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Abstract 
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This deliverable describes the release of Digital Twin (DT) applications that support the 

physics use cases. It details the capabilities, characteristics, and describes the 

functional specifications of the DT applications and the integration into the DTE 

architecture. Finally, it provides information about the final validation of the developed 

and integrated DTs. 
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Executive summary 
This document is deliverable 4.8 of the interTwin project, part of work package 4. It is a 

report collectively written by the partners of tasks 4.1, 4.2, 4.3 and 4.4, who are directly 

involved in designing digital twins for the physics domain (High Energy Physics, Radio 

Astronomy, and Gravitational Waves Astrophysics). The objective of this report is to 

provide an overview of the functionalities offered by each of the Digital Twins (DTs) and 

their integration with the Digital Twin Engine (DTE). 

It starts by outlining the capabilities of each DT application in general, demonstrating how 

they support their use cases and highlighting the specific features. Further description 

reviews the final release of each DT application, including the integration between each 

DT application and the main Core Components, as well as their integration with the 

Infrastructure Components. Validation and results are also discussed. 

In general, every DT is uniquely crafted to target the particular task, offering new scientific 

tools that can be extremely helpful in the corresponding areas of physics. 
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1 Introduction 

1.1 Aim of this deliverable 

The overall objective of deliverable 4.8 is to provide information about the capabilities of 

DT Applications related to physical sciences (T4.1, T4.2, T4.3, T4.4). A Digital Twin 

application is a user-facing implementation of a DT. DT applications are the consumers 

of the capabilities offered by the interTwin DTE, thus introducing use case-specific 

requirements. 

1.2 Intended audience of this document 

The main audiences for deliverable 4.8 are the developers and end users. 

For the DT Application and DTE developers: this deliverable tells them about 

implemented features of each of the DTs application, including interaction and 

integration with the underlying DTE modules. The DTE developers can then better 

understand the requirements of each use case, while for the DT Applications developers 

it serves as a reference. It gives insight into both categories on how the DTs fit into the 

overall interTwin architecture by using specific Core Components. 

For end users: the specified deliverable provides information on what are the capabilities 

of each specific DT in the physics domain. The users can find out what each DT is intended 

for, including the configurations, limitations, and possible customisations to meet the 

individual specific needs. By establishing a common framework for communication, 

stakeholders will be able to exchange information, validate models, and collaboratively 

address their challenges. 

1.3 Structure of the document 

The structure of this deliverable is as follows. Section 2 gives an overview of each DT 

application. Section 3 describes each DT application development.  Finally, Section 4 

provides the conclusions. 
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2 DTs Application 

2.1 DT Application: Lattice QCD simulation 

As a statistical tool, Lattice QCD (LQCD) has been successfully used by physicists for 

decades to investigate and evaluate the Standard Model of Particle Physics. It has been 

used to determine the quark masses and the strength of the Strong nuclear interaction 

with steadily improving accuracy. However, despite LQCD’s many successes and the 

availability of ever more powerful computational resources, the limitations of current 

simulation algorithms have led to problems such as critical slowing down on lattices with 

physically interesting properties.  

The purpose of Task 4.1 has been the development of a DT application that can more 

efficiently simulate quantum field theories on a lattice. It also seeks, in work done jointly 

with Task 7.1, to improve existing lattice DTs by integrating and tailoring services and 

tools being developed within interTwin into their existing workflows (see Figure 1). The 

two parallel (and complementary) paths being explored involve: 

● Developing Machine Learning based lattice simulations via the use of Normalising 

Flows (NF).  
● Improving data management and software workflows for conventional lattice 

simulations. 

 

 

Figure 1 Mind map of the interconnections between the Lattice Use case and the core services and tools within 

interTwin, and with the ILDG 2.0 initiative 
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The openQxD1 application is a good example of an already existing lattice DT used for the 

competitive simulations needed to study particle physics. It is a program written in C for 

simulating QCD+QED field theories on 4D spacetime lattices. It lets the user configure, 

according to their research goals, a large number of physics and solver parameters, and is 

optimised to run at scale on large HPC systems. It takes as both input and output large gauge 

field ensembles that have to be stored on an easily accessible storage. 

Machine learning algorithms provide an alternative approach to lattice simulations and 

early results suggested that they could address some of the difficulties encountered with 

Markov Chain Monte Carlo (MCMC) studies [R1]. Through the development of the 

normflow software package we have been exploring deep generative models, in 

particular NF, in order to study alternatives to the standard algorithms used for 

generating lattice field configurations. We have been able to train ML models, up to a 

given accuracy, against scalar and gauge lattice field theories before using the models to 

generate lattice field configurations. These configurations are the basic research data 

used for most lattice research. The total cost in computing resources, primarily from 

training the model, is greater than that of the traditional highly optimised MCMC 

methods. As the models and methods used improve beyond the proof-of-concept stage 

the training cost will decrease and become comparable to or, ideally, cheaper than the 

cost of field generation using traditional methods.  

Task 4.1 has explored the benefits to a typical lattice collaboration of the federated data 

capabilities, in particular the so-called “data lakes”, enabled by the tools developed within 

the interTwin project WP5 [R24]. The datalake framework allows one to use the 

International Lattice Data Grid (ILDG)’s Indigo IAM2 as an Identity Provider (IdP).  Instead 

of registering with multiple HPC centres, a lattice researcher only needs to be registered 

with the ILDG to access a “Lattice Datalake” that contains data uploaded by members of 

the lattice community to many different HPC centres. Using ILDG’s Oauth2 token-based 

authorisation also affords administrators more control over per-user permissions, this is 

vital given the size and international nature of lattice collaborations. Using the ILDG’s 

Indigo IAM as an IdP should also ease future integration with the ILDG-FC and ILDG-MDC, 

which are expected to grow to be the premier repositories for raw lattice data in the 

coming years.  

2.2 DT Application: Detector simulation 

Task 4.2 concerns the design and development of a DT application for particle detector 

simulation. The requirements and functionalities of such a DT application have been 

described in detail in D4.6 [R4] and D7.8 [R2]. In the present deliverable section, the DT's 

goals and interface will be revised and updated.  

Simulations in particle physics are needed to compare theoretical model predictions with 

experimental data. As the amount of experimental data increases, more simulated data 

needs to be produced. In experiments like those at the Large Hadron Collider, where 

 
1 https://gitlab.com/rcstar/openQxD 
2 https://iam-ildg.cloud.cnaf.infn.it 

https://gitlab.com/rcstar/openQxD
https://iam-ildg.cloud.cnaf.infn.it/
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large amounts of data are collected, optimizing computational resources for simulations 

is crucial. The most computationally expensive step is modeling particle interactions with 

detector materials, especially in calorimeter detectors. In collider experiments, 

calorimeters are responsible for measuring the energy of the particles emerging after 

particle beams collisions. Those emerging particles travel through the detector and 

interact with the detector material through the fundamental forces. In particular, within 

electromagnetic or hadronic calorimeters, showers of secondary particles are created 

due to the interaction of each new particle with the dense calorimeter material [R5]. The 

secondary particle creation process is inherently a complex stochastic process, and it is 

typically modelled using Monte Carlo (MC) techniques. These simulations have a crucial 

role in High Energy Physics (HEP) experiments, and at the same time are very resource-

intensive from a computing perspective.  

 

The HEP community has long since started developing faster alternatives to Monte Carlo, 

including deep learning based techniques [R5, R6, R7]. In the calorimeter case, deep 

learning based fast simulation directly generates the detector output, without 

reproducing, step by step, each single particle that interacts with the detector material. 

More specifically, generative models have been used in related HEP applications, as they 

are able to combine deep learning with statistical inference and probabilistic modelling. 

A generative model's goal is to learn how to generate data based on a given unknown 

distribution describing a finite number of observations.  

The detector simulation DT accelerates particle detector simulations, leveraging 

generative AI methods. Our methodology is leveraging Geant43, a software toolkit for the 

simulation of the passage of particles through matter, to produce detector output data 

that then a Generative Adversarial Network (GAN), a class of machine learning 

frameworks for approaching generative AI, can be trained on. The technical requirements 

of such a DT have been identified, defined, and reported in detail in D7.8 [R2]. 

The DT includes two different generative models for fast calorimeter response 

simulations, 3DGAN and CaloINN.  

Calorimeter detectors can be regarded as huge cameras taking pictures of particle 

interactions [R9], and a 3D convolutional GAN (3DGAN) model works with calorimeter 

response represented as 3D images. The voxels (3D calorimeter cells) are generated as 

monochromatic pixelated images with the pixel intensities representing the cell energy 

depositions. The GAN approach was shown to be able to generate highly realistic and 

sharp images [R8]. 

CaloINN model [R10] also represents calorimeter response as energy deposits in detector 

volume segmented into layers but does not use the spatial correlations of image 

representation. CaloINN is a NF model [R11] implementing a sequence of invertible layers 

to learn a transformation from a simple known distribution to a complex distribution of 

calorimeter output. 

 

 
3 https://geant4.web.cern.ch/  

https://geant4.web.cern.ch/
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Figure 2 Detailed graph representation of the training and inference workflows composition of the fast calorimeter 

detector simulation DT utilising 3DGAN or CaloINN approach 

Despite the difference in the approaches used by 3DGAN and CaloINN to simulate the 

calorimeter response, both models share the same workflows. A brief overview of the 

designed capabilities of the calorimeter detector simulation DT follows. 

The DT operator is leveraging the Geant4 framework to produce data representing 

particles passing through a specific detector setup by employing MC-based simulations. 

The completion of this task is marked by the system's ability to successfully simulate 

particle passage through the specified detector setup and subsequently generate and 

store the simulation data for future use. Then, the data scientist’s role involves 

preprocessing the simulated data to make it suitable for training the 3DGAN or CaloINN 

model. This process is crucial to ensure that the data can effectively train the model. The 

requirement is met when the data scientist has access to the raw simulation data, and 

the system supports all necessary preprocessing and preparation steps (changing the 

data format, extracting information of interest, making necessary selection on energy 

deposition in calorimeter cells), making the pre-processed data ready for model training. 

Subsequently, the DT user is responsible for training the 3DGAN or CaloINN model on 

the pre-processed simulated data. Specific conditions such as the initial energy, and type 

need to be considered; additionally, 3DGAN requires the particle’s entrance angle. The 

aim is to create a model that can reproduce data similar to the original simulated data. 

The process is considered successful if it can effectively use the pre-processed data, with 

the DT providing adequate tools for monitoring and tuning the training process, and the 

system validating the trained model through performance metrics. 

Finally, the user can leverage the trained model during inference steps to facilitate fast 

AI-based simulation. The objective is to produce simulation data faster compared to 
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traditional Geant4 simulations. Success in this area is defined by the system's capability 

to generate accurate AI-based simulation data under specific initial conditions, and its 

comparison for consistency and speed against traditional data. A more comprehensive 

and detailed description of the aforementioned DT processes can be found in the 

deliverable D4.6 [R4] and seen in Figure 2. 

2.3 DT Application: Noise simulation for radio 

astronomy 

Within Task 4.3 a DT of an astronomical source-telescope system is developed, able to 

generate synthetic output signals identical to the data recorded by a real telescope, 

including both scientifically valuable data and various interference and noise signals. 

Together with Task 7.2, its goal is the creation of a larger framework called ML-PPA ( 

Machine Learning-based Pipeline for Pulsar Analysis, see Figure 3) with a Convolutional 

Neural Network (CNN)-based ML classifier of the pulsar data, which can be trained using 

the DT-supplied data. The requirements and functionalities for these applications have 

already been described in D4.6 [R4] and  D7.8 [R2]. A 50-page document [R14] has been 

written by our team, giving a detailed overview and background of the project. Here we 

only provide a brief overview. 

 
Figure 3 Operation Diagram of the Machine Learning-based Pipeline for Pulsar Analysis (ML-PPA) 

The main motivation for this work comes from the need to solve the problem of data 

overflow, which is about to become one of the largest issues in modern observational 

astronomy in general and radio astronomy in particular. The traditional paradigm of data 

reduction is not sufficient anymore and with the new generation of telescopes generating 

larger amounts of data, storing everything long term to allow inspection and analysis by 

human experts is no longer feasible. The Square Kilometre Array (SKA)4 "pathfinders", 

 
4 SKAO: https://www.skao.int/en 

https://www.skao.int/en
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such as South African MeerKAT5 or Australian ASKAP6 can produce several petabytes of 

raw data per week, thus it strains the capacity of even the best scientific facilities to keep 

their datasets even for weeks. When the SKA itself will be operational in a few years, the 

data flood will increase even further.  

One way to deal with this is a ML-based data classification pipeline, able to both sort-out 

all the scientifically insignificant data in real time and alert human operators immediately 

when something relevant is found. The ML-PPA developed within Tasks 4.3 and 7.2 is a 

pilot for just such a system. 

An additional advantage of utilising an automated expert system like this is that it can 

react to unique events quickly enough for the new observational resources to be tasked 

with thoroughly studying them. This would allow it to systematically probe the transient 
radio sky, which currently is generally unknown. Transients, meaning spikes of radiation 

that appear unpredictably in random directions, may result from very far and enormously 

energetic exotic events (like black hole collisions) and thus are invaluable sources of 

information in the areas of physics that cannot be studied experimentally in any other 

way, e.g. quantum gravity. If a signature of a transient source is detected in the data flow, 

the automated expert system could trigger the “target of opportunity” alert for the 

anomaly, and notify the scientists on duty, who can decide on the best course for further 

action. In turn, this may lead to a concerted effort of observing the target by a number of 

instruments, e.g. combining Earth-based radio observations with space-based optical and 

X-ray ones. An incredibly rare event, which would otherwise be only noticed later while 

reviewing the data record, can therefore be studied in much more detail and with all the 

available tools. 

To be able to detect special and important events in the data, one first has to understand 

the regular and common features of the data stream well. In radio astronomy this 

primarily means noise and Radio-Frequency Interference (RFI). Thus, a very important 

aspect of this project is understanding and modelling noise and RFI patterns in radio-

astronomical data. 

High data rates also require application of HPC in processing; however, current common 

radio astronomy software is not well suited to this as it handles parallelization poorly. 

Another goal of this project is to create a well-scalable pipeline and test it with 

supercomputers. 

Pulsars are ideal test subjects for this task, since they reliably produce periodic bursts of 

scientifically significant data with certain variability in signal strength and other 

parameters. ML-PPA has been tested with real data collected by observing various 

pulsars with two telescopes: the Effelsberg 100m radio telescope7 and the above-

mentioned MeerKAT array.  

 
5 MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/ 
6 ASKAP-radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-

telescope 

7 Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg 

https://www.sarao.ac.za/gallery/meerkat/
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope
https://www.mpifr-bonn.mpg.de/en/effelsberg
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Before the analysis, each set is broken into a sequence of square time-frequency frames, 

e.g. 256-time samples by 256 frequency samples (Figure 4). The ML data classification 

tool assigns labels to each data fragment, i.e. a time-frequency frame, based on the type 

of signal detected or not detected in it. The label describes the fragment on a basic level 

as “scientifically important data”, “no signal”, “interference of such and such type” etc., 

and in the future may also include more detailed properties. 

Since the proportions of each data type in the real data flow are very different (e.g. 

scientifically important data might constitute much less than 1% of the data sample), 

efficient ML training requires synthetic data to be used. That is where the DT comes in, a 

physical model of the source, its signal transmission and registration. 

Both the DT and ML-classifier were first developed in Python, but ultimately implemented 

in C++, ensuring high computational speed and scalability. 

 
Figure 4 Examples of four main types of data time-frequency frames in a pulsar-observation data set, visualised 

as 256x256 images. The vertical axis corresponds to frequency, horizontal to time, the value of each point is signal 

intensity. The top left frame is the most common one, “none” or “empty”, it contains only noise, amplified 

differently because the telescope’s sensitivity is different for different frequencies, leading to apparent horizontal 

banding; the top right and bottom left frames contain broad-band (BB) and narrow-band (NB) radio-frequency 

interference (RFI) represented by brighter vertical or horizontal stripes, these types of data are undesirable but 

often recorded because the telescope is sensitive to various artificial or natural electro-magnetic phenomena 

(radio transmissions, emissions by various devices, electric storms etc.). Finally, the bottom-right frame contains a 

pulsar’s pulse, represented by the diagonal slightly curved line; this is the only desirable type of data frame that 

we would like to separate from all the other types. 
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2.4 DT Application: VIRGO Noise detector 

The purpose of Task 4.4 was to develop a DT application that could simulate glitches in 

the observational channel of the Virgo Gravitational Wave (GW) interferometer8 from its 

control channels. A glitch is a transient noise artefact observed in the observational, 

strain, channel. Glitches can occur due to environmental reasons, such as seismic activity, 

or as a result of resonances in the detector’s subsystems. The monitoring of such effects 

is entrusted to a high number of control sensors, whose continuous data output is 

mapped onto so-called auxiliary channels. Glitches are divided into the classes identified 

by the GravitySpy project [R15]. 

The high number of observed glitches in the past observational runs and in the current 

O49 run makes it necessary to put into place effective vetoing and de-noising procedures 

(Figure 5) for the identification and removal of bad data from the analyses’ pipelines. For 

this reason, the project aimed at identifying which auxiliary channels correlate strongly 

with the glitches observed in the strain and use generative methods to map the glitch 

from the former to the latter.  

 

 
Figure 5 A sketch of the vetoing algorithm. The safe control channels are taken as input by the generative NN, 

which then outputs the generated glitch. The loss chosen for the training is a simple L1 distance. 

The final implementation of the DT consists of a train and inference subsystems 

implemented as itwinai10 plugins. 

The main components of the training subsystem of the DT are ANNALISA, 

Preprocess_API, and GlitchFlow. These modules are respectively used to identify the 

relevant auxiliary channels for input to the Neural Network (NN), to create a dataset of 

two-dimensional spectrograms from the input data, and to generate glitches in the strain 

channel based on these spectrograms. 

The inference subsystem also uses Preprocess_API, with the addition of Generative_API, 

which is used for the glitch generation. 

In this release we present the final versions of the modules mentioned above, some of 

which were already described in D4.6 [R4]. 

 
8 https://www.virgo-gw.eu/ 
9 Ligo, Virgo and Kagra observing runs: https://observing.docs.ligo.org/plan/ 
10 itwinai: https://www.intertwin.eu/article/core-dte-module-itwinai 

https://www.virgo-gw.eu/
https://observing.docs.ligo.org/plan/
https://www.intertwin.eu/article/core-dte-module-itwinai
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One significant addition in this final version was the introduction of spectrograms 

encoding the phases of the signals. Since the spectrograms consist of complex-valued 

matrices, each of them can be split into a spectrogram which represents the amplitude 

of the transformed signal and one that represents the phase, as shown in Figure 6. 

 

   

Figure 6 The example of how one individual glitch is processed and turned into two separate spectrograms. The 

phase spectrogram contains values that range from -Pi to Pi, and they represent the radiants of the phase angles. 

In this new approach, every time series is represented by two spectrograms; this doubles 

the total amount of data that needs to be stored and processed, but it also increases the 

information that we give as input to the Generative Neural Network (GNN). We found that 

this approach significantly improved the performance of the DT, as shown in Section 

3.4.4. 

As the aim of the project is to implement a vetoing and de-noising protocol to flag 

portions of the datastream as corrupted, it is of paramount importance to avoid the 

erroneous characterisation of GWs as glitches. The only way to achieve this is to provide 

as input to the NN only channels which do not detect any astrophysical signals; these 

channels are termed safe channels. A list of safe channels is available within the Virgo 

collaboration. This classification is constantly being updated for each new observational 

run, as channels are replaced, or their technical specifications are changed. 

With tens of thousands safe channels in Virgo, feeding all of them into our analysis tool 

would be unfeasible. Instead, we leverage our understanding of specific glitch 

phenomena to identify relevant input channels. For example, scattered light glitches — 

currently the most frequently observed type — occur due to microseismic activity 

coupling with the detector, leading to photon scattering off moving reflective surfaces. 

Because these glitches originate from physical causes and are detected by sensors 
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measuring the optical bench's movement, velocity, or acceleration, we can select relevant 

input channels based on their corresponding units. We also consider channels 

monitoring the global status of the interferometer’s optical components. This approach 

ensures a more precise and effective channel selection process and allows us to restrict 

the correlation scan to a few hundreds of auxiliary channels. This selection of channels is 

then fed as input to ANNALISA. 

ANNALISA (“Advanced Nonlinear transient-Noise Analyser of Laser Interferometer 

Sensor Arrays”) is a tool that makes use of time-frequency domain analysis of the data, 

namely the Constant Q-Transform (CQT), to evaluate correlations among the main and 

auxiliary channels as the ratio of temporally coincident spikes in the energetic content of 

the signals above a critical threshold over the total number of spikes in the main channel.  

Preprocess_API takes as input the data of the auxiliary channels selected by ANNALISA, 

in the form of one-dimensional time series. It then performs the operation of whitening 

of the data, consisting of a process that normalises the amplitude spectral density of the 

signal across all frequencies. It subsequently computes the CQT of the data, turning it 

into a series of two-dimensional spectrograms which are saved and used as input for 

GlitchFlow. 

GlitchFlow is the module which contains the GNN for generating the glitches. The GNN 

model architecture in GlitchFlow is a U-Net inspired encoder-decoder that also 

incorporates attention gates and residual blocks.  

GNNs, and generative models more generally, are a class of ML algorithms designed to 

learn and mimic the underlying data distribution of a given dataset. The main idea behind 

generative models is to generate new data points that are similar to those in the original 

dataset. A U-net is a CNN in which the input data goes through a series of pooling layers 

and subsequently a series of up-sampling ones, which restore its original resolution. The 

attention gates connect some pooling gates with their symmetric up-sampling ones, 

allowing the network to learn complex non-local features in the data. 

The training process involves feeding the generative model in GlitchFlow with data from 

the auxiliary channels identified by ANNALISA and the corresponding glitches observed 

in the main channel. Through iterative training, the model learns to capture the complex 

relationships and dynamics present in the data, allowing it to generate realistic glitches 

that accurately reflect the characteristics of the observed glitches. 

The channels selected by the ANNALISA module, i.e. those showing a correlation 

coefficient above a tenable threshold, are then passed to Preprocess_API in order to 

create the dataset to train the GNNs in GlitchFlow for the task of glitch generation. Once 

trained the model is manually loaded as the generator in Generative_API. 

Generative_API performs the actual inference on the data. It takes portions of data from 

the selected safe auxiliary channels and uses the trained GlitchFlow model to generate 

two-dimensional spectrograms. The generated spectrograms can then be subtracted 

from the real strain data to perform vetoing or de-noising. 
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3 DTs Application Final release and 

Validation 

3.1 DT Application: Lattice QCD simulation 

Normflow is a software package written in Python that uses the PyTorch library as its ML 

framework, with PyTorch functions modified and extended where required. For lattices 

of reasonable size, the training must be done on HPCs, either on CPUs or GPUs. The 

design of such a DT was described in Deliverable 4.6, section 3.1.2 [R4]. A technical 

specification about the resulting thematic module, normflow11, is given in D7.8, section 

3.2 [R2]. 

Normflow is a proof of concept of a physics DT. It contains functions for the 

implementation of the NF method as a generative model for lattice field theories. The 

workflow is straightforward, the user simply: 

● Chooses a field theory, 

● selects the desired model and training parameters, 

● trains the model on many CPUs or GPUs. 

The key idea behind NF methods is to build and train a neural network that maps a theory 

of interest to one that is easier to simulate, ideally to a theory in which the degrees of 

freedom are decoupled. Complex probability distributions can be accurately modelled by 

transforming samples from a simple distribution via a series of invertible 

transformations. Once such a map is found, one can then efficiently draw many samples 

from the theory of interest. We have been working with a method that combines a NF 

method with aspects of the MCMC method in order to improve efficiency and reduce 

autocorrelations. The basic algorithmic structure we are employing is shown in Figure 7.  

Normflow currently supports the modelling of scalar theories in any number of 

dimensions. We have extended the package to include gauge theories with the goal of 

the efficient modelling of SU(2) and SU(3) gauge theories in 4D spacetime. In order to 

achieve this, one should ideally use a network that respects the gauge symmetry. As 

previously reported, we are investigating networks that encode the necessary gauge-

equivariant transformations. In addition, normflow now supports the saving and loading 

of models, thus improving the robustness and flexibility of the training procedure and 

allowing the end user to debug the model at an intermediate stage if they wish.  

 

 

 

 

 
11 https://github.com/jkomijani/normflow_ 

https://github.com/jkomijani/normflow_
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Figure 7 Block diagram for the method of normalizing flows. 𝜉 and 𝜙 are the prior and transformed fields at 

position 𝑥. 𝑟 and 𝑞 are the corresponding probability densities. The GENERATE block illustrates the integration of 

NF and MCMC by including an accept/reject step. 

 

3.1.1 DTs Application Integrations 

Figure 8 summarises the typical workflow for DT Users and Developers. It also highlights 

the integrations between the Lattice Use Case and the services and tools provided by 

interTwin. 

Improvements to the software development workflow were made with the integration of 

normflow and openQxD in the Software Quality Assurance as a Service (SQAaaS) 

developed in WP6. Software quality assurance in this context involves making sure 

releases are tagged properly, documented well, and adhere to reasonable code style 

standards. SQAaaS has been integrated into the normflow development workflow via 

GitHub Actions, obtaining a Silver badge. 

The itwinai platform, developed by T6.5, is a framework for advanced ML workflows 

that is intended for use by AI based DTs. itwinai has been integrated with normflow12 
and this integration has been used to benchmark the performance and energy efficiency 

of normflow across different distributed training strategies [R16]. A more flexible 

normflow-itwinai plugin13 has been created as well, which we have used to generate data 

on the CESGA HPC. 
 

 
12 https://github.com/interTwin-eu/itwinai/tree/main/use-cases/lattice-qcd 
13 https://github.com/interTwin-eu/normflow-plugin 

https://github.com/interTwin-eu/itwinai/tree/main/use-cases/lattice-qcd
https://github.com/interTwin-eu/normflow-plugin
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Figure 8 Module Integration Diagram for the Lattice QCD use case 

Lattice simulations are executed at large scale on HPC systems controlled by a batch 

system. In order to facilitate data analysis, lattice data should be readily available to the 

members of a collaboration in a controlled way. Thanks to the efforts of WP5 and the 

ILDG, there is now a prototype “Lattice Datalake” with four storage endpoints (SEs): DESY-

Hamburg, DESY-Zeuthen, JSC, and CESGA [R24]. Figure 9 illustrates the flow of control 

when accessing the datalake, and highlights how a user, once authenticated, can also 

access the ILDG’s FC and MDC.  

 

To gain authorisation to access the Data Lake, a user must be a member of the ILDG and 

have an oidc-agent14 configured to interact with an ILDG client — currently, an 

interTwin public client — to obtain the appropriate access tokens. User permissions are 

controlled by the Identity Access Management (IAM) and the Access Control Services (ACS) 

and are encoded in the scopes of the user’s access token. ILDG’s IAM supports a fine-

grained authorization model, with permissions controlled through the following scopes: 

storage.create, storage.modify, storage.read, and storage.stage. This model aligns with 

the structure of a typical lattice collaboration, where tasks are divided among members 

such that only those directly responsible for lattice generation runs are granted create 

and modify permissions. 

 

 
14 https://docs.egi.eu/users/aai/check-in/obtaining-tokens/oidc-agent/  

https://docs.egi.eu/users/aai/check-in/obtaining-tokens/oidc-agent/
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Figure 9 Schema depicting the flow of control when accessing the Lattice Datalake. In this example the 

institutional IdP is CSIC, but it could be any other IdP trusted by the ILDG. 

Once a user has a valid access token, they can interact with the SEs of the Data Lake and, 

given appropriate authorisation, initiate the transfer of data between them. Users can 

use rclone15 to interact with a specific SE, and FTS16 (the File Transfer Service) for direct 

data transfers between SEs. The FTS can efficiently handle large numbers of file transfers 

and supports multiple transfer protocols. 

3.1.2 Scope and limitations 

The normflow application's scope includes simulating SU(N) gauge theories on 

reasonably sized lattices and comparing its performance with conventional lattice 

methods. The aim of this work is to guide the research community on whether integrating 

NF into MCMC algorithms is desirable and, if so, in what manner. While our results and 

those in the literature are promising and provide ample reason for continued research, 

it is currently unknown whether ML-based Lattice gauge field theory simulations will be 

more efficient than MCMC simulations. There are also limitations imposed by using a ML-

based method. A whole new set of models needed to be developed for gauge theories, 

which are based on a particular class of complex matrices that collectively respect a huge 

class of the so-called gauge symmetries. Training these models is a significant time and 

resource commitment, and it is not a priori clear if this saves time and computational 

resources in the regions of parameter space targeted by modern Lattice collaborations. 

 
15 https://rclone.org/ 
16 https://fts.web.cern.ch/fts/ 

https://rclone.org/
https://fts.web.cern.ch/fts/
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The Lattice Data Lake, unlike the other Data Lakes developed within interTwin, does not 

use Rucio to manage transfers because it does not support ILDG’s fine-grained 

authorisation capabilities. Much of the same functionality (querying, token management, 

transferring data) is achieved by the use of alternative components, in particular rclone 

and the FTS REST CLI17[R20]. 

3.1.3 Validation and Results 

The purpose of the normflow package is to use generative models to study physical 

theories. Therefore, to validate its results, we compare them against those obtained using 

alternative methods of calculation. In most cases, this can be done by simulating the 

theory using traditional, reliable simulation algorithms, Hybrid Monte Carlo (HMC) 

algorithms in particular, which also lets us compare the speed and efficiency of the two 

approaches. For simple, exactly solvable theories, we check whether simulation results 

agree with the exact answers within uncertainties. We have confirmed that the magnetic 

susceptibility of a real scalar field using an ML approach and a traditional MCMC approach 

agrees within uncertainties.  

 

One of our preferred metrics for judging the quality of a trained model is the Effective 

Sample Size (ESS), where an ESS of 1 indicates a perfectly trained model.  Figure 10 shows 

the evolution of the ESS for three SU(3) models on a 4^4 lattice with 𝛽 = 1. For comparison, 

the leading-order trivializing map (with no trainable parameters) is shown with a blue 

dashed line. The training progress for a model with 1288 parameters is shown in red. The 

model’s ESS matches the reference trivializing map after about 500 epochs and surpasses 

it as the training progresses. Figure 10 highlights the impact on model quality due to 

network and prior selection. 

 

 

 

 
17 https://fts3-docs.web.cern.ch/fts3-docs/fts-rest/docs/cli/ 

https://fts3-docs.web.cern.ch/fts3-docs/fts-rest/docs/cli/
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Figure 10 The Effective Sample Size (ESS) of a ML model measured every 10 epochs during the training of an SU(3) 

gauge theory with ꞵ=1 on a 4x4x4x4 lattice [R22] 

3.2 DT Application: Detector simulation 

This section provides an overview of CERN’s DT application of a calorimeter detector 

simulation, the current status of the DT and its integration with other DTE components. 

It describes the key steps, from particle simulations to event generation, and subsequent 

data comparison with real data. The process is explained in detail, highlighting the 

functionalities at each stage. Furthermore, it illustrates the flexibility in tuning the system 

to accurately represent various detectors’ responses. This explanation is designed to give 

readers an understanding of the entire workflow design, shedding light on current 

practices and potential areas of future improvement. It also opens the way for a deeper 

discussion on the challenges faced, decisions made, and future strategies in the ongoing 

development of this innovative simulation application. 

The calorimeter detector simulation DT is described by two main workflows, the training 

workflow and the inference workflow. The training workflow design includes the following 

functionalities, which run on HPC systems (in the case of 3DGAN this process is managed 

by containerized Kubeflow components). Geant4 simulates particle interactions, 

producing data based on a detector-specific configuration. The produced data consists of 

the energy per calorimeter cell measured by the detector sensors, the properties of the 

initial particle, such as its type, energy, trajectory angle with respect to the detector 

volume and other metadata. The produced data, in ROOT format18, is stored at different 

data centres, with CERN currently serving as the primary storage site. The data produced 

from the traditional Geant4 simulation in ROOT format requires conversion into the 

HDF519 format for further preprocessing before being input into the 3DGAN or CaloINN 

model. The converted data will then be stored at data centres. Following the ROOT to 

HDF5 format conversion, the HDF5 data is further pre-processed and transformed into 

numpy arrays, a process currently incorporated within the model training scripts. The 

generative models are trained on the pre-processed data, conditioned on specific input 

describing the properties of the particles. The data is retrieved from the storage space 

where they reside. During validation and hyperparameter optimization, the model 

generated data and the Geant4 simulated data distributions will both be visualised. At 

the end, the training workflow stores the optimised models, selected based on validation 

results. 

The inference workflow design includes the following functionalities. The 3DGAN model 

performs inference on specified initial conditions of a particle's energy and angle, and the 

CaloINN model takes only the particle's energy as initial condition. The 3DGAN or CaloINN 

model completes the process of generating events, simulating the passage of particles 

through the calorimeter of a detector. Data distribution comparisons are drawn between 

the AI-generated data and Geant4 data. These comparisons are essential for validating 

the efficacy and accuracy of the AI-generated data. 

 
18 https://root.cern/  
19 https://www.hdfgroup.org/solutions/hdf5/  

https://root.cern/
https://www.hdfgroup.org/solutions/hdf5/
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Finally, based on the visualised results, two possible workflows are proposed for 

simulation tuning. The model can either be re-inferred with different model input 

parameter values, provided these parameter values have been accounted for during 

model training. Alternatively, if a different value range of the conditional parameters or 

another detector geometry is needed, the training workflow must be re-run from the 

beginning and new simulated data would need to be produced using the Geant4 

application. These two possible workflows allow for greater flexibility and adaptability in 

tuning the detector's responses to various particle interactions. 

3.2.1 DTs Application Integrations 

The workflows of the particle detector simulation DT (Figure 11 for 3DGAN model) 

described above will exploit several components from the project’s DTE. Related 

integration activities with these components have been performed. 

 

Figure 11 High-level workflow composition of the fast particle detector simulation DT using ML techniques, and its 

connections with components from other work packages 

The workflows depend on the WP7 3DGAN20 and the CaloINN components reported in 

D7.9. The 3DGAN model is implemented based on the PyTorch Lightning ML framework, 

and the CaloINN model uses PyTorch. Both models have been trained to produce data 

similar to the one produced by Monte Carlo simulations with Geant4.  

3DGAN models the calorimeter detector’s layers of cells as monochromatic, pixelated 

images, where the cell energy depositions correspond to pixel intensities. 3DGAN 

consists of 2 networks, a generator and a discriminator, the two networks compete with 

each other trying to optimise a loss function until the convergence point, where the 

discriminator won’t be able to distinguish the images generated by the generator from 

 
20 https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main  

https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
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the real images. Each network is trained using 3-dimensional convolution layers to 

represent the 3 spatial dimensions of the calorimeter images. 

CaloINN represents the calorimeter response as energy deposits in a detector volume 

segmented into layers aligned with the direction of the incoming particle, with each layer 

further divided into radial and angular bins in polar coordinates (voxels). This model 

consists of a sequence of invertible layers that learn a transformation from a simple, 

known distribution to a complex distribution of calorimeter outputs. 

The particle detector simulation DT includes activities towards the implementation of the 

validation framework of the model’s performance. This involves Python analysis scripts 

that compare the AI-generated calorimeter responses to Geant4 data events.  

Integration activities of the SQAaaS service21 developed by T6.2 have been performed for 

3DGAN models. Software quality assurance in this context involves making sure releases 

are tagged properly, documented well, and adhere to reasonable code style standards. 

SQAaaS has been integrated successfully into the detector simulation ML development 

workflow via GitHub Actions.  

itwinai developed under T6.5 is a Python library that streamlines AI workflows, while 

reducing coding complexity. It seamlessly integrates with HPC resources, making 

workflows highly scalable and promoting code reuse. With built-in tools for hyper-

parameter optimization, distributed machine learning, and pre-trained ML models, 

itwinai empowers AI researchers. It also integrates smoothly with Jupyter-like GUIs, 

enhancing accessibility and usability. With itwinai exploitation we have managed to 

represent our AI workflows in a modular and reproducible way using configuration files, 

which break down the training and inference workflows into steps. The steps included 

are data loading, pre-processing, ML training and testing. This provides a unified entry 

point from which the entire AI workflow can be configured and modified in successive 

executions. The integration with itwinai framework has been successfully completed for 

both models (the CaloINN inference step implementation is being finalised at the time of 

writing this report). With itwinai, it is possible to inspect and analyse the training results 

from MLFlow22 dashboards, as well as store and manage models in the provided model 

registry. 

Moreover, for 3DGAN model, T5.2 engineers have successfully uploaded the simulated 

data produced by Geant4 and transformed into HDF5 format, into the interTwin data 

lake. 

Through the integration of the particle detector simulation DT with itwinai framework, 

the DT has been successfully deployed accessing the project infrastructure resources. 

Exploiting a TOSCA template and a deployed Kubeflow instance (T6.4), developers have 

managed to access Jupyter notebooks and deployed the 3DGAN model from detector 

simulation use-case. The 3DGAN training configuration files were used again and were 

translated into relevant Kubeflow pipelines23.  

 
21 https://confluence.egi.eu/display/interTwin/Use+cases+tracking  
22 https://mlflow.org/  
23 https://www.kubeflow.org/docs/components/pipelines/v1/introduction/  

https://confluence.egi.eu/display/interTwin/Use+cases+tracking
https://mlflow.org/
https://www.kubeflow.org/docs/components/pipelines/v1/introduction/
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Furthermore, the 3DGAN model from the detector simulation use case has been 

deployed through the itwinai package inside a Docker container using interLink24. The 

training was executed at the Jülich Supercomputing Centre, utilising this deployment. By 

defining a Kubernetes pod, developers managed to allocate the desired hardware (GPUs) 

for the model training process. The training was then executed by using an itwinai use-

case image that was staged beforehand and by stating the training command as defined 

in the itwinai configuration files.  

Finally, since the training of the generative models is completed on HPC (both 3DGAN and 

CaloINN) and cloud (3DGAN only) resources, developers have used the models in 

inference mode to make predictions and produce detector output. This was achieved by 

exploiting OSCAR25 for 3DGAN. OSCAR is a serverless computing platform that is 

accessing HPC resources and offloading computations using interLink for federated 

computing infrastructure. Using an itwinai inference pipeline for the 3DGAN detector 

simulation, along with the provided use-case image and a shell script that performs 

inference on the input data, the resulting data flow could be inspected and the storage 

events monitored. Data produced during inference were uploaded to dCache, which 

triggers an OSCAR service to process the data by offloading a job to the specified 

computing resources. In this context, the particle detector simulation DT was successfully 

integrated with the aforementioned DTE components and offloaded for inference to a 

VEGA node. The above processes can also be observed in a interTwin engine demo26, 

where the 3DGAN detector simulation use case is used for testing and experimentation.   

 

3.2.2 Scope and limitations 

By developing the calorimeter detector simulation use-case and integrating it with the 

DTE components, we aim to provide a seamless Proof of Concept (PoC) of a physics DT 

leveraging ML capabilities.  

The scope includes the development and implementation of both training and inference 

workflows, using high-performance computing systems. These workflows involve the 

simulated data conversion and preprocessing, and the training of the 3DGAN or/and 

CaloINN model to generate calorimeter energy depositions that mimic real detector 

outputs. The DT leverages ML frameworks such as PyTorch Lightning27 and the itwinai 

package. This integration facilitates scalable and efficient training, model validation, and 

inference processes, thereby enhancing the overall effectiveness and accessibility of the 

AI workflows.  

The workflows exploit various other components, such as the interTwin data lake, 

interLink, OSCAR and SQAaaS, available for 3DGAN model. These integrations help in 

 
24 https://interlink-project.dev/ 
25 https://docs.google.com/document/d/1AxD8kXddzSgePBc3X7381YP1T_EbDWwu3Xb38ox1a-

k/edit  
26 https://www.youtube.com/watch?v=NoVCfSxwtX0&ab_channel=interTwin  
27 https://lightning.ai  

https://interlink-project.dev/
https://docs.google.com/document/d/1AxD8kXddzSgePBc3X7381YP1T_EbDWwu3Xb38ox1a-k/edit
https://docs.google.com/document/d/1AxD8kXddzSgePBc3X7381YP1T_EbDWwu3Xb38ox1a-k/edit
https://www.youtube.com/watch?v=NoVCfSxwtX0&ab_channel=interTwin
https://lightning.ai/
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managing the data effectively and maintaining high standards in software development 

and deployment. 

The DT's efficacy depends on the 3DGAN and CaloINN models’ ability to generalise from 

the trained scenarios. Changes in the detector configurations or operating conditions that 

were not included in the training data might require retraining of the model, which can 

be resource intensive. Continuous validation is critical to ensure the selected model's 

outputs remain reliable over time. There is also a risk of bias in the model outputs if not 

adequately addressed during the model training and validation phases, which could lead 

to inaccurate simulations. Moreover, the integration of multiple components and services 

introduces complexity. This could lead to challenges in maintaining system stability and 

troubleshooting, especially when deploying updates or new features. 

By understanding these scope and limitations, the involved stakeholders can better 

manage their expectations and plan for future enhancements to ensure the DT remains 

a robust and valuable PoC for CERN’s particle detector simulations. 

3.2.3 Validation and Results 

The performance of generative models for calorimeter response simulation, 3DGAN and 

CaloINN, was validated using different approaches. First, a set of metrics (such as AUC28 

or JSD29) is used to measure the difference between Geant4 and model-generated 

calorimeter responses. Second, visualisations are available to compare the original and 

simulated data. Visualisation for 3DGAN model includes plotting averaged calorimeter 

responses, modelled in 3D, into 3 projections. For CaloINN visualisation includes plotting 

high-level features describing the calorimeter response in physical terms.  

 

The results show that both 3DGAN and CaloINN models are able to provide high quality 

calorimeter response simulation faster than Geant4 simulations (when running on GPUs). 

Users can decide whether considerable speed up is worth the inevitable loss of quality. 

Currently, the study of possible improvement of CaloINN performance is still ongoing and 

will continue after the end of the project, targeting the issue of distributions tail 

mismodelling, common for generative models. 

3.3 DT Application: Noise simulation for radio 

astronomy 

This DT application addresses the challenge of identifying radio signals from intermittent 

astrophysical sources from large-volume data streams during the data acquisition phase. 

One of the main tasks is to identify noise and interference signals coming from different 

sources. The DT simulates the propagation of pulsar signals from the source to radio 

astronomical antennas and their subsequent processing by radio telescope electronics, 

aiming to generate synthetic output signals identical to those recorded by real telescopes. 

It is a part of a larger framework ML-PPA (Figure 3). In addition to the DT, it includes a 

 
28 https://en.wikipedia.org/wiki/Receiver_operating_characteristic  
29 https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence  

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
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CNN-based ML classifier of the pulsar data, which can be trained using the DT-supplied 

data. 

3.3.1 DTs Application Integrations 

ML training is implemented using itwinai from WP6, and the modules are integrated with 

Data Lake. Teapot30 is currently being implemented at DZA31 to provide access to input 

data stored in DZA’s repositories. Integration of these components with itwinai has been 

tested on resources provided by Julich Supercomputing Centre. 

3.3.2 Scope and limitations 

Currently, four software modules have been released (as described in D7.8 [R2]), all under 

the umbrella designation of ML-PPA: 

● PulsarDT 

● PulsarRFI_Gen 

● PulsarRFI_NN 

● PulsarDT++ 

PulsarDT: A physics-based DT that simulates the propagation of pulsar signals from the 

source to the telescope (Figure 12) and generates synthetic data. It is written in Python 

to test algorithmic strategies for physical models of pulsars, interstellar medium, 

telescopes, interference and noise, all later implemented in PulsarDT++. 

 

Figure 12 General outline of the DT structure: modelling the astrophysical source (pulsar), transmission of the 

signal through the interstellar matter, receiving and processing by a radio telescope, adding sources of both 

natural and artificial interference and noise 

PulsarRFI_Gen: An empirical DT that generates 2D time-frequency images (Figure 4) of 

all possible types of telescope output from a pulsar observation: pulses (scientifically 

relevant data), two different types (“narrow” and “broad”) of RFI signals, and “empty” 

frames, containing only noise. It creates these data frames by mimicking available real 

data (based on the geometry of images, noise characteristics etc.) rather than generating 

 
30 https://intertwin-eu.github.io/teapot 
31 https://www.deutscheszentrumastrophysik.de/  

https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_nn
https://gitlab.com/ml-ppa/pulsardtpp
https://intertwin-eu.github.io/teapot
https://www.deutscheszentrumastrophysik.de/
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them from the physical first principles as done by PulsarDT. The purpose of this tool is to 

provide an alternative to training data produced by PulsarDT for testing and QA purposes. 

PulsarRFI_NN: The ML classifier, which is a CNN-based tool for identification of various 

types of pulsar and RFI signals. Like PulsarDT, it is written in Python, with its components 

later contributing to PulsarDT++. 

PulsarDT++: This is a C++ implementation of PulsarDT and PulsarRFI_NN with a general 

test of architecture of the whole ML-PPA package (see Figure 13 and Figure 14). The 

released version (0.2) includes: 

● a layered architecture: a Python-based user interface on top of a layer containing 

various modules for time-critical analyses (implemented in C++), 

● a simplified simulation model of pulsar signals, 

● real and synthetic (generated by PulsarRFI_Gen) data of pulsar and RFI signals, 

● a container with all necessary components,parallelization using the python-

based ray framework. 

 

 

Figure 13 Layered software architecture of the framework ML–PPA 
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Figure 14 Diagram of the final software product of ML-PPA (in the C4 model) 

 

3.3.3 Validation and Results 

ML-PPA has been extensively validated using both synthetic data generated with the DT 

and real datasets obtained by observing several pulsars with Effelsberg and MeerKAT 

telescopes. It consistently shows detection accuracy above 99% for signal-to-noise ratios 

7 and above, and data frames 128 by 128 and above, which is more than enough for real-

life radio astronomical applications. Its deployment and operation have been successfully 

tested at four different HPC centers: Vega (Slovenia), Julich, DESY, and DZA (Germany). 

3.4 DT Application: VIRGO Noise detector 

The core of the VIRGO Noise detector DT is a GNN used to find the transfer function of 

the system producing non-linear noise in the detector output. The information produced 

by the GNN is used to identify the presence of glitches in incoming data, which could 

mimic a signal of astrophysical origin (the gravitational wave).  
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3.4.1 DTs Application Integrations 

The DT, as described in Section 2.4, is organised as a pipeline in which all the different 

modules are itwinai plugins developed in collaboration with colleagues from WP 6. During 

the training phase, accuracy and performance metrics are logged in MLflow directly via 

itwinai. The updated model is also stored in a dedicated model registry after each training 

run. The inference module logs the spectrograms of the real and generated data to 

TensorBoard32, where they can be visualised as two-dimensional images.  

Another significant integration involves the development of the Virgo Data Lake, in 

collaboration with the developers from Work Package 5. This is where the data used for 

training the GNN is stored. The Data Lake is managed by the Rucio33 software, which 

ensures scalable and efficient data transfer and storage; it consists of two Rucio Storage 

Elements (RSEs): one at INFN, where the data is originally stored on tape, and one at the 

Vega EuroHPC34.  Once the files are transferred via Rucio to the Vega RSE, the modules 

can be run in a JupyterHub environment set up with interLink, a service developed for 

efficient exploitation of federated computing resources. By following this procedure, we 

were able to fully utilise the computational resources provided by the collaboration. 

The high-level architecture of the DT, together with services provided by other working 

groups, is shown in  Figure 15. 

 

 
32 TensorBoard: https://www.tensorflow.org/tensorboard 

33 Rucio: https://rucio.cern.ch/ 
34 Vega: https://en-vegadocs.vega.izum.si/introduction/ 

https://www.tensorflow.org/tensorboard
https://rucio.cern.ch/
https://en-vegadocs.vega.izum.si/introduction/
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Figure 15 System Context diagram of the DT for the veto/de-noising pipeline 

3.4.2 Models and Data Requirements 

All the modules of the DT described in section 2.4 rely on classes and functionalities in 

the ml4gw35 github repository, which contains a large number of utilities that we have 

developed to replicate the functions present inside the GWpy36 package, but making them 

compatible with PyTorch tensor. This strategy makes it possible to heavily parallelise the 

computations and drastically reduces the computational costs. 

The data used for the off-line analysis and benchmarking was downloaded from the RSE 

at INFN as described in section 3.4.1. 

A pip-installable version of the ANNALISA package, the Jupyter notebook containing 

GlitchFlow, and the preprocessing module can be found in the GitHub repository37.   

Following this section, we provide details on the data inputs and corresponding outputs 

for all the modules described in section 2.4. 

ANNALISA 

The input data consists of time series contained in the strain and the physically selected 

auxiliary channels, stored in files in HDF5 binary data format. The data is extracted from 

the files and read as one-dimensional PyTorch tensors. 

 
35 ml4gw: https://github.com/ML4GW/ml4gw 
36 GWPy:https://github.com/gwpy/gwpy 
37 https://github.com/interTwin-eu/DT-Virgo-dags/tree/main/Final_Release 

https://github.com/ML4GW/ml4gw
https://github.com/gwpy/gwpy
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The time series need to have a minimum length of six seconds and they must include a 

time in which a glitch was observed in the strain channel, so that a meaningful correlation 

analysis can be performed. 

Preprocess_API 

The input must be a dataset in the form of a new custom data class named TFrame, which 

we developed. Built upon PyTorch's Tensor, TFrame allows for the inclusion of metadata, 

such as the ID of each glitch used for the training. The output of the module is another 

TFrame which contains the spectrograms in the form of two-dimensional CQTs. 

GlitchFlow 

The input data consists of the TFrame containing spectrograms of the events within the 

selected time intervals and frequency range. In order to have balanced classes during 

training, the input data includes not only the spectrograms containing glitches but also 

those without glitches, allowing the GNN to learn the detector background. The module’s 

output is a trained model stored in a MLflow catalogue as a serialized PyTorch state 

dictionary, along with additional metrics on the training process. 

Generate_API 

The input data consist of a TFrame of PyTorch spectrograms to be used as test data, along 

with the trained model stored by GlithFlow in the catalogue. The module outputs a 

TFrame containing the generated spectrograms for testing, along with accuracy metrics 

for vetoing and de-noising; all are uploaded to TensorBoard. 

 

3.4.3 Scope and limitations 

The DT for the Virgo noise detector allows the user to: 

● Identify how sensitive each auxiliary channel of the Virgo detector is to a 

specific glitch, 

● Use the data of said auxiliary channels to reliably simulate a glitch in the strain 

channel, 

● Implement an off-line vetoing and de-noising protocol for GW detector events. 

The DT presents the following limitations: 

● Vetoing and de-noising can only be performed on scattered-light glitches, 

● The performance has only been evaluated on O3a data, and not on the most 

recent O4 data. 

 

3.4.4 Validation and Results 

The vetoing accuracy of the model is computed by summing the number of true positives 

(glitches are generated when a real glitch is present in the strain channel) and true 

negatives (no glitch is generated when no glitch is present in the strain channel) and 

dividing that by the total number of spectrograms generated for a given test set. The de-

noising accuracy is evaluated by first subtracting the generated spectrogram from the 

real one in the strain channel; if the resulting spectrogram has no glitches, it is counted 
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as successfully de-noised. We then divide the number of successes by the total number 

of generated spectrograms. 

The data was split into a training, validation and test dataset, respectively of 9600, 1200 

and 1200 elements each. After the training we tested the vetoing and de-noising accuracy 

as a function of the threshold sensitivity. By threshold sensitivity we refer to the minimum 

Signal-to-Noise-Ratio (SNR) which needs to be recorded in a spectrogram for it to be 

considered as glitch-containing.  

For a low SNR=3, we measure a vetoing accuracy of 85% and a de-noising accuracy of 

95%. For SNR=6, which is the standard lower bound for the SNR for many on-line analysis 

tools used by the Virgo collaboration [R23], the vetoing accuracy is 95% and the de-

noising accuracy is 99%. These measures are shown in Figure 16; in  Figure 17 we show 

the example of a glitch which has been correctly generated and subtracted from its real 

spectrogram.  

 

Figure 16 The portions of the data which are correctly de-noised and cleaned, as a function of the threshold that 

we set to define what constitutes a glitch. Spectrograms which contain at least one pixel above the threshold are 

counted as “glitch-containing” and considered as not properly cleaned. TheSNR=6 value is a standard choice for 

the lowest sensitivity in low-latency glitch-detection pipelines. 
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Figure 17 An example of a spectrogram containing a Scattered Light glitch that is correctly generated by the DT 

and then subtracted from the real data strain. The resulting spectrogram only contains background noise. 

These results show that the DT can successfully reproduce and remove the majority of 

Scattered Light glitches, making it a useful tool for increasing the sensitivity of the Virgo 

Detector. 
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4 Conclusions 

The final release of the interTwin DTs applications for WP4 focused on the physics domain 

was developed in the last months of the project. In the current deliverable D4.8, the main 

focus is on specifying (in Section 2) the capabilities of each specific DT (T4.1, T4.2, T4.3, 

and T4.4) and describing the final release (in Section 3), its integration with the 

Infrastructure components provided by WP5 and the Core components provided by WP6, 

along with schematic high-level workflows, scope and limitations of the final release are 

identified for each individual task. 

ML-PPA, the framework, combining four applications: PulsarDT, PulsarRFI_Gen, 

PulsarRFI_NN, and PulsarDT++, allows to generate synthetic datasets identical to real 

ones as observed by telescopes and to process real datasets, identifying their 

characteristics. It has been extensively validated using both synthetic data generated with 

the DT and real datasets obtained by observing several pulsars with Effelsberg and 

MeerKAT telescopes. It consistently shows detection accuracy above 99% for signal-to-

noise ratios 7 and above, and data frames 128 by 128 and above, which is more than 

enough for real-life radio astronomical applications. Its deployment and operation has 

been successfully tested at four different HPC centers: Vega (Slovenia), Julich, DESY, and 

DZA (Germany). 

The final version of the Lattice DT, normflow, empowers researchers to explore the 

application of generative ML techniques to lattice simulations, while being augmented 

and extended by the integration of multiple components from the DTE (SQAaaS, itwinai, 

DataLake).  

The Detector Simulation DT provides researchers with two generative model approaches 

for fast calorimeter response simulation. Either model can be used depending on the 

technical requirements of the produced simulation. The itwinai implementation ensures 

scalability and monitoring. 

The final version of GlitchFlow makes it possible to faithfully simulate scattered-light 

glitches as they are recorded in the main observation channel of the Virgo detector. This 

makes it possible to subtract the 2D spectrogram of the noise from the strain for realistic 

SNR values. The entire pipeline is implemented as itwinai modules, ensuring easy 

deployability, scalability and easy access to the output metrics of the model. 
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