed by the DT, both for training and inference is 

available on RUCIO. CMIP6 data can be retrieved using the RUCIO client; 

○ interLink: The DT application relies on interLink for deploying the 

Singularity images and offloading the computation on the project testbed 

infrastructure (e.g., Vega);  

● WP6:  
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○ PyOphidia and yProv: Workflow management system (i.e., PyOphidia) for 

running the inference pipelines. A PyOphidia extension also allows tracking 

the workflow provenance that can be inspected with yProv components;  

○ itwinai and yProv4ML: Skills and provenance of an ML model can be 

tracked respectively on MLflow and via yProv4ML during training through 

the itwinai framework. The same interface is also used to log artifacts on 

MLflow (e.g., the model weights, the provenance documents) 

○ SQAaaS platform: In particular the Ophidia Workflow Validation Tool is 

used to validate the PyOphidia workflow structure; 

● WP7:  

○ Esgpull_rucio: can be used for gathering data from ESGF nodes and 

uploading them to RUCIO; 

○ ML4Fires: the DT application heavily relies on the modules and libraries 

from the ML4Fires thematic module for training a ML model, validating the 

results and running the inference. The notebooks are stored in the 

notebooks folder the module31. 

The inference pipeline, based on an Ophidia workflow, allows for production of burned 

areas results across an ensemble of different climate models32. This includes multiple 

Ophidia tasks covering the whole data preparation, ML model execution and data post-

processing steps. In particular, given a set of input parameters (see next section), the 

workflow takes care of selecting the variables from the input NetCDF files, aggregating 

them accordingly (different operations can be applied to the various variables), regridding 

the variables to a common grid, running the provided pre-trained ML model on such data, 

masking the results and computing the statistics from the ensemble of results on multiple 

CMIP6 models. The workflow is implemented in cwl/json and can be managed with the 

PyOphidia module. Provenance information can also be produced by the module, once 

the execution is completed. 

3.2.2 Scope and limitations 

The DT application serves a wide variety of professionals in terms of the level of expertise 

(climate/environmental scientists). Given the wide range of end-users, the DT strived to 

strike a balance between simplicity (for less technically inclined uses) and high 

configurability (for expert users). Therefore, the use of a familiar Jupyter Notebook makes 

it easy for non-technical end-users (DT application users) and the TOML33 based 

configuration provides high configurability for the expert users (DT application 

developers). For example, the developer can set the key hyperparameters (e.g., training 

metrics, loss, driver list, etc.). 

 
31 https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks  
32 https://github.com/CMCC-Foundation/ML4Fires/tree/main/workflows  
33 https://toml.io/en/  

https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks
https://github.com/CMCC-Foundation/ML4Fires/tree/main/workflows
https://toml.io/en/
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The notebooks are used for validating the trained ML model and to perform projection 

of the burned areas using the CMIP6 dataset. Scripts are provided for running the training 

process. 

The Jupyter Notebook allows to: 

1. Select through widgets: 

a. CMIP6 model and scenario from a range of models and scenarios available 

(see Table 3).  

b. The years to include in the analysis (from the range 2015-2100); 

c. ML model from a set of pre-trained models using the experiments stored 

in the MLflow framework; 

d. The aggregations to be performed - on a monthly/seasonal/annual basis - 

on inferred burned areas from CMIP6 data. Furthermore, the statistics of 

the aggregation can also be selected. 

2. Run the DT workflows on the selected input data and pre-trained model; 

3. Save as NetCDF and/or visualise the results. Different indicators can be provided, 

for example: 

a. seasonal/annual burned area maps 

b. burned areas aggregated by region 

Figure 20 and Figure 21 show the interface of the notebook demonstrating these 

options. Figure 22 shows results from different aggregation schemes for the 8-day 

burned area predictions: in the left image, the burned areas were summed on a monthly 

scale and then averaged on yearly and decadal scales, while in the right image mean was 

taken on monthly and then on yearly and decadal scales. These results are computed on 

the CMIP6 model CMCC-ESM2 for the scenario SSP126. 
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Figure 20 Interface to choose the CMIP6 models and scenarios along with the years to include in the analysis. 
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Figure 21 Interface to choose the aggregation of the 8-day burned area forecast on the seasonal, yearly, and 

decadal time-scale. 

 

Figure 22 Results from different aggregation schemes for the 8-day burned area predictions applied on the CMIP6 

model CMCC-ESM2 for the scenario SSP126 

3.2.3 Preconditions 

Users have access to DT data (i.e., SeasFire cube, CMIP6), pre-trained ML models, thematic 

components and Jupyter notebook, as well as the interTwin platform. The end-user is 
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expected to have basic level knowledge of how to work with Python-based notebooks. 

3.2.4 Validation and Results 

In order to validate the ML model training process we track the loss values on MLflow, i.e. 

the weighted binary cross-entropy for each epoch, to make sure there is no overfitting. 

Then we further validate the trained model on a test set i.e., years 2019 and 2020 of the 

SeasFire cube. These years have not been used as part of the training or validation but 

instead on dataset that the network has never seen. Different metrics including Mean 

Absolute Error (MAE) and Structural Similarity Index Measure (SSIM) are computed to 

quantify how far the predictions are with respect to ground truth. 

To visually validate the results a map with the difference between the prediction and 

ground truth, in terms of percentage of burned area per grid point, is also computed and 

averaged across the test set time range (see Figure 23). As it can be seen differences are 

in the range of ±0.2%. The resulting MAE value on the same test set is 0.01 % while the 

similarity index (SSIM) is 0.95. To simplify the validation phase a Jupyter Notebook is 

available34. 

 

 
Figure 23 Average difference in terms of percentage of burned area per grid point on the test set between the 

values predicted by the ML model and the ground truth from the SeasFire cube 

 
 

 
34 https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks  

https://github.com/CMCC-Foundation/ML4Fires/tree/main/digital_twin_notebooks
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3.3 Tropical storms change in response to climate 

change 

3.3.1 DTs Application Integrations 

Model requirements 

The ML model uses as input data a subset of climate and environmental variables from 

ERA5, combined with IBTrACS information to be used during the supervised training. The 

portion of ERA5 data is divided as follows: 

● Training: 30 years — from 1980 to 2009 — 70% of the data 

● Validation: 4 years — from 2010 to 2013 — 10% of the data 

● Testing: 8 years — from 2014 to 2021 — 20% of the data 

As reported in Table 4, this data occurs with a 6-hour temporal resolution and a 0.25-

degree spatial resolution. The set of variables considered for training is reported in Table 

4. The set of variables considered in the final implementation of the ML model includes 

only psl and vo_850. 

Table 4  Input parameters to the ML model 

Full name CMIP6 name ERA5 name Unit 

10m wind gust since previous 

post-processing 

N.A. fg10 m/s 

instantaneous 10m wind gust N.A. i10fg m/s 

temperature at 500 mb tas (at pressure 

level 500 hPa) 

t_500 K 

temperature at 300 mb tas (at pressure 

level 300 hPa) 

t_300 K 

relative vorticity at 850 mb Rv850 (when 

available) 

vo_850 1/s 

mean sea level pressure psl msl Pa 
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The trained model can be applied either to ERA5 data or to high-resolution CMIP6 data. 

In particular, data from the HighResMIP35 [10] CMIP6 project has been uploaded on the 

interTwin Data Lake and the related “dataset” called HighResMIP has been created under 

the CMIP6. In particular three variables have been considered from CMIP6 (i.e., ua, va and 

psl) at a 25 km scale and 6 hourly resolutions. In this case only the ssp585 future emission 

scenario (called “highres-future”) is available. Table 5 shows a breakdown of the different 

models considered for the DT application demonstration. Such data has been then 

processed before being fed to the ML model by using an Ophidia workflow36. The 

workflow takes care of extracting the use case spatial area, compute the relative vorticity 

from the wind components (ua, va) and performing other data manipulation operations 

to make the data more readily usable by the ML model. As the original data volume is 

quite large (about 4TBs), the workflow has been executed only once and the resulting 

processed data (around 400GBs) is stored on the interTwin Data Lake. Such data can then 

be directly accessed by querying the Data Lake infrastructure based on RUCIO. 
 

Table 5 CMIP6 data from HighResMIP project made available on the interTwin Data Lake 

Model name Scenarios available Volume (original) 

CMCC-CM2-VHR4 ssp585 

 

1.9TB 

EC-Earth3P-HR 

 

ssp585 1.1TB 

MPI-ESM1-2-HR ssp585 344GB 

CNRM-CM6-1-H ssp585 515GB 

 
 

Workflow 

Figure 24 shows the high-level view of the workflow related to the digital twin use case 

on TCs detection and links with the project components/infrastructure. 

 
35 https://highresmip.org/experiments/experiment_cmip6/  
36 https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/tree/main/workflows  

https://highresmip.org/experiments/experiment_cmip6/
https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/tree/main/workflows
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Figure 24 Overview of the Tropical Cyclones DT application 

In particular, the tropical cyclones DT application exploits the following components from 

the project: 

● WP5:  

○ RUCIO: Data for training and inference can be accessed from the interTwin 

Data Lake based on RUCIO; 

○ interLink: similarly to the previous case, the DT application relies on 

interLink for deploying the Singularity images and offloading the 

computation on the project testbed infrastructure (e.g., Vega);  

● WP6:  

○ PyOphidia and yProv: a workflow management system (i.e., PyOphidia) 

has been used for pre-processing the CMIP6 data and preparing it to be 

used by the pre-trained ML models. This allows also to track the workflow 

provenance that can be inspected with yProv components;  

○ itwinai and yProv4ML: itwinai logger is used to track the model 

performance during the training on MLflow as well as the provenance by 

relying on yProv4ML. Itwinai is also used to store the training artifacts on 

MLflow; 

○ SQAaaS platform: The Ophidia Workflow Validation Tool can be used to 

validate the PyOphidia workflow structure; 
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● WP7:  

○ ML TC Detection: the workflow depends on the modules available in the 

ML TC Detection thematic module for running the functions for training the 

different implementations of the ML model, validating the results. The 

module also provides a feature for running the overall pipeline for tracking 

TCs on climate data. The Jupyter Notebooks use the functions made 

available by the library. 

 

3.3.2 Scope and limitations 

The goal is to provide Jupyter Notebooks for expert users (climate/environmental 

scientists) to: 

The Jupyter Notebook37 allows: 

1. Select: 

a. CMIP6 model from a range of models available (see Table 5).  

b. The years to include in the analysis (from the range 2015-2050); 

c. ML model from a set of pre-trained models using the experiments stored 

in the MLflow framework; 

2. Run the DT workflows on the selected input data and pre-trained models; 

3. Save as CSV and/or visualise the results. Different indicators can be provided, for 

example: 

a. TC tracks and number of tracks for each year/month; 

b. Duration of TCs per year. 

Figure 25 shows the interface of the notebook for selecting these options, while Figure 

26 displays the results of the application of the TC tracking workflow applied on a subset 

of the HighResMIP model CMCC-CM2-VHR4. 

 
37 https://github.com/CMCC-Foundation/ml-tropical-cyclones-

detection/blob/main/notebook/inference_notebook.ipynb  

https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/blob/main/notebook/inference_notebook.ipynb
https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/blob/main/notebook/inference_notebook.ipynb
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Figure 25 Interface to choose the CMIP6 models along with the years to include in the analysis. 

 

 

Figure 26 Results from the TC tracking applied on a subset of the CMIP6 model CMCC-CM2-VHR4 

 

3.3.3 Preconditions 

Users have access to DT data, pre-trained ML models, thematic components and Jupyter 

notebook, as well as the interTwin platform. 

3.3.4 Validation and Results  

To evaluate the generalization capabilities of the models, their performance is assessed 

on out-of-samples and compared against IBTrACS values. Two widely used evaluation 

metrics are adopted, Probability of Detection (POD) and False Alarm Rate (FAR), which are 

commonly employed to assess the accuracy of TC tracking systems. These metrics are 

defined as follows: 

 

𝑃𝑂𝐷 =  
𝐻

𝐻 + 𝑀
 

𝐹𝐴𝑅 =  
𝐹𝐴

𝐻 + 𝐹𝐴
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Where H is the number of observed tracks correctly matched by at least one detected 

track during the TC lifetime, M is the number of observed tracks with no corresponding 

detected tracks and FA is the number of detected tracks that don’t match any observed 

track. The final setup of the model has a POD of 84.2% and a FAR of 28.2%. Figure 27 

shows an example of the TC track (“Keoni” cyclone) detected by our final setup and 

compares it with the actual track available in the IBTrACS dataset. 

 

 
Figure 27 IBTrACS (in red) and detected TC trajectory (in blue) for the Keoni tropical cyclone 

3.4 Eddies detection 

The Eddies DT Application addresses oceanic mesoscale eddies analysis. It can be 

considered an example of “exploitation” DT, as it applies interTwin technologies to an 

extra DT provided by an external institution; in particular the ML pipeline comes from the 

Alfred Wegener Institut (AWI)38 and it has been ported, tested and validated both on VEGA 

EuroHPC and the ENES Data Space infrastructure39. Porting includes also transferring the 

output of FESOM240 simulations by downloading them from the AWI storage. The Eddies 

DT repository includes the script to perform the main steps of the pipeline, including 

interpolation of FESOM2 unstructured grids to matrices, production of the segmentation 

masks with pyEddyTracker41, training of CNN models and inference.  

 

 
38 https://www.awi.de/en/  
39 https://enesdataspace.vm.fedcloud.eu/  
40 https://fesom.de/models/fesom20/  
41 https://py-eddy-tracker.readthedocs.io/en/stable/  

https://www.awi.de/en/
https://enesdataspace.vm.fedcloud.eu/
https://fesom.de/models/fesom20/
https://py-eddy-tracker.readthedocs.io/en/stable/
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3.4.1 DTs Application Integrations 

Model requirements  

 

The ML model uses as input data from AWI. In particular the input dataset consists of 132 

files (1 file per month) and it covers a 10-year timeframe from 2009 to 2019, with daily 

temporal resolution and 1/12° spatial resolution. Overall the entire dataset is about 

35GB. The focus is on the South Atlantic (70W to 30E and 60S to 20S) which represents an 

Eddy-rich region. 

  

● Training: 7 years, from 2009 to 2015 — 64% of the data 

● Testing: 2 years, from 2016 to 2017 — 18% of the data 

● Validation: 2 years from 2018 to 2019 — 18% of the data 

The variable used in the training was the SSH variable (Sea Surface Height). 

 

Workflow 
 

Figure 28 shows the high-level view of the workflow related to the Eddies DT use case. 

 

Figure 28 Eddies DT unified training and inference workflow 

 
The workflow consists of two pipelines: training and inference. While the first one is 

managed by the DT developer, the second one applies to the DT user (e.g., scientist). 
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The “DT training pipeline” starts from the SSH variable taken from the unstructured data 

generated by the FESOM2 model, it provides an interpolation on a regular grid and then 

it goes as input to the U-Net training jointly with the segmented data from the ground 

truth generation task. The traceability of the ML training process is ensured by the 

yProv4ML integration, which delivers the provenance document represented in Figure 

29 (code) and Figure 30 (provenance graph). 

The “DT inference pipeline”, takes as input testing data from FESOM2, it does (as before) 

an interpolation to a regular grid and then it uses the ML model to run the U-Net 

inference. As a result, the predicted segmentation masks are generated.  

The ML steps are performed with the help of the TensorFlow framework. Concerning the 

links with the project components/infrastructure, an integration with both yProv (WP6) 

and the EddiesML component (WP7), which provides foundational modules for this 

workflow, was performed The deployment was done on the ENES Data Space 

infrastructure for the preliminary experimental phase and on EuroHPC VEGA at a later 

stage to validate the final version of the DT.  

 

 
Figure 29 EddiesML notebook integrating the AI provenance tracking capability. As it can be seen the integration 

with yProv4ML calls (cell 3 and 28) is lightweight and does not significantly impact on the user’s code 
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Figure 30 Traceability of the entire ML training process, documented via yProv4ML integration with a focus on a 

subset of the provenance graph, highlighting some of the metrics captured by the library at runtime 

3.4.2 Scope and limitations 

The goal is to provide Jupyter Notebooks for expert users (environmental scientists) in 

order to select the input data, spatial domain, temporal target, pre-trained ML model and 

then run the DT inference step. By properly configuring the input parameters in the 

Jupyter Notebook the users can then run the Eddies DT application to perform the ML 

task. A more general goal of this DT is that it can be considered an example of 

“exploitation” DT, as it applies, with limited effort, interTwin technologies to an extra DT 

provided by an external institution (AWI).  

 

3.4.3 Preconditions 

Users have access to DT data, pre-trained ML model, thematic components and Jupyter 

Notebook, as well as the interTwin platform. 

 

3.4.4 Validation and Results 

The accuracy metric for the loss function used has been the Sørensen–Dice coefficient, a 

statistic used to gauge the similarity of two samples. 

According to its definition: 
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Where X represents the prediction set comprising all the pixels that a CNN identifies as 

belonging to an eddy, and Y is the ground truth set consisting of the pixels that 

correspond to an eddy. 

  

  
Figure 31 Validation phase pyEddyTracker vs Eddies DT inference 

 

As shown in Figure 31, according to the validation performed during the last stage of the 

project, the overall accuracy was about 90% for the ground truth provided by the 

pyEddyTracker (two plots comparing the ground truth vs results segmentation are 

reported in the figure above).  

In terms of performance, the run performed on the system showed an execution time on 

a single image (as “unit” of test) which was with the Eddies DT inference task 3 orders of 

magnitude faster than the pyEddyTracker application, showing the great impact in 

moving from a data-intensive (pyEddyTracker) approach to a data-driven one (Eddies DT). 

 

3.5 Flood early warning in coastal and inland regions 

This DT application leverages on the models and tools listed in the next section. These 

are open source and can be found at the respective repositories listed in D7.742.  

Jupyter Notebooks and CWL workflows are available at the project’s repositories and 

describe how to set up the necessary models and run them for the DT application 

leveraging the interTwin DTE. 

3.5.1 DTs Application Integrations 

Model requirements 

The flood early warning DT for coastal and inland regions relies on two process-based 

 
42 D7.7 Final version of the thematic module for the environment domain 

https://zenodo.org/records/14918025 

https://zenodo.org/records/14918025
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models combined with satellite observations of floods: 

1. SFINCS: a reduced-complexity model designed for super-fast modelling of 

compound flooding in a dynamic way. 

2. HydroMT: an open-source Python package that facilitates the process of building 

and analysing spatial geoscientific models with a focus on water system models. 

It does so by automating the workflow to go from raw data to a complete model 

instance which is ready to run and to analyse model results once the simulation 

has finished. 

3. Satellite-based flood monitoring using dask-flood-mapper: an existing workflow 

for flood monitoring has been re-developed as a Dask-powered Docker container, 

ensuring scalability and interoperability on several platform backends. Publicly 

available datasets stored at the EODC facilitate the Dask implementation of 

Sentinel-1 based flood maps. These datasets are published as SpatioTemporal 

Asset Catalogues (STAC43) — a common language to describe geospatial 

information, which ensures discoverability and interoperability of the data. The 

STAC catalogues can be accessed with common HTTP verbs, as well as via a variety 

of Python clients. The dask-flood-mapper implementation makes use of three 

datasets (or “collections'' in STAC terminology): 1) the σ0 backscatter data 

projected in Equi7Grid at 20 meter pixel spacing, 2) the Projected Local Incidence 

Angle (PLIA) values of those measurements, and 3) the harmonic parameters of a 

model fit on the pixel’s backscatter time series over land. This harmonic model 

fitted on historical data describes typical seasonal Sentinel-1 σ0 backscatter 

variation on a 20 meter pixel level. These three collections of the STAC catalogue 

are respectively designated as: “SENTINEL1_SIG0_20M”, “SENTINEL1_HPAR”, and 

“SENTINEL1_MPLIA”. The dask-flood-mapper package also provides the option to 

re-calculate harmonic parameters for a particular region on-the-fly using more up-

to-date backscatter data, which can provide for a better result at the cost of 

processing speed. 

 
43 https://stacspec.org/en/ 

https://stacspec.org/en/
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Workflow 

 
Figure 32 High-level workflow diagram for the flood early warning DT 

The workflow for the flood early warning DT is implemented in a Jupyter Notebook 

(Figure 12 in the Section on the flood climate impact DT) and has been exploiting the 

following components from the project: 

● WP7: The workflow depends on functionalities from the hydrological model data 

processing thematic module dependent on HydroMT44, SFINCS45, and dask-flood-

mapper46 to generate the flood maps.  

● WP6: CWL workflows have been developed integrating SFINCS, HydroMT, and 

dask-flood-mapper to preprocess the SFINCS model, generate floodmaps and 

provide indicators for the comparison between the SFINCS and dask-flood-

mapper outputs. The SFINCS model is run using the WP6 component OSCAR which 

offloads the job to HPC using interLink (WP5). 

● WP5: Global data for model building are accessed from the interTwin Data Lake 

using RUCIO. To further improve the inundation model, the use case used local 

data for model building and preprocessing. It is up to the user to provide such 

local data, with an example provided in the notebook interface on how to 

configure such data for use in the DT.  

3.5.2 Scope and limitations 

The goal is to provide Jupyter Notebooks for expert users to: 

 
44 https://www.intertwin.eu/article/thematic-module-hydromt-sfincs 
45 https://www.intertwin.eu/article/thematic-module-sfincs 
46 https://www.intertwin.eu/article/thematic-module-dask-flood-mapper  

https://www.intertwin.eu/article/thematic-module-hydromt-sfincs
https://www.intertwin.eu/article/thematic-module-sfincs
https://www.intertwin.eu/article/thematic-module-dask-flood-mapper
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1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models and Earth Observation processing pipelines to produce 

deterministic flood maps for a user-defined region of interest, validate the 

resultant output data against observations, and compare flood maps derived from 

satellite observations and process-based models. 

 

A demonstration is provided for the Darss peninsula in northeast Germany.  

The main limitation for Sentinel-1 based flood maps are the availability of suitable 

overpasses of the satellite. This means that flood events, or the peak flooding extent of 

an event, can be missed. 

3.5.3 Preconditions 

Users have access to DT data, models, thematic components and Jupyter Notebooks. 

1. Users can:  

a. Specify a region of interest, 

b. Specify a temporal period to simulate, 

c. Select local data for the models if available. 

2. Users run the DT workflows for the specified region and period using default 

global data or selected local data if available. 

3. The output of the DT can be visualised in the Jupyter Notebooks and the data can 

be downloaded/saved as NetCDF or GeoTIFF data. 

3.5.4 Validation and Results 

The SFINCS inundation model for the Darss peninsula is validated by comparing the water 

level time series generated by the model with local water level gauge data available at 

selected points (Figure 33). The Jupyter Notebook interface of the DT facilitates this 

comparison. Since the validation is against local data, it is to the user to provide the 

necessary validation data. In our use case, we retrieved data via 

www.pegelonline.wsv.de for the storm Babet in October 2023. The gauge at Barhoeft 

was also used for the boundary conditions at the entrance of the inlet. The locations Barth 

and Althagen are further inside the inlet and peak water levels show good agreement 

with the observed water levels. Flood extents are only compared to those generated by 

the flood monitor (dask-flood-mapper), guided qualitatively by news reports of dike 

breaches/overtoppings. Inclusion of dike breaches improves the agreement between the 

SFINCS and flood monitor floodmaps, see Figure 34. More in-depth comparison between 

the two floodmaps is limited by factors such as a different water mask (e.g. the reed rim 

along the water’s edge), the timing of the satellite overpass relative to the peak water 

level, and the sensitivity of the flood monitor in coastal areas. The satellite passed over 

the area approximately one day after the peak water levels at the entrance of the inlet or 

half a day inside the inlet respectively (Figure 33). Flood waters may have receded already 

to some extent on the satellite images leading to a smaller area flooded when comparing 

to the maximum flood extents generated by the model.  

http://www.pegelonline.wsv.de/
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Figure 33 SFINCS validation by comparing waterlevels observed at the green triangles in Figure 6b) (dashed lines) 

with the SFINCS output (solid lines). The solid black line indicates the timing of the satellite overapss 

 
Figure 34 Agreement between Global Flood monitor and SFINCS for a small section of the Darss peninsula without 

(a) and with (b) dike breaches in the SFINCS model. The inset in b) shows the percentage agreement over the full 

domain 

3.6  Alpine droughts early warning 

3.6.1 DTs Application Integrations 

The inputs of the wflow_sbm hydrological model are produced and processed from 

dynamical meteorological forcings and static parameter maps by running the HydroMT 

component. These inputs are open source datasets (Table 6) that are collected and 

registered into a Spatio-Temporal Assets Catalog.  
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Table 6 Input Parameters from Open Source Datasets 

Collection/D

ataset 

Parameter Source STAC 

 

 

 

 

EMO1 

total_precipitation   

 
https://data.jrc.ec.europa.eu/dat

aset/0bd84be4-cec8-4180-97a6-

8b3adaac4d26 

 

 

https://stac.intert

win.fedcloud.eu/c

ollections/EMO1_

TA24_PR_RG_PET_

DAILY 

orography 

2m_temperature 

Jansen_Haise 

PET 

Potential 

Evapotranspiratio

n 

Processed using PyET from EMO1  https://stac.intert

win.fedcloud.eu/c

ollections/EMO1_

TA24_PR_RG_PET_

DAILY 

SoilGrid 2000 Bulk density https://files.isric.org/soilgrids/lat

est/data/bdod  

stac.eurac.edu:80

80/collections/SO

ILGRIDS  Organic carbon https://files.isric.org/soilgrids/lat

est/data/soc  

Clay https://files.isric.org/soilgrids/lat

est/data/clay  

Silt https://files.isric.org/soilgrids/lat

est/data/silt  

Sand https://files.isric.org/soilgrids/lat

est/data/sand  

pH https://files.isric.org/soilgrids/lat

est/data/phh2o  

Soil thickness https://files.isric.org/soilgrids/for

mer/2017-03-

10/data/BDTICM_M_250m_ll.tif 

Corine Land 

Cover 2018 

land cover class http://s3.eu-central-

1.wasabisys.com/eumap/lcv/lcv_l

andcover.hcl_lucas.corine.rf_p_30

m_0..0cm_2018_eumap_epsg3035_

v0.1.tif  

https://stac.eurac

.edu/collections/C

LC2018  

Merit hydro 

 

flow direction https://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_Hyd

ro/ 

stac.eurac.edu/co

llections/MERIT_H

YDRO  elevation 

HAND 

upstream area 

river width 

HydroLakes - https://www.hydrosheds.org/pro

ducts/hydrolakes  
No 

Grand v1.3 - https://ln.sync.com/dl/bd47eb6b0

/anhxaikr-62pmrgtq-k44xf84f-

pyz4atkm/view/default/44781952

0013 

No 

Randolph 

Glaciers 

inventory 

- https://cds.climate.copernicus.eu

/cdsapp#!/dataset/insitu-glaciers-

extent?tab=overview   

No 

https://data.jrc.ec.europa.eu/dataset/0bd84be4-cec8-4180-97a6-8b3adaac4d26
https://data.jrc.ec.europa.eu/dataset/0bd84be4-cec8-4180-97a6-8b3adaac4d26
https://data.jrc.ec.europa.eu/dataset/0bd84be4-cec8-4180-97a6-8b3adaac4d26
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://stac.intertwin.fedcloud.eu/collections/EMO1_TA24_PR_RG_PET_DAILY
https://files.isric.org/soilgrids/latest/data/bdod
https://files.isric.org/soilgrids/latest/data/bdod
https://stac.eurac.edu:8080/collections/SOILGRIDS
https://stac.eurac.edu:8080/collections/SOILGRIDS
https://stac.eurac.edu:8080/collections/SOILGRIDS
https://files.isric.org/soilgrids/latest/data/soc
https://files.isric.org/soilgrids/latest/data/soc
https://files.isric.org/soilgrids/latest/data/clay
https://files.isric.org/soilgrids/latest/data/clay
https://files.isric.org/soilgrids/latest/data/silt
https://files.isric.org/soilgrids/latest/data/silt
https://files.isric.org/soilgrids/latest/data/sand
https://files.isric.org/soilgrids/latest/data/sand
https://files.isric.org/soilgrids/latest/data/phh2o
https://files.isric.org/soilgrids/latest/data/phh2o
https://files.isric.org/soilgrids/former/2017-03-10/data/BDTICM_M_250m_ll.tif
https://files.isric.org/soilgrids/former/2017-03-10/data/BDTICM_M_250m_ll.tif
https://files.isric.org/soilgrids/former/2017-03-10/data/BDTICM_M_250m_ll.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_lucas.corine.rf_p_30m_0..0cm_2018_eumap_epsg3035_v0.1.tif
https://stac.eurac.edu/collections/CLC2018
https://stac.eurac.edu/collections/CLC2018
https://stac.eurac.edu/collections/CLC2018
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://stac.eurac.edu:8080/collections/MERIT_HYDRO
https://stac.eurac.edu:8080/collections/MERIT_HYDRO
https://stac.eurac.edu:8080/collections/MERIT_HYDRO
https://www.hydrosheds.org/products/hydrolakes
https://www.hydrosheds.org/products/hydrolakes
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://ln.sync.com/dl/bd47eb6b0/anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/default/447819520013
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview


D4.7 Final version of the DTs capabilities for climate change and impact decision support tools including 

validation reports 

 

58 

interTwin – 101058386  

Roughness 

river 

mapping 

- https://github.com/Deltares/hydr

omt_wflow/tree/main/hydromt_

wflow/data/wflow 

No 

Corine 

mapping 

- https://github.com/Deltares/hydr

omt_wflow/tree/main/hydromt_

wflow/data/lulc 

No 

river_ge30m - https://zenodo.org/records/35527

76#.YVbOrppByUk 
No 

 

The processed input-output of wflow_sbm is required for training the surrogate model 

(Table 7). 

Table 7 Processed input-output of wflow_sbm 

Collection/

Dataset 

Parameter Source STAC 

Wflow sbm 

forcings 

Precipitation  Processed by HydroMT Yes 

PET Processed by HydroMT Yes 

Temperature Processed by HydroMT Yes 

Wflow sbm 

static maps 

effective parameters47 Processed by HydroMT Yes 

Wflow sbm 

outputs 

Actual 

evapotranspiration (ET) 

 Yes 

SSM  Yes 

 

The satellite-based SSM product from TU Wien was utilized for running the parameter 

learning (Table 8). 

Table 8 Dataset to perform parameter learning 

Collection/

Dataset 

Parameter Source STAC 

RT0 SSM Processed by TU Wien           
https://services.e

odc.eu/browser/#

/v1/collections/SS

M-RT0-SIG0-R-

EXTR  

 

 
47 https://deltares.github.io/Wflow.jl/stable/model_docs/params_vertical/  

https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/wflow
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/wflow
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/wflow
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/lulc
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/lulc
https://github.com/Deltares/hydromt_wflow/tree/main/hydromt_wflow/data/lulc
https://zenodo.org/records/3552776#.YVbOrppByUk
https://zenodo.org/records/3552776#.YVbOrppByUk
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fservices.eodc.eu%2Fbrowser%2F%23%2Fv1%2Fcollections%2FSSM-RT0-SIG0-R-EXTR&data=05%7C02%7CIacopo.Ferrario%40eurac.edu%7Cd3ee966a589f402fe64508dd7352cc9c%7C9251326703e3401a80d4c58ed6674e3b%7C0%7C0%7C638793521673451434%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ZeQWYaGFQbMMXQQi5ro3vArwadL3KoHlXDZom48DqAo%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fservices.eodc.eu%2Fbrowser%2F%23%2Fv1%2Fcollections%2FSSM-RT0-SIG0-R-EXTR&data=05%7C02%7CIacopo.Ferrario%40eurac.edu%7Cd3ee966a589f402fe64508dd7352cc9c%7C9251326703e3401a80d4c58ed6674e3b%7C0%7C0%7C638793521673451434%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ZeQWYaGFQbMMXQQi5ro3vArwadL3KoHlXDZom48DqAo%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fservices.eodc.eu%2Fbrowser%2F%23%2Fv1%2Fcollections%2FSSM-RT0-SIG0-R-EXTR&data=05%7C02%7CIacopo.Ferrario%40eurac.edu%7Cd3ee966a589f402fe64508dd7352cc9c%7C9251326703e3401a80d4c58ed6674e3b%7C0%7C0%7C638793521673451434%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ZeQWYaGFQbMMXQQi5ro3vArwadL3KoHlXDZom48DqAo%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fservices.eodc.eu%2Fbrowser%2F%23%2Fv1%2Fcollections%2FSSM-RT0-SIG0-R-EXTR&data=05%7C02%7CIacopo.Ferrario%40eurac.edu%7Cd3ee966a589f402fe64508dd7352cc9c%7C9251326703e3401a80d4c58ed6674e3b%7C0%7C0%7C638793521673451434%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ZeQWYaGFQbMMXQQi5ro3vArwadL3KoHlXDZom48DqAo%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fservices.eodc.eu%2Fbrowser%2F%23%2Fv1%2Fcollections%2FSSM-RT0-SIG0-R-EXTR&data=05%7C02%7CIacopo.Ferrario%40eurac.edu%7Cd3ee966a589f402fe64508dd7352cc9c%7C9251326703e3401a80d4c58ed6674e3b%7C0%7C0%7C638793521673451434%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ZeQWYaGFQbMMXQQi5ro3vArwadL3KoHlXDZom48DqAo%3D&reserved=0
https://deltares.github.io/Wflow.jl/stable/model_docs/params_vertical/
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Workflow 
 

 
Figure 35 High-level diagram of the DT workflow’s application components 

Downscaling component (WP 7.4). DownscaleML 

To streamline the downscaling process using downScaleML48 version 0.9.0 (WP 7.4), we 

have developed preprocessing and downscaling methodologies that use reanalysis 

datasets as both predictors and references. This version introduces grid cell-wise 

statistical downscaling, employing ERA5 predictor fields and incorporating EMO1 data as 

targets for 2m temperature, precipitation and solar radiation. This approach utilises a 

two-stage downscaling approach involving recursive feature elimination, an improved 

hybrid LGBM classifier-regressor framework, random grid cell-based fine-tuning of 

hyperparameters, and is subsequently applied over SEAS5 to obtain downscaled SEAS5 

outputs. This final version also makes extensive use of STAC and openeo-processes-dask 

seamlessly integrating with OSCAR and the openEO interTwin backend. 

 

 
Figure 36 High level diagram that shows how DT’s application components are run 

 

 
48 https://github.com/interTwin-eu/downScaleML  

https://github.com/interTwin-eu/downScaleML
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Model builder and model runner components (WP 7.6).  

The model builder (HydroMT) and model runner (wflow_sbm) are available as Docker 

images in the HyDroForm49 repository. The integration of HydroMT with STAC has been 

developed in a forked development branch50 waiting to be tested and integrated officially 

in the version 1.0.0 of HydroMT. The implementation currently allows the generation of 

wflow_sbm model with different spatial resolutions and precipitation inputs available on 

the STAC catalog. 

The openEO integration (WP 6.1, 6.3) consisted in the definition of a dedicated OpenEO 

Run_Oscar process that can trigger the execution of the docker images in OSCAR.  

Surrogate training component.  

The DL surrogate has been successfully developed and it is available in the project 

repository Hython51, where demo notebooks are available for the interested users. The 

integration with itwinai (WP 6.5) framework is completed for the preprocessing and 

training steps and consists in a dedicated itwinai-Hython plugin52. 

The openEO integration followed the same approach of the model builder and model 

runner. 

Parameter learning component.  

The requirements for the production of SSM data to perform the parameter learning task 

have been shared with TU Wien. TU Wien then produced SSM over the Alpine region (WP 

7.5).  

This version uses a radiative transfer model to derive soil moisture data from 500m 

microwave backscatter and Leaf Area Index (LAI). To enhance the accuracy of the soil 

moisture retrievals, high-resolution information has been included from Sentinel-1 VV 

backscatter data (20 m). A novel soil moisture sensitivity dataset [R8] was used for a static 

spatial filtering technique at the 20m scale. Additionally, extreme backscatter values 

(higher than -5dB or lower than -19dB) have been filtered out, assuming that they are 

unlikely to contain reliable soil moisture information. Both strategies amplify the soil 

moisture signal of the 500m backscatter information, to which the 20m sub-pixels have 

been aggregated subsequently. Only those 500m target pixels were calculated that 

consisted of more than 1% valid 20m pixels after the described filter processes. 

Based on this 500m backscatter datacube and LAI data, the radiative transfer model 

parameters have been calibrated using 4 years of data from 2016 up to 2020 with ERA5-

Land swvl1 as reference data. During calibration, the frozen soil conditions indicated by 

ERA5-Land soil temperature layer 1 (stl1) and snow depth (sd) have been masked out to 

make sure only valid data is used during model inversion. 

After calibration, the parameters were used to estimate SSM at a 500m resolution, 

without further masking to avoid losing valid data, especially over alpine valleys. This 

 
49 https://github.com/interTwin-eu/HyDroForM  
50 https://github.com/iacopoff/hydromt  
51 https://github.com/interTwin-eu/hython  
52 https://github.com/interTwin-eu/hython-itwinai-plugin 

https://github.com/interTwin-eu/HyDroForM
https://github.com/iacopoff/hydromt
https://github.com/interTwin-eu/hython
https://github.com/interTwin-eu/hython-itwinai-plugin
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decision requires users to manually mask out data from frozen soils, and over steep and 

complex terrain. Despite its limitations in handling complex terrains, the initial version 

shows promising results, particularly in alpine valleys. By incorporating volume scattering 

using LAI and masking soil moisture insensitive pixels at high 20m resolution, we 

anticipate significant improvements in SSM retrievals compared to earlier models. 

A validation of the product against available in-situ soil moisture time series was 

performed. If the product gaps are greatly reduced compared to current operational SSM 

products, the quality of the retrievals, as expected on complex terrains, was not 

satisfactory for an integration into the hydrological model workflow. This further 

motivates research in improving satellite retrievals in the Alpine region. The parameter 

learning task is fully supported in itwinai-Hython but was not integrated into openEO due 

to time limitations. 

Seasonal forecast component.  

It was not possible to integrate the inference step in Itwinai due to the fact that the 

framework is maturing and is currently not supporting running complex inference tasks. 

The inference can be executed in a Jupyter Notebook and does not require GPU devices. 

3.6.2  Scope and limitations 

The goal is to provide a user interface, consisting in the openeEO GUI, that allows: 

1. Set up the wflow_sbm model, selecting the model resolution, choosing different 

data inputs, time period and spatial domain. 

2. Training the surrogate model. 

3. Perform the parameter learning. 

4. Run seasonal forecasts of hydrological variables. 

The DT presents three main limitations:  

● The DT predicts hydrological variables based on the type and level of detail of 

hydrological processes represented in the wflow_sbm model. This fact limits the 

variety of hydrological processes that could instead be better represented by 

running an ensemble of hydrological models.  

● The Alpine region, with its complex terrain, vegetation cover and diverse climatic 

conditions, poses a great challenge for the retrieval of SSM and actual 

evapotranspiration from satellites. It is no surprise then that there are currently 

no products that satisfactorily cover the region. The products generated for the 

DT should therefore be considered as prototypes that require further research, 

development and validation. The parameter learning task’s loss function is based 

on these satellite products and therefore depends on their quality. 

● The DT does not represent human processes, such as irrigation and hydropower 

generation, that affects the hydrologic cycle. 
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3.6.3 Validation and Results 

The main objective of the DT is to simplify the set up and running of complex workflows, 

linking model chains and heterogeneous data, for hydrological forecasting. The DT 

implements a novel hydrological model calibration approach that leverages a DL 

emulator and satellite products. A thorough validation of the calibrated model outputs 

requires observations of the target variables such as soil moisture, evapotranspiration 

and snow water equivalent, which are rather scarce in the Alpine region. The DT’s 

seasonal forecasts have been validated against past events, for example the 2017 and 

2022 droughts. In this case the performance of the DT is assessed against the hydrological 

model baseline (forced by historical observations) or even against the output of other 

seasonal forecast systems. The quality of the hydrological forecasts is very much 

dependent on the quality of the meteorological forecasts, which are too coarse to be 

useful on the Alpine region and are known to contain biases. For this reason the DT 

applies a downscaling and bias correction before running the hydrological model. Results 

show that the downscaling and bias correction can be improved as the system is not able 

to reproduce the 2022 drought on the Po valley Figure 37. 

   
Figure 37 The image shows the volumetric water content (VWC, i.e. SSM) for three initialization dates, February, 

April and June, averaged over the Po basin. The blue dots represent the 2022 VWC, the grey line represent the 

2000-2020 VWC climatology, and the boxplots represent the forecasted VWC. It is clear that the forecasts are 

rather following the climatology and can’t really capture the 2022 drought 

3.7 Flood climate impact in coastal and inland regions 

3.7.1 DTs Application Integrations 

Model requirements 

The flood climate impact DT consists of two physics-based models, two impact models, 

and a python package facilitating processing the models: 

1. SFINCS: a reduced-complexity model designed for super-fast modelling of 

compound flooding in a dynamic way. 
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2. Wflow: a framework for modelling hydrological processes, allowing users to 

account for precipitation, interception, snow accumulation and melt, 

evapotranspiration, soil water, surface water and groundwater recharge in a fully 

distributed environment. 

3. Delft-FIAT: a fast, flexible, Python-based tool to rapidly assess direct economic 

impacts to buildings, utilities, and roads for user-input flood maps. 

4. RA2CE: a Resilience Assessment and Action perspective for Critical infrastructurE 

– model for mapping the exposure, criticality, and vulnerability as well as the 

forthcoming prioritisation of locations to take actions based on cost benefit 

assessment. 

5. HydroMT: an open-source Python package that facilitates the process of building 

and analysing spatial geoscientific models with a focus on water system models. 

It does so by automating the workflow to go from raw data to a complete model 

instance which is ready to run and to analyse model results once the simulation 

has finished. 

 

Workflow 

The workflow for the flood climate impacts DT (Figure 38) is implemented in a Jupyter 

Notebook and is exploiting the following components from the project: 

● WP7: The workflow depends on functionalities from the hydrological model data 

processing thematic module dependent on SFINCS53, Wflow54, Delft-FIAT, and 

RA2CE and their respective HydroMT plugins for the first three models to generate 

flood and impact maps.  

● WP6: CWL workflows have been developed integrating SFINCS, Wflow, Delft-FIAT, 

RA2CE, and HydroMT to generate flood and impact maps. The model runs are 

triggered using the WP6 component OSCAR, with the option to offload the job to 

HPC should the model run time require increased computational resources. 

● WP5: Data for model building and preprocessing is accessed from the interTwin 

Data Lake using Rucio. The OSCAR jobs to run the various models can either be 

triggered through OSCAR directly, or through Rucio events by registering the 

required input data in the Data Lake. An activity is in progress to investigate 

triggering the OSCAR jobs directly from the Data Lake instead of using Rucio 

events.  

 

 
53 https://github.com/Deltares/SFINCS  
54 https://github.com/Deltares/Wflow.jl  

https://github.com/Deltares/SFINCS
https://github.com/Deltares/Wflow.jl
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Figure 38 Architecture diagram highlighting integration and interaction between the Jupyter Notebook (the DT 

interface), the CWL workflows and interTwin’s RUCIO-based datalake 

3.7.2 Data requirements 

The datasets currently used by the DT are listed in Table 9. These include both static 

parameters maps for SFINCS, WFLOW, Delft-FIAT, RA2CE and dynamic meteorological 

forcing data for SFINCS, WFLOW. 

Table 9 Datasets used by the DT 

Dataset Name Source Parameter Name 

ERA5 https://doi.org/10.24381/

cds.bd0915c6  

2m Temperature 

Mean Sea Level Pressure 

10m Wind u-component 

10m Wind v-component 

Total Precipitation 

Surface net Solar Radiation 

Geopotential 

Copernicus 30m DEM https://spacedata.copern

icus.eu/documents/2012

3/121286/Copernicus+DE

M+Open+HTTPS+Access.p

df 

Topography 

https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.bd0915c6
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
https://spacedata.copernicus.eu/documents/20123/121286/Copernicus+DEM+Open+HTTPS+Access.pdf
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GEBCO https://www.gebco.net/  Bathymetry 

GTSM reanalysis https://doi.org/10.24381/

cds.8c59054f  

Waterlevel 

Surge 

Hydro Atlas https://www.hydrosheds

.org/hydroatlas 

Basin, lake, & reservoir 

atlas 

ESA worldcover https://doi.org/10.5281/z

enodo.5571936  

Landclass 

GCN250 Infiltration curves https://doi.org/10.6084/

m9.figshare.7756202.v1  

Average antecedent 

Dry Antecedent 

Wet Antecedent 

MERIT_HYDRO http://hydro.iis.u-

tokyo.ac.jp/~yamadai/ME

RIT_Hydro  

flwdir 

strord 

uparea 

River_ge30m https://zenodo.org/recor

ds/3552776#.YVbOrppBy

Uk 

River width, bankfull 

discharge 

MODIS Leaf Area Index https://lpdaac.usgs.gov/p

roducts/mcd15a3hv006/  

lai 

Soilgrids https://www.isric.org/ex

plore/soilgrids/faq-

soilgrids-2017  

soilmaps 

OpenStreetMap https://osmnx.readthedo

cs.io/en/stable/ 

Building footprints 

GADM https://gadm.org/data.ht

ml  

level 3, level 4 

administrative boundaries 

Worldpop https://hub.worldpop.org

/doi/10.5258/SOTON/WP0

0684 

Population count 

 

3.7.3 Scope and limitations 

This use case provides Jupyter Notebooks for expert users in order to 

1. Set up the necessary models for a user-defined region of interest. 

2. Run the necessary models to produce baseline flood maps for a user-defined 

region of interest and quantify impacts and damages to buildings, utilities, roads 

and accessibility. 

3. Select flood mitigation and adaptation measures and re-run flood scenarios to test 

their effectiveness at reducing flood-related impacts. 

A demonstration is provided for Humber, UK. 

https://www.gebco.net/
https://doi.org/10.24381/cds.8c59054f
https://doi.org/10.24381/cds.8c59054f
https://www.hydrosheds.org/hydroatlas
https://www.hydrosheds.org/hydroatlas
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.6084/m9.figshare.7756202.v1
https://doi.org/10.6084/m9.figshare.7756202.v1
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro
https://zenodo.org/records/3552776#.YVbOrppByUk
https://zenodo.org/records/3552776#.YVbOrppByUk
https://zenodo.org/records/3552776#.YVbOrppByUk
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://www.isric.org/explore/soilgrids/faq-soilgrids-2017
https://www.isric.org/explore/soilgrids/faq-soilgrids-2017
https://www.isric.org/explore/soilgrids/faq-soilgrids-2017
https://osmnx.readthedocs.io/en/stable/
https://osmnx.readthedocs.io/en/stable/
https://gadm.org/data.html
https://gadm.org/data.html
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3.7.4 Preconditions 

The user has access to DT data, models, thematic components and Jupyter Notebooks. 

Users can: 

● Specify a region of interest, 

● Specify a temporal period to simulate, 

● Select and specify mitigation and adaptation measures. 

The user runs the DT workflows for the specified region and scenario using default global 

data or selected local data if available. 

The output of the DT can be visualised in the Jupyter Notebooks and the data can be 

downloaded/saved as NetCDF and GeoPackage data. 

 

3.7.5 Validation and Results 

The primary objective of this DT is to help users set up initial versions of the models used 

in the workflow using global data and run what-if / hypothetical scenarios based on past 

events. Validating such a flood model derived from global data against local data would 

immediately indicate that the first improvements to be made are using local data sources. 

Making such an improvement is part of the Flood Early Warning DT, which shares 

thematic components with this DT. See section 3.4.4 for details. 

Nevertheless, running what-if scenarios can still be meaningful with this DT when 

comparing against baseline events run using the same model chain, particularly 

regarding insights on the effect of adaptation measures. The DT provides users with 

interactive visuals to inspect the impact of scenarios run with the DT, examples of which 

are shown in Figure 11 and Figure 12.  
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4 Conclusions 

The final release of the interTwin DTs applications for WP4 concerned with the 

environmental domain were developed during the whole duration of the project. 

The DT applications on wildfires and tropical cyclones are supported by multiple 

components from the DTE (e.g., RUCIO and interLink from WP5, Ophidia, yProv and 

itwinai from WP6, and a few thematic components from WP7). For both applications 

different CMIP6 datasets have been made available on the interTwin Data Lake for 

simplifying the execution of the application. The Ophidia capabilities have been used 

either for preprocessing climate datasets or running the inference pipelines on multiple 

climate data. In terms of results, the UNet++ architecture selected for the implementation 

of the wildfires DT application showed good skills in capturing the global patterns of 

wildfires. For the TC application, different approaches for detection and tracking have 

been explored with the final version being able to capture most of the tracks and follow 

them closely. For both DT applications, notebooks are provided for enabling user 

interaction with the DT application, while simple configuration files are available for more 

expert users for training new ML models. 

The Eddies detection application demonstrated how interTwin technologies can be easily 

exploited to enable, with a limited effort, the porting and development of new DTs. 

Besides that, from a performance perspective, the DT-based version of the application 

significantly outperformed the data-intensive one (by 3 orders of magnitude). 

The DT application on the detection and impacts of generic extreme events is supported 

by components developed in both WP6 and WP7. This application has been pre-

configured for users to detect heatwaves, but it can also be tailored by the DT users to 

other climate extremes and climate variables, thanks to its use of an architecture based 

on CVAE, which is a generic anomaly detection method based on AI. The use of itwinai 

from WP6 made the integration of the DT into the interTwin DTE easy thanks to the plug-

in capabilities of itwinai. Like the DT applications on wildfires and tropical cyclones, it uses 

data from the CMIP6 database, and notebooks are provided to users to interact with the 

DT application. A configuration file is provided to users on how to properly configure the 

application to target heatwaves. The notebook that is provided aims to show users how 

to interact with the application, and how to post-process data and display results. 

The DT application on drought early warnings on the Alpine region demonstrated that 

complex, reproducible workflows that integrate heterogeneous cloud-based data with 

process-based and DL models can be customized and executed leveraging the InterTwin 

technologies. The use of DL emulators to calibrate the process-based model, which was 

possible thanks to the itwinAI-Hython plugin, showed promising results, nonetheless the 

integration of satellite retrievals still requires further improvements. On the other hand, 

the performance of hydrological seasonal forecasts to reproduce drought events will 

require further research and development, especially in the Alpine region where complex 

topography and climate heterogeneity pose a great challenge to the predictability power 

of forecasts. 
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The DT applications on Flood Early warning and on Flood climate impact demonstrate the 

capabilities of the DTE in supporting the impact assessment and future planning for 

extreme flood events. The DT Flood early warning shows how process-based inundation 

models can be enhanced by satellite-derived floodmaps, by guiding and fine tuning the 

setup process of the physics-based flood model. The notebook and underlying integrated 

workflow that guides a user through this process is supported by WP5 and WP6 for data 

and compute infrastructure management, on which the thematic components from WP7 

are built. The utility of the DT is demonstrated by the use-case along the German Baltic 

coast where the satellite-derived floodmap provides additional information on dike 

breaches that help fine-tune the inundation model.

The DT Flood climate impact allows the user to get a first estimate of the impact of 

extreme flood events under current and future climate and socio-economic conditions. 

The notebook interfaces first guide the user through the process of setting up the 

necessary hazard and impact models based on global data sources, supported by the 

data management from WP5. Next, using the thematic components from WP7 the user 

can specify the event they would like to assess and under which climate and socio-

economic conditions they would like to do so. The assessment is run using an integrated 

workflow running and coupling the various hazard and impact models together, 

supported by WP6 for the management of compute infrastructure. A use case 

demonstrating the DT capabilities was developed for the Humber estuary in the UK. 
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