
Disclaimer: Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union. Neither the European Union nor

the granting authority can be held responsible for them

D5.1 First Architecture

design and

Implementation Plan
Status: FINAL

Dissemination Level: public

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 2

Abstract

Key Words Computing, Storage, HTC, Cloud, Data, Orchestration, Policies

This deliverable provides a comprehensive description of the Digital Twin Engine

Infrastructure architecture. It focuses on the overall design of the system that provides

the pillars for both data and compute federations. This includes the requirement

analysis of the needs of the scientific communities as well as the requirements coming

from a set of highly heterogeneous resources providers. It will detail the different

components of the architecture defining the related role and how they will interact

with each other in order to implement the digital "continuum" between cloud-edge and

multi cloud environments, HPC Centers and Quantum. Policies to access the resources

and resources accounting will be also discussed.

Finally, it provides a timeline and roadmap toward the implementation of the Digital

Twin Engine architecture including the vision for the early testbeds and pilot systems.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 3

Document Description

D5.1 First Architecture design and Implementation Plan

Work Package number WP5

Document type Deliverable

Document status FINAL Version 1

Dissemination Level Public

Copyright Status

This material by Parties of the interTwin Consortium is licensed

under a Creative Commons Attribution 4.0 International License.

Lead Partner INFN

Document link https://documents.egi.eu/document/3945

DOI https://doi.org/10.5281/zenodo.8036983

Author(s)

• Diego Ciangottini (INFN)

• Paul Millar (DESY)

• Liam Atherton (UKRI)

• Marica Antonacci (INFN)

• Daniele Spiga (INFN)

• Andrea Manzi (EGI)

• Renato Santana (EGI)

• David Kelsey (UKRI)

• Adrian Coventry (UKRI)

• Shiraz Memon (JSC)

Reviewers
• Pablo Orviz (CSIC)

• Tom Clark (EODC)

Moderated by: Sjomara Specht (EGI)

http://creativecommons.org/licenses/by/4.0/
https://documents.egi.eu/document/3945

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 4

Approved by Yurii Pidopryhora (MPG) on behalf of TCB

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 5

Revision History

Version Date Description Contributors

V0.1 06/03/2023 ToC Daniel Spiga (INFN)

V0.2 26/04/2023
First version Policy and

accounting

Liam Atherto (UKRI),

Adian Coventry (UKRI),

Renato Santana (EGI)

V0.3 27/04/2023

First version of the

Data Management

section

Paul Millar (DESY)

V0.4 02/05/2023

First version

architecture,

requirements, and

providers

Daniele Spiga (INFN)

V0.5 08/05/2023

First version of the

Federated Compute

section

Diego Ciangottini (INFN)

V0.6 10/05/2023
First version of the

Orchestration section
Marica Antonacci (INFN)

V0.7 14/05/2023
Version ready for

Internal review

Daniele Spiga (INFN) all the other

authors

V0.8 02/06/2023
Version including

reviewers comments

Pablo Orviz (CSIC)

Tom Clark (EODC)

V0.9 03/06/2023
Version ready for TCB

approval
Daniele Spiga (INFN)

V0.9a 09/06/2023
Version approved by

TCB

Yurii Pidopryhora (MPG)

V1.0 12/06/2023 Final

Terminology / Acronyms

Term/Acronym Definition

DTE The Digital Twin Engine developed by interTwin

FTS The File Transfer Service. A software component maintained

by a development team at CERN.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 6

Rucio A third generation data management software component,

maintained by the Rucio development team.

gfal Grid File Access Library; software that provides an abstraction

for POSIX-like access.

CVMFS The CernVM File System provides a scalable, reliable, and low-

maintenance software distribution service.

AUP Acceptable Use Policy

WISE Wise Information Security for Collaborating e-Infrastructures

EOSC European Open Science Cloud

AARC Authentication and Authorization for Research Collaborations

PDK Policy Development Kit

K8s Kubernetes. Container Orchestration Technology

QoS Quality of Service

NVMe non-volatile memory express is a new storage access and

transport protocol for flash and next-generation solid-state

drives (SSDs)

scp Secure copy protocol (SCP) is a means of securely transferring

computer files between a local host and a remote host or

between two remote hosts.

UFTP UNICORE FTP is a file transfer tool similar to Unix’

Terminology / Acronyms: https://confluence.egi.eu/display/EGIG

https://confluence.egi.eu/display/EGIG

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 7

Table of Contents

1 Introduction .. 10

1.1 Scope .. 10

1.2 Document Structure ... 10

2 Requirements .. 12

2.1 Resource Providers at interTwin ... 12

2.2 Survey for providers ... 13

2.2.1 Compute resources and access interfaces: ..14

2.2.2 Data and Storage ..14

2.2.3 Policies..15

2.3 Requirements from providers ... 15

2.4 Requirements from WP6 .. 18

2.4.1 Advanced Workflow Composition (T6.1) ...18

2.4.2 Quality Assurance (T6.2) ..18

2.4.3 Data Fusion (T6.3) ..19

2.4.4 Big Data Analytics (T6.4) ..19

2.4.5 Advanced AI workflows (T6.5) ...19

3 WP5 Architecture .. 20

3.1 General overview of the architecture ... 22

3.2 Adoption of existing technologies... 24

4 Components .. 26

4.1 Federated Compute ... 26

4.1.1 General Description and functionalities ..26

4.1.2 Technology stack: the interTwin API ..28

4.1.3 Interaction with other components ...30

4.2 Federated data infrastructure. ... 30

4.2.1 General description and Functionalities ..32

4.2.2 New data notification...34

4.2.3 Storage technology abstraction ...36

4.2.4 Dataset Management ..38

4.2.5 Storage edge service ..39

4.2.6 Interaction with other components ...41

4.3 Intelligent providers orchestration ... 41

4.3.1 General description and Functionalities ..41

4.3.2 Technology stack ..42

4.3.3 Interaction with other components ...43

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 8

4.4 Accounting .. 44

4.4.1 General Description and functionalities ..44

4.4.2 Technology stack ..45

4.4.3 Interaction with other components ...47

5 Policies for resource access .. 48

5.1 Background ... 48

5.2 Provider and community onboarding ... 49

5.3 Harmonised access policies for service providers .. 50

5.4 Harmonised access policies for communities .. 50

6 Conclusions ... 52

7 References .. 53

Table of Figures

Figure 1 - Schematic representation of the heterogeneous resources providers in interTwin 15

Figure 2 - System landscape diagram (in the C4 model) of the DTE Infrastructure. This is a high-level view
that highlights the user interactions with WP5. ... 22

Figure 3 - System landscape diagram (in the C4 model) of the DTE Infrastructure. This is a high-level view
that highlights the interactions with externals. .. 24

Figure 4 - Container diagram (in the C4 model) of the offloading system ... 28

Figure 5 - Component diagram (in the C4 model) of the offloading system .. 29

Figure 6 - System Landscape diagram for federated data infrastructure. ... 31

Figure 7 - Container diagram showing the four main containers providing the federated data infrastructure
 ... 32

Figure 8 - Diagram showing the components making up the new data notification container. 35

Figure 9 - Diagram showing the components making up the storage technology abstraction container. .. 37

Figure 10 - Diagram showing the components making up the dataset management container. 38

Figure 11 - Diagram showing the components making up the storage edge service. 40

Figure 12 - Diagram showing the components making up the PaaS Orchestration services. 43

Figure 13 - Diagram showing high-level overview of the APEL accounting workflow 45

Figure 14 - Diagram showing the service components of the APEL accounting system. 46

Table of Tables

Table 1 - High-level specification of the interTwin site providers.. 13

Table 2 - Summary table with the results of the scouting performed to identify all the suitable open source
components for the design of the architecture. All the services in the table have TRL > 6 25

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 9

Executive summary
The twofold objectives of the deliverable D5.1 are to provide a comprehensive collection

and analysis of the requirements collected from relevant stakeholders and to describe

the first version of the architecture for the Digital Twins Engine infrastructure.

Requirements include both those from scientific communities that need to interact with

WP5 services through the WP6 provided systems, as well as the requirements of resource

providers that are an integral part of WP5 itself.

The document has been composed by experts working on the various pillars of the

architecture with a deep knowledge of the adopted services. From the technical

perspectives the document provides a general overview of the overall architecture and

describes the vision toward the implementation of a continuum model. The latter

includes all the challenges related to the compute, data (and storage) and policy specific

matters.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 10

1 Introduction

1.1 Scope

The primary scope of this deliverable is to provide an overview of the Digital Twin Engine

architectural pillars and how they are harmonically integrated. On the one side,

addressing the requirements coming from the portfolio of scientific communities that

interact with WP5 through the WP6 services (including the related interfaces and APIs)

and on the other side the technical needs of the interTwin heterogeneous sites. Those

represent the actual computing capacity of the project.

The services and the systems that compose the architecture of the DTE infrastructure

have the role to implement all the capabilities needed by the Digital Twins to effectively

exploit computing resources. In summary WP5 is expected to:

● Provide software solutions to enable resources provisioning on a wide range of

compute providers to implement a digital continuum.

● Support data access, data management and to support real time data processing,

in a federated environment.

● Develop and document best-practice to achieve harmonised access in terms of

authentication and authorisation, security, and operational policies together with

Rules of Participation.

● Provide services and tools to enable the automated storage and compute

resources orchestration enhancing the automatic and intelligent identification of

the best provider either based on static and dynamic metrics.

The design of the DTE architecture will follow the specific requirements provided by the

WP6. Additionally, requirements will come from the sites supporting the activities of

interTwin.

1.2 Document Structure

This document describes the technical design of the architecture for the Digital Twin

Engine infrastructure, and it is organised in three main sections corresponding to the

description of the requirements, the overview of the architecture and the detailed

description of the components that compose the architecture. A short focus on the

providers and on policy access are also provided. The document is organised as follow:

● Section 2 describes the providers that take part in the project. The main objective

is to show what type of resource is available and will be integrated through the

services of WP5. The procedure to gather the feedback from the providers

introduced is also described

● Section 2.3 summarises the requirements that come from the site and from WP6

as the principal interface to WP5 exposed services..

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 11

● Section 3 describes the overall architecture and highlights the key features. The

result of the scouting performed to identify the suitable solution used to build the

infrastructure is presented as well.

● Section 4 is about the fine grained description of all the software components

developed and enhanced by WP5. A general description and detailed architectural

overview of the components are also provided.

● Section 5 is about policies to access the resources.

Finally, the last section draws the conclusions about the technical design of the

architecture and summarises the analyses performed during the first eight months of the

project. These findings were needed to implement the first design of the DTE

Infrastructure.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 12

2 Requirements

Before designing the architecture for the WP5 DTE infrastructure, a wide collection of

requirements has been performed. Requirements have been gathered from all the

stakeholders involved with the WP5 services integration. This was a mandatory step

toward the success of the design process.

WP5 identified the two main actors to take into consideration since this early design

phase, namely WP6 and Resources Providers. First, WP6 is the main responsible entity

for developing and maintaining most of the components that directly interface WP5 such

as Workload Management systems, Pipeline services, interfaces for interactive data

analysis etc. Second, the participating sites represent the computing capacity that must

be exploited by scientific communities through the WP5 services.

Although scientific communities are the drivers of the requirements definition process,

at the current stage of the design, we do not foresee that scientific communities will be

directly interfacing WP5 but channelling the requirements through WP6 except for the

interactions with data management services. The latter will require a direct interaction

with end-users. In any case, like the providers, as soon as the testbeds will be ready, the

scientific communities are expected to co-design the overall system (the next phase of

the project).

In order to gather requirements, we started with a collection of the site specification

information. The decision was to prepare a survey as the most executive solution for us

to build a comprehensive view of both the technical and policy related peculiarities.

In this section the schema of the survey is detailed. Then the results of the analysis are

presented. Finally, a summary of the requirements taken from WP6 is shown.

2.1 Resource Providers at interTwin

An interTwin resource provider is any organisation that contributes with computing

resources supporting the scientific use-cases of the project. Providers are meant to

support the science needs such as to train the digital twin models (AI/ML), to perform

analysis on those models, and conduct any subsequent post-processing as well as data

analysis. It is worth highlighting that to cope with these providers need also to grant, to

some extent, data access, transfer, archiving capability that a Digital Twin might require.

As shown in table 1 there are 8 sites participating in the project, overall featuring a high

level of heterogeneity in terms of size, technology, and type. They span from specialised

HPC Centers to Cloud providers passing through High Throughput dedicated sites.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 13

Table 1 - High-level specification of the interTwin site providers

The provider selection represents a perfect playground made of a handful of distinct

backends (Figure 1) whose integration challenge is key for the project in order to develop

and experiment software solutions to transparently provision computing capacity on a

wide range of providers. In turn this will allow interTwin to enhance DTE modules with

capability to access large amounts or resources accessing local and remote data.

Indeed, the ultimate objective is to deliver a generic and extensible architecture for the

DTE infrastructure, providing stable interfaces to the storage systems and the distributed

data sources and not an integration tailored to a single site configuration. Thus, having a

set of heterogeneous providers, each one potentially offering different interfaces

represents a unique opportunity.

Resource providers on their side must co-design the platform to ensure the development

of effective solutions and to avoid naive design. Summarising sites are a key asset for the

WP5 programme of work

2.2 Survey for providers

As anticipated in order to coherently collect technical information from resources

providers, a survey has been prepared. A list of 19 questions, split into three main

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 14

categories has been submitted to all the sites with the objective were to gather details

about the current site configurations in the relevant areas in order to better understand

which kind of solution the WP5 services needs to provide in order to make the integration

effective. The areas of interests are listed below:

2.2.1 Compute resources and access interfaces:

The aim of this area of the survey was to identify the exact set of compute resources

types, meaning high level cloud services, virtual machines, and containers, together with

the types of supported interfaces, i.e., self-service API or Graphical interfaces. Moreover,

we wanted to understand if sites offer managed batch systems at all, or simply virtual

machines are provided, or more modern container orchestrators were deployed.

In addition to that, we wanted to understand the level of flexibility and commitment from

our providers to allocate their resources for DTEs for scaling purposes. The availability of

specialised hardware such as GPUs (if any) and the quantity accessible by scientific

communities and under which “policy” the site can make them available to the interTwin

project. Another aspect that we wanted to understand from the survey was the possibility

for a provider to support global file systems such as CVMFS, needed for user software

distribution and, possibly, restrictions for project-specific repositories. Finally, we wanted

to verify whether the usage of containers to execute end-user payloads is supported or

not.

2.2.2 Data and Storage

In this case the main objective was to understand in detail what storage capacity (or

quota) each site can offer, although it is rather clear that the overall system is expected

to change dynamically over the time it is important to know which kind of topology can

be implemented for the first data lake system of interTwin. Similarly, we planned to

identify the storage quality of service (Storage QoS) that each site can offer, if more than

one. This information helps to understand whether user communities can exploit

different storage types at a given site; for example, high-performance vs scratch vs

archival. This is rather important once a scientific community designs a computing model

for a Digital Twin.

In particular, about the QoS we expect several use cases that might have the need of

High-speed NVMe storage, or High-speed distributed disk accessible on the various

nodes/ virtual machines. Information about storage and its quality is expected to be

relevant for resource orchestration as well.

Another objective of the survey has been to try to identify the internal organisation of the

storage system and how this might impact on the data ingestion, i.e., if data can be

uploaded to this system and is immediately available across all of a given user's virtual

environment. Also, this has been linked to the data transfer support. We wanted to survey

the already available solutions for the user data transfer, a key also to design approaches

and capabilities for the user produced data handling (user output) that was already

provided,

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 15

Last but not least the compute nodes access to storage has been a topic of the survey. In

this respect we aimed to clarify if some shared/mounted file system is available or if the

user processes are expected to manage data-access themselves

2.2.3 Policies

Policy wise we tried to cover several aspects starting with the options that exist for

installing new software. interTwin represents a major step forward, by building a

distributed analysis environment. It may prove helpful, if we find limitations with existing

services, to explore new approaches and software for exposing the existing resources.

Examples are: storage services, caches, compute edge services etc.

Since data has a key role for the communities of interTwin we wanted to understand what

obligations exist for using storage resources and if it is expected that the researcher

removes data within that period, or risks having their files deleted.

Moreover, we wanted to identify how providers grant access to compute and data

resources in terms of access policies (and procedures) as well as to try to highlight users’

acceptance of terms and conditions for resource usage.

2.3 Requirements from providers

As introduced the sites present a very high level of heterogeneity. There are both cloud,

HPC and HTC providers (Figure 1). Some are enabling a mix of them by means that both

Cloud solution and HPC/HTC are supported by a single provider.

Figure 1 - Schematic representation of the heterogeneous resources providers in interTwin

One example is Juelich that offers a Cloud service that supports some internal

integrations with HPC. The latter is not accessible from remote. One of the HPC centres

is also supporting WLCG as an opportunistic provider for the experiment. Also, in terms

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 16

of hardware the offer differs from site to site. Both CPUs and GPUs are available although

not all centres have both of them. All this gives already an example of how the WP5 will

need to enable the possibility for a service (i.e., a scientific community) to define which

kind of hardware is required and then to re-route the workflow accordingly to the request

but without any direct action taken by the end-user. Many more features are expected to

be considered to enable such routing or compute resource orchestration.

From the information collected thanks to the survey described in Section 2.2 we

extracted the first set of high-level requirements that WP5 services should satisfy in order

to grant an effective integration.

From the compute specific part, a list of major topics is summarised below:

1. All the sites offering Cloud services are adopting Openstack1 as middleware.

2. The actual resources are exposed differently from site to site. The main three

options are

○ Centrally managed batch system implemented either via Slurm2 or

HTCondor3

○ Site managed Virtual Machine

○ Self-service Virtual Machine via publicly exposed interfaces/APIs

3. A subset of the sites configured to offer a centrally managed batch system provide

support to Computing Element4 as a gateway for remote access. All the others

provide access via login nodes with locally managed accounts where users actually

perform access using ssh.

○ Technology wise, sites supporting a computing element actually adopted

ArcCE5 as implementation.

○ Yet another approach is supported in case of HPC which actually is to

enable HPC access via local cloud service. In such a case the HPC is only

exposed internally.

4. Not all the sites foresee the possibility to deploy specific services at the edge. Some

are already doing it but upon negotiation, this is to highlight that it is not possible

to expect a standardised pattern

○ Technical ad hoc evaluation is required if this kind of service is expected to

be installed.

1 https://www.openstack.org/

2 https://slurm.schedmd.com/documentation.html

3 https://htcondor.org/

4 https://cds.cern.ch/record/840543/files/lhcc-2005-024.pdf

5 https://www.nordugrid.org/arc/ce/

https://www.openstack.org/
https://slurm.schedmd.com/documentation.html
https://htcondor.org/
https://cds.cern.ch/record/840543/files/lhcc-2005-024.pdf
https://www.nordugrid.org/arc/ce/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 17

5. Network wise the landscape is highly heterogeneous. The most important aspect

is that not all the providers set up their internal worker nodes with outbound

connectivity. A common scenario at HPC centres.

○ This means that once a process lands and runs on such a resource, by

default, it cannot reach an external service such as a community specific

database or any other service (like a Workload management hosted on a

cloud provider).

6. Concerning the software distribution WP5 needs to ensure that any resource

integrated in the federation will access the same version of the software expected

by the runtime of the user. However not all the providers seem to adopt an

approach that is directly suitable in this respect. the two principal options are:

○ Locally managed installation i.e., on shared file systems

○ Through read only global file system solutions such as CVMFS.

All cloud providers allow for CVMFS installation on self-provisioned Virtual

Machine. In such a case the related management is fully delegated to the end user.

7. Another aspect to consider is the support to run virtualization, particularly

lightweight containerisation. The HPC sites are mainly oriented toward Apptainer6

as a technological solution to execute containers. Another option mentioned is

udocker7. Containers will play a crucial role as a solution to distribute software

libraries as well as to manage user level runtime environments.

Once again no specific constraints come from the cloud provider.

Similarly, to the compute resource exploitation also in terms of data and storage related

systems a high level of heterogeneity has been verified. In particular:

1. Storage interfaces at edge to enable remote data to read/write. Many storage

systems (that provide network FS) are accessible from outside. However, in this

case there is a huge fork between a rather complete setup where dedicated

transfer nodes (i.e., via ARC data delivery8) is available, together with dCache9

nodes and Xrootd10 service for remote access to user posix filesystem up to

providers that do not allow at all for remote storage access

6 https://apptainer.org/

7 https://indigo-dc.github.io/udocker/

8 https://www.nordugrid.org/arc/arc6/tech/data/dds.html

9 https://www.dcache.org/

10 https://xrootd.slac.stanford.edu

https://apptainer.org/
https://indigo-dc.github.io/udocker/
https://www.nordugrid.org/arc/arc6/tech/data/dds.html
https://www.dcache.org/
https://xrootd.slac.stanford.edu/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 18

a. Additional solutions supported for data ingestion and data movement are:

SCP, rsync11, UFTP, Globus12, Rclone13

2. Quality of services. Some sites provide High-speed storage (NVMe) provided as

block storage towards virtual infrastructure. High-speed distributed disk is a

distributed shared storage accessible on all virtual machines. Data can be

uploaded to this system and is immediately available across all of a given users

virtual environment. Organisation of data within a user's designated filespace is

considered their own responsibility.

3. Internal storage organisation at each site. Many different storage solutions

deployed. Seemingly all are available on the worker node. Compute nodes do not

always have local storage. In those cases, storage is exposed via shared file

systems. In this scenario, in order to process data, users are supposed to copy it

on a shared filesystem which will be available to all compute nodes.

4. Storage capacity: This varies from TB to PB depending on specific setup

These features are considered to design the solutions to federated storage and to

support data movement

2.4 Requirements from WP6

Various deliverables are dealing with requirements analysis at different levels. The D3.1

includes requirement analysis for the definition of the blueprint architecture, while D6.1

and the 2 deliverables for WP7, D7.1 and D7.2 consider User communities requirements

for their respective WP. In this section we will include some requirements towards WP5

that have been extracted from D6.1 deliverables about the components to be developed

there.

2.4.1 Advanced Workflow Composition (T6.1)

The Advanced Workflow composition task includes both the tool for the definition of the

Workflows together with the data acquisition and event-triggered workflows as described

in section 3 of the D6.1 deliverable.

The data acquisition component can exploit the availability of storages with SSE interface

(dCache is explicitly mentioned as technology to at least have a first PoC, as it already

provides this interface). In addition, provisioning on demand of Kubernetes clusters will

be needed in order to deploy Knative and the OSCAR framework.

2.4.2 Quality Assurance (T6.2)

No particular requirements arise from the quality assurance task at this stage of the

project.

11 https://wiki.archlinux.org/title/rsync

12 https://www.globus.org/data-transfer

13 https://rclone.org/

https://wiki.archlinux.org/title/rsync
https://www.globus.org/data-transfer
https://rclone.org/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 19

2.4.3 Data Fusion (T6.3)

Data Fusion at this stage of the design phase is planning to rely mainly on openEO

processes to run data fusion tasks, therefore it needs the availability of openEO backends

on the infrastructure.

2.4.4 Big Data Analytics (T6.4)

As described in section 6 of the deliverable D6.1, the goal of the Big Data Analytics

deployment layer is to create a set of topology templates and recipes for general-purpose

data analytic environments to be deployed on demand on top of the cloud resources.

The cloud topology templates will be created using the OASIS TOSCA Simple YAML

specification and will describe all the virtual resources and the software components

required to deploy the final application. Furthermore, they will provide the user with a set

of input parameters enabling them to customise the application configuration.

The main requirement is the availability of the PaaS Orchestrator that will be in charge of

processing the TOSCA templates and creating all the required cloud resources.

2.4.5 Advanced AI workflows (T6.5)

The artificial intelligence (AI) subsystem in the proposed digital twin engine (DTE) is

intended for data-driven digital twin (DT) models, and is mainly devoted to two macro-

operations: training and deployment of machine learning (ML) model

Requirements at IaaS level:

- Nodes with multiple GPUs for distributed ML

- Storage space for Models Registry (~10s GBs, to begin with)

Requirements at PaaS level:

- Kubernetes-like API abstraction layer to manage container deployments.

- S3 object storage services, or the services to enable to deploy an S3 storage service

(e.g., MinIO) from a container image

- RDBMS, or the services to enable to deploy an RDBMS (e.g., PostgreSQL) from a

container image

- Interested towards Apache Airflow / Argo Workflows (Kubeflow)

- Kafka for real-time predictions and twinning (DT core property)

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 20

3 WP5 Architecture

Starting from the analysis of the requirements gathered and described above we defined

the first version of the DTE infrastructure architecture. Three high level principles have

been identified:

● A clear definition of the interfaces, both for the interactions with resources and

toward the WP6 services.

● High flexibility either to accommodate diverse needs coming from very diverse

scientific communities.

● Extendibility toward the integration of a very different set of resources.

The fact that computing capacity is provided by a set of sites with huge differences in

their internal implementation requires WP5 to develop and provide a toolset including

solutions to cope with all the highlighted peculiarities. In other words, WP5 does not

foresee a single solution that fits all but the other way around: to develop a composable

set of tools. This is considered a strategic approach as a path forward.

Regarding the computing federation and integration representing one of the objectives

of the work package, two main concepts have been identified:

● Resources orchestration

● Workload and/or payload offloading

The two are supposed to be combined together and complement each other features

wise. The resource orchestration has the main responsibility to keep track of the

federation and thus to identify at a given point in time which is the “best provider” to

support the deployment of a service defined by WP6. The deployment of a service

primarily targets a cloud provider because it offers all the handles (namely APIs) to

automate the provisioning and, mostly, the configuration of possibly complex topologies

of clusters where the aforementioned services will actually execute. The offloading

mechanism, described in detail below (Section.3.1), instead is meant to be responsible

to allow a seamless extension of any services toward a remote provider. The main

assumption of the offloading is that just a unit of work (i.e., a job, a JupyterLab, a function

in a serverless system as well as a containerized application etc) will be distributed.

Clearly, being a container, the granularity managed by the offloading is much smaller

than the one handled by the Resource orchestration. The decision to adopt a container-

based approach is fully compliant with requirements and discussions made with WP6.

Thanks to the offloading the high-level service will be able to fully exploit specialised

hardware to satisfy very specific workflows such as high performances instead of high

throughput. Moreover, the offloading can be considered a suitable solution to accomplish

with opportunistic resource usage, for the sake of optimization, which allows to exploit

any idle slots anytime, anywhere (i.e., a remote batch system, a single “fat node” or a

dynamic cloud generated cluster)

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 21

Obviously there are few main prerequisites to all this. The main one is that scientific data

required by Digital Twins are accessible by the service as well as by the offloaded process.

This requires a system to deal with:

● Data handling

● Data management

● Storage federation

These became key in the overall architecture of the interTwin system and in particular in

the DTE Infrastructure. In particular it is essential that WP5 provides the following

capabilities:

● Transparent data movement

● Federated diverse and dispersed storages and data archival possibly considering

disting storage technologies

● Abstraction layers to allow an easy interaction with a complex storage topology

● Tracking and querying dataset locality

Finally, it is worth mentioning that another prerequisite is to ensure that any provider of

the federation can actually access the very same version of the code, libraries, and

dependencies irrespective of where it lands, through the offloading mechanism.

So, concluding, the aforementioned system can actually work under the assumption that

runtime software can be accessed anytime anywhere. Data availability is expected to be

granted by the DataLake model and related Data Management services.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 22

Figure 2 - System landscape diagram (in the C4 model) of the DTE Infrastructure. This is a high-level view that

highlights the user interactions with WP5.

3.1 General overview of the architecture

Figure 2 represents the context diagram in the C4 model of the overall architecture for

the DTE infrastructure that follows what has been summarised in the previous paragraph.

The Interaction among the major services is shown. The AI Based Orchestration and the

Replica Manager are the main elements and are responsible for deploying services

defined by WP6 and moving data between providers respectively. In addition, the

relationship with resource providers and external services is represented. In details:

● Services deployed on cloud by the orchestrator are equipped with the offloader

that actually allow to seamlessly extend any service toward any type of provider

(HPC, HTC, Cloud..). The offloader is the key element to implement the federated

compute.

● The Resource orchestration is meant to be able to interact with Replica Manager

both to ask for data location, in order to possibly consider of it to decide where to

deploy a service, and to request to replicate a given dataset.

● Resource info is key to enable the intelligent provider selection for the service

deployment.

● All the providers are expected to see the very same repository, implemented by

external services, for the software distribution.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 23

● The Replica Manager will be also able to integrate external metadata catalogue in

order to possibly use community specific information to take decisions about

replicas of data

● Regarding the Authentication and Authorization external identity access

management solutions will be integrated. It is foreseen to support federated

identities, group based access control

● Services that are expected to enable the offloading mechanism will expose

interTwin API (Section. 4.1.2). They are responsible for enabling the execution of

the offloaded payload, in the form of a container application, into the remote

resource. The interTwin API will also allow to track the status of the offloaded

payloads and to stop the execution.

● Similarly, to the previous bullet, storage edge service as a component that is

deployed “close to” a facility's existing storage capacity is also foreseen. This

service will enhance the storage capabilities of a site, if needed, so that it may

participate within the federated data infrastructure.

It is important to highlight once more that we envision a high level of flexibility for the

infrastructure where components and capabilities can be combined together in order to

accommodate specific needs. It is with this vision that we foresee that the latter two

components, namely the interTwin APIs for the offloading and the storage edge service,

could be combined, lego block, as a single element, with multiple interfaces (microservice

approach) to be deployed at the edge (i.e., of a HPC).

Figure 3 shows the high-level interactions between all the aforementioned elements of

the architecture and the external services.

The detailed description of the components of the DTE infrastructure are described in

detail in the next section (section. 4)

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 24

Figure 3 - System landscape diagram (in the C4 model) of the DTE Infrastructure. This is a high-level view that

highlights the interactions with externals.

3.2 Adoption of existing technologies

The technological objective of interTwin is to develop and implement a prototype of an

interdisciplinary Digital Twin Engine offering the capability to integrate with Digital Twins

developed in different scientific domains. Not only it is expected to be domain agnostic,

but it must be an open source platform based on open standards.

A quite comprehensive scouting process was then made by WP5 in order to identify any

suitable software or technological solution to adopt within interTwin and possibly to be

enhanced, already available and well established. We started analysing the outcome of

several EU Funded projects where of course we find consistency with the “building blocks

of the DTE infrastructure of interTwin.

Namely we analysed the results and the blueprints of C-Scale, ESCAPE, EGI-ACE whose

blueprints are described in detail in D3.1[R1]. and the Knock from The Computer

Architecture and VLSI Systems (CARV)14 where we identified interesting software and

existing solutions to be updated. This spans from software that support data access and

management in a federated environment, facility orchestration by means of CPU and

14 https://www.ics.forth.gr/carv/

https://www.ics.forth.gr/carv/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 25

Storage, resource usage accounting, authentication, and authorization as well as systems

to build resources overlay.

Table 2 - Summary table with the results of the scouting performed to identify all the suitable open

source components for the design of the architecture. All the services in the table have TRL > 6

Features Tools

Transfers data into or out of storage services FTS

Data Management and Storage Orchestration. Replica

management

RUCIO System

Provisioning of on-demand high-level cloud-based

services and cloud orchestration

INDIGO PaaS

Orchestrator

Openid-Connect systems for Authentication and

Authorization

Check-IN, INDIGO-IAM

Services and solutions for both users tailored and

centrally managed software distribution

CVMFS, unpacked,

As well as containers:

Singularity, uDocker,

Docker

Heterogeneous resource overlay and payload

distribution.

HTCondor, Dask

Service for containers orchestration and advanced cloud-

native service setup

Kubernetes

Virtual Kublet

Abstraction layer to isolate application code from

underlying storage technology;

gfal

RUCIO Client

Resources usage accounting APEL

Services providing http/webdav access to resources

shared on a filesystem.

Xrootd, storm-webdav,

dCache

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 26

4 Components

4.1 Federated Compute

The concept of transparently offloading scientific community services to any suitable

computing providers has been introduced in the context of task 5.1. The objective is to

implement a “continuum of resources” between the centres taking part in the project.

As per requirement analysis, we need to deal with several distinct resource provisioning

models, distinct architectures, and quality of services etc. Nevertheless, we do expect the

platform to hide such complexity in a way that the user doesn’t have to care.

The implementation process needs to consider two categories of sites: 1) sites that

provide cloud interface APIs 2) sites offering managed batch systems with minimal

requirements. In other words:

● Batch systems are hosted at both HPC and HTC sites and are designed to handle

scheduling of discrete jobs and tasks across pools of local resources.

● Cloud providers are more general purposes and are perfectly suitable to deploy

high level services, possibly with a rather complex underlying topology and

possibly based on cloud-native solutions.

The main challenge is to federate all those heterogeneous and disparate providers, we

envision enabling the federation of high-level services (exposed to the users) capable of

transparently offloading the inner payloads everywhere. If the offloading mechanism is

transparently handled in terms of deployment and configuration, the end user can

possibly take advantage of any type of computing capacity, while keeping the same

experience as any regular cloud application. In other words:

“The aim is to enable high level services deployed on a cloud provider to transparently execute

containerized payload on a remote batch system such as a SLURM on a HPC system. “

4.1.1 General Description and functionalities

We start from the assumption that cloud providers are used to deploy scientific services

and consider those services being orchestrated through the Kubernetes system15. In

addition to that, we envision the usage of clouds as the main target for the actual

automated and on-demand service deployment. When it comes to computing capacity,

however, we foresee any service capable of acquiring all the needed computing capacity

from a resources federation. The model we identified is based on the Virtual Kubelet

(VK)16 technology.

15 https://kubernetes.io/

16 https://github.com/virtual-kubelet/virtual-kubelet

https://kubernetes.io/
https://github.com/virtual-kubelet/virtual-kubelet

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 27

Virtual Kubelet features a pluggable architecture integrated with Kubernetes primitives

which make it fully compatible with any workflow based on that platform. The key feature

is to masquerade as a Kubernetes Kubelet17 which enables connecting Kubernetes to

other APIs. In fact, we find that by adopting an interTwin layer of APIs to be deployed at

the edge of any resource provider, we can transparently extend a K8s system running on

a cloud system to any remote resource coming from the providers, being either cloud or

batch based.

All this translates into the following: the VK integration allows any cloud-native service to

take advantage of large batch systems, possibly based on specialised hardware from

within Kubernetes, and more importantly, any framework that directly interfaces with

Kubernetes API (Figure 4).

From a user’s perspective this would translate into: “make it easy and transparent the

access and the use of GPU based workloads”, some examples:

● Creating Kubernetes Jobs which train or execute ML models using GPUs.

● Accessing dedicated nodes on a possibly remote HPC system to perform

Interactive processing.

● Distribute preprocessing workflow for data organisation and feature engineering

phase.

● Scale out serverless workflow at the pre-exascale.

Translated into the k8s jargon this can be summarised in the following executive

message:

“Any pods can be offloaded towards any remote resource without the need for the user to

adopt custom configurations or frameworks”

17 https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 28

Figure 4 - Container diagram (in the C4 model) of the offloading system

4.1.2 Technology stack: the interTwin API

The technical goal is to enable the lifecycle management of a container (eventually

running on any engine either Apptainer, Docker et al.) via the Kubernetes API, enabled by

Virtual Kubelet technology. An important aspect of the technical implementation is the

capability of accommodating any type of backend, via a modular and plugin-base

approach. These layers are represented in the following schema.

We named “interLink” the layer API to be developed by the interTwin project. interLink

will guarantee a unique interface and thus a standard way for a cloud deployed service

to communicate to any external system for the actual payload offloading.

● Virtual Kubelet: at this level three main methods will be implemented in order to

communicate with the interLink layer. As such there will be the following

functions: createRequest, deleteRequest and statusRequest that will use HTTP

POST method, DELETE and GET respectively. The interaction with interLink will

happen through a REST API.

● interLink: This will be the layer managing the communication with the provider

plugins. The main responsibilities will be to expose the REST APIs and to provide a

plugins-based system to interact with the actual backend.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 29

● Sidecar is the name we refer to each plug-in talking with the InterLink layer. Each

Sidecar is independent and separately talks with the InterLink layer translating the

request for executing container the actual job or set of actions needed to manage

the execution on the provider. This is a key feature in order to build a flexible

model. In fact, a plugin represents the only piece of the system where the backend

specific configuration will be implemented. Thus, if a site has specific needs, this

will represent a suitable place where custom modules can be implemented

without affecting the overall architecture and implementation. Concretely, as

anticipated, if a site runs a HTCondor batch system, the plugin will translate the

HTTP requests into HTCondor commands. Similarly, will happen for Slurm etc. Last

but not least, if we will need to add a credential mapping, the plugins of the

interLink system will be the place where to include it. We plan to begin with Mock

module implementation, to return dummy answers. This will represent the test

system for the APIs and the aforementioned Virtual Kubelet. Then we will work on

a plugin dedicated to Docker, to manage the container lifecycle of a pod through

a shell calling the Docker CLI commands. At the time of writing, we chose not to

use Docker API to extend modularity and porting to other managers, since the

more generic approach is better suited for being reused when going to scenarios

where we need to interact with batch systems like Slurm. The latter will be the

primary objective that will allow us to start testing the actual offloading

mechanism. The described flow is represented in the diagram in Figure 5.

Figure 5 - Component diagram (in the C4 model) of the offloading system

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 30

4.1.3 Interaction with other components

The offloading mechanism interacts primarily with INDIGO PaaS Orchestration. In order

to effectively realise what has been designed and described in the current paragraph, we

envision that the INDIGO PaaS Orchestrator will be enhanced with the capability to

automatically configure the offloader mechanism. This means that every high-level

service automatically deployed on a given cloud provider, will be enabled to actually

spawn containers on remote sites. The knowledge about sites and relevant information

will be tracked by the information system of the INDIGO PaaS Orchestrator. This will be

technically described in section 4.3.

In addition, the offloading model to be effective and actually exploitable by the scientific

communities has few prerequisites that must be fulfilled in order to be functional and

effective. There two major aspects:

● Software such as libraries and dependencies must be distributed everywhere and

be correctly

● Data must be accessible through the federation of data and storage.

Finally, a third component is the AAI. Authentication of the user and the authorization to

instantiate an offloaded process on a remote resource.

4.2 Federated data infrastructure.

In general, the federated data infrastructure has two main responsibilities. First, it must

provide the data needed by the training algorithms to build the Digital Twins. Second, it

must be able to deploy the trained Digital Twin along with the additional data needed to

support any post-processing steps and the final exploitation of the trained DT, in order

to gain the greatest insights.

In very general terms, the ability to store and retrieve data is necessary to satisfy this

requirement. This data is assumed to be stored as files (in some file system) or data

objects (in some object store). This assumption excludes data stored in specialised

services, such as a database or domain-specific query services; although such services

may be provisioned over underlying data objects.

However, simply storing data is not sufficient. The storage fabric into which data is stored

must fulfil the performance and reliability expectations of the researchers in order to be

useful. These requirements may be different for different classes of files and may change

over time. Such variation may allow for cost optimisation; for example, by storing cold

data on magnetic tape, or storing easily reproducible files on low redundant storage.

The interTwin service providers (offering HPC, HTC and Cloud resources) all operate

storage fabrics that satisfy the baseline requirements of the experiments. However,

collectively they do so through a wide variety of technologies, which expose the

functionality through different interfaces and APIs. Some harmonisations may be

necessary in order to allow core interTwin services to interact with multiple technologies

without having to support multiple storage APIs. Such an abstraction will also make it

easier for core interTwin modules to adopt new storage technologies.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 31

In addition, we anticipate that DT training and subsequent exploitation activity will likely

take place on different computing infrastructures. Indeed, the exploitation phase could

involve complex workflows that are themselves located over different facilities.

In order to satisfy these activities, a framework is needed that can identify potentially

large volumes of data in a manageable and reliable fashion, while allowing it to be moved

seamlessly between different storage facilities based on the demands of the researchers.

It is worth noting that, in some cases, the input data is provisioned by the computing

facility itself; managing this data is not considered part of the interTwin activity. The

Copernicus Sentinel satellite data provides an example. Such data is assumed to be

available through existing projects such as the C-SCALE project.

Figure 6 - System Landscape diagram for federated data infrastructure.

The diagram in Figure 6 shows the system landscape for the DT Engine Infrastructure

(WP5). The focus is on federated data infrastructure; therefore, many of the interactions

between components not related to data are excluded for simplicity. Although not

shown, the researcher will interact directly with the DTE Thematic Modules and possibly

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 32

with the DTE Core Module. In principle, these thematic modules may interact with the

federated data infrastructure; however, the bulk of the data activity will be triggered by

DTE Core modules: either from the thematic modules or directly by the researcher. We

do not anticipate the researcher interacting directly with the federated data

infrastructure.

Although not shown in the diagram, we anticipate that data is written into storage by

some ingestor agent. This process provides new data: either for retraining purposes

(updating the digital twin based on updated information) or for exploitation activity.

The computing-related tasks within WP5 are also shown interacting with federated data

infrastructure. This interaction is related to preparing data locality and/or storage QoS

to satisfy the computational demands.

Finally, communities may already have dataset catalogues with which they manage their

data. We anticipate such catalogues providing metadata, most prominently information

on files and their locality, to the federated data infrastructure, to allow seamless

integration with communities existing data practices.

4.2.1 General description and Functionalities

The diagram in Figure 7 provides an overview of the different code functional elements

that combine to make the federated data management layer.

Figure 7 - Container diagram showing the four main containers providing the federated data infrastructure

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 33

Each of the four containers in Figure 7 have a specific responsibility.

● New data notification is responsible for accepting requests to monitor a certain

directory for new files and to send a notification promptly when new data arrives

in that directory.

● Storage technology abstraction is responsible for providing a simple interface

for interacting with storage that hides details of the underlying storage

technology.

● Dataset management is responsible for the locality of the files within a dataset,

creating additional copies of data to satisfy demand and to remove excessive

copies when under space pressure.

● Storage edge service is a component that is deployed “close to” a facility's existing

storage capacity and enhances its capabilities so that it may participate within the

federated data infrastructure.

For the most part, the interactions shown in Figure 7 are a direct result of the interactions

shown in Figure 6, with Figure 7 providing some more detail.

The new data notification container will use the storage edge service to discover when

new data is available. This provides a generic solution to this problem; however, some

storage technologies (such as dCache) already support new data notification. For storage

built on such technologies, the new data notification will interact directly with the service.

The storage technology abstraction provides a POSIX-like API for accessing storage,

exploiting a plugin structure. The software using this abstract will either use a plugin that

communicates directly with the storage service (e.g., via the POSIX API), or that will

interact over the network, using the storage edge service to allow remote access.

In general, the dataset management container will use the storage edge service to

support the transfer of data, or removal of data under space pressure. Storage built from

technologies that already support the underlying protocols (e.g., EOS, StoRM, dCache)

direct communication will be used, instead.

Finally, storage accounting information will be provided by the storage edge service,

except where the storage’s underlying technology already supports producing the

desired accounting records.

4.2.1.1 Data availability and caching

At this time, we anticipate two general classes of data: interTwin-managed data and

external data.

External data is any information that is needed by the science use-cases where interTwin

is not responsible for that data’s availability. Instead, that data is provisioned through

some other means, either at an infrastructure level (e.g., C-SCALE) or provided by the

scientific community itself.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 34

By contrast, interTwin-managed data is the responsibility of the federated data

infrastructure. Following the ESCAPE DataLake model18, such data is grouped into

datasets, which form the most fine-grain level of management.

The ESCAPE DataLake model includes support for caching by only deleting files when a

storage location is under space pressure, from storing additional datasets. By selecting

the appropriate “high water” mark, an arbitrary percent of the available capacity may be

given over to caching.

While an explicit file-level caching service could be deployed, using such a cache would

likely result in poor HPC performance. This is because, on a cache miss, the resulting data

transfers would take place while the job is running. Such delays would potentially stall

HPC nodes until the transfer has completed. In contrast, Rucio is able to provide stronger

guarantees on data available by transferring the data prior to starting the HPC job.

Therefore, we currently do not anticipate deploying a dedicated file-level caching service.

Of course, this decision is subject to revision based on the experience we will achieve with

the early DT integration through the first pilot system that we will develop.

The following sections describe each of the containers, providing details of the

technologies involved and highlighting what is the anticipated development work.

4.2.2 New data notification

The elements of the new data notification container are shown in Figure 8.

18 https://projectescape.eu/services/data-infrastructure-open-science-dios

https://projectescape.eu/services/data-infrastructure-open-science-dios

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 35

Figure 8 - Diagram showing the components making up the new data notification container.

In Figure 8, the interactions are shown with DTE Core modules that should be notified on

the arrival of new data. In principle, this interaction might also be needed by DTE

Thematic Modules, as indicated in Figure 3. In the interests of reducing the complexity of

this diagram, such interactions have been omitted, but could be imaged by substituting

“DTE Thematic Modules” for the “DTE Core Modules” shown.

The Subscription Management component provides an API through which the different

modules may register their interest in the arrival of data. Such interest provides the name

of a topic to which the client may subscribe and receive new data events.

The events are delivered through the Event delivery component. This handles the

reliable and timely delivery of new-data notification to interested parties. If a client is

disconnected then this component will store any new-data events the client missed and

provide them once the client reconnects.

The Storage Event Manager component is a centrally run component that manages the

event subscription facility already present with certain technologies (e.g., dCache). The

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 36

advantage of this approach is that it does not require polling, providing rapid notification

of new data without continuously querying the underlying storage. If the facility has

provisioned storage using technologies that do not support remote notification of new

data then the polling agent provides a similar rule to the Storage Event Manager.

dCache storage is a storage service built from the open source dCache software. This is

an example of a storage technology that already supports notification, allowing a client

(in this case, the Storage Event Manager) to learn of new data without polling.

The Polling agent is a centrally run component that manages the polling of some

underlying storage that does not support new data notification. It uses the Storage Edge

Service to detect when new data is available. The initial version will have the Polling agent

querying the Storage Edge Service periodically, to learn if new data is available.

Depending on demand and available resources, an enhancement will be investigated

where the Storage Edge Service will poll for new data, providing a new data notification.

The Event Delivery component will be based on a standard open-source event delivery,

such as Apache Kafka. The other components will be developed by interTwin.

4.2.3 Storage technology abstraction

The components of the Storage Technology Abstraction container are shown in Figure 9.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 37

Figure 9 - Diagram showing the components making up the storage technology abstraction container.

The storage agnostic library provides a POSIX-like interface through which applications

can access data independently of the underlying technology. It does this by providing an

API that software can link against.

Figure 9 shows the DTE Core Modules taking advantage of the storage agnostic library

API. In principle, this interaction might also be needed by DTE Thematic Modules, as

indicated in Figure 6. In the interests of reducing the complexity of this diagram, such

interactions have been omitted, but could be imaged by substituting “DTE Thematic

Modules” for the “DTE Core Modules” shown.

The library will support various plugins, each supporting a different storage technologies

or network protocol. Figure 9 shows two such plugins.

The Direct Access Plugin will provide access to the underlying filesystem. In effect,

provides a simple pass-through, allowing POSIX access to an underlying POSIX filesystem.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 38

The Network Protocol plugin allows remote access to data, with the Storage Edge

Service providing support for remote access.

This plugin structure allows for software to take advantage of new storage technologies

without requiring any changes. For example, a new plugin may be developed to provide

compatibility with Destination Earth’s storage technology.

The storage agnostic library is based on gfal2, an open-source solution from CERN. An

initial set of plugins will be based on those supplied by gfal2. Some development effort

may be needed to support interTwin use-cases.

4.2.4 Dataset Management

The components of the Dataset Management container are shown in Figure 10.

Figure 10 - Diagram showing the components making up the dataset management container.

In Figure 10, the interactions are shown with DTE Core modules that adjust dataset

locality by adding or removing locality rules. In principle, this interaction might also be

needed by DTE Thematic Modules, as indicated in Figure 6. In the interests of reducing

the complexity of this diagram, such interactions have been omitted, but could be imaged

by substituting “DTE Thematic Modules” for the “DTE Core Modules” shown.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 39

The dataset management container is based on the ESCAPE Data Lake stack. This is a set

of components that were established during the EU-funded ESCAPE project as a scalable,

cross-domain solution for managing dataset locality.

The Dataset Orchestration is a single, community-centric component. It is responsible

for establishing the optimal data locality, based on the multiple declarative rules supplied

by the clients. It is aware of where data is actually located. It then reconciles these two

by transferring data to satisfy the demand. It can also delete data to satisfy spare capacity

requirements.

The Dataset Orchestrator supports direct dataset management by accepting rules from

DTE Core Modules (or DTE Thematic Modules). It also supports implicit dataset

management, where Federated computing infrastructure or the AI-based orchestrator

adjust the dataset locality rules as implicit dataset management: data replication to

support DT training or exploitation activity.

Some communities already have a dataset concept, which they maintain in their own

Community Catalogue. This is something that the Dataset Orchestration may need to

consult to understand the dataset placement rules from the community.

The File Transfer component is responsible for transferring data effectively between

endpoints, where the Dataset Orchestration has identified that an additional replica is

needed.

The File Transfer component manages transfers at scale; however, the individual

transfers are achieved by services running at the site. Some storage technologies support

the underpinning protocols natively; for storage built on such technologies, the File

Transfer component will talk directly with the storage. Otherwise, the Storage Edge

Service will enable the data transfer.

Both the Dataset Orchestration and File Transfer components feed notification of their

activity to a Dataset Notification component. This component is responsible for

providing low-latency information about dataset availability, as this changes due to the

application of new rules. This allows for rapid orchestration of services to satisfy demand

once the required datasets have the desired locality.

The Dataset Orchestration component is based on the open-source Rucio19 project and

the File Transfer component is based on the open-source FTS software both are from

CERN. Rucio will need to be extended to support Community Catalogues. Further

customisations are likely to support interTwin-specific use-cases.

4.2.5 Storage edge service

The components of the Storage edge service container are shown in Figure 11.

19 https://rucio.cern.ch/

https://rucio.cern.ch/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 40

Figure 11 - Diagram showing the components making up the storage edge service.

Unlike the other containers in the federated data infrastructure the storage edge service

is deployed locally to the storage; for example, this container would be deployed “close

to” HPC facilities. Ideally, the storage edge service would be deployed within the facility's

local service fabric and would be maintained by that facility as part of the service portfolio

they offer to their users. The “close to” caveat covers the possibility that the edge service

is not run by the facility itself, but on resources located somewhere with sufficient

network connection.

The storage edge service’s main goal is to mediate access to the facility’s storage capacity,

allowing other federated data infrastructure containers to function. The facility may

already run services that provide the necessary functionality, in which case the existing

services may be used directly by the other federated data infrastructure containers.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 41

Requests from the Dataset Management container or the Storage Technology

Abstraction are accepted by the Reverse Proxy component. Although this component

has overall responsibility, it delegates most responsibility to other components.

The Identity Mapping component is responsible for identifying the corresponding local

user for an incoming request. The Reverse Proxy uses this to understand the identity of

the incoming request in terms of the local users.

The WebDAV Service Manager component is responsible for the lifecycle of an identity-

specific WebDAV endpoint. It will start the service if one is not already started, provide

the port number of the running service, allowing the Reverse Proxy service to forward an

incoming request.

The Identity-specific WebDAV Server component runs as a specific user. This allows it

to have access to the local Storage, while honouring the permission model on that

filesystem. Similarly, any files written by such a WebDAV server will have the correct

ownership.

The Report Generating component is responsible for generating storage usage records

and delivering them to Federated Services and Policies system, according to the desired

reporting schedule.

In many cases, the Report Generating component will be unable to obtain the required

data running as a generic user. Therefore, it is anticipated that a User Agent runs with

the identity of the local user, to provide the necessary information to generate the

storage usage records.

The Reverse Proxy component will be based on a standard open-source reverse proxy,

such as NGINX. Similarly, the WebDAV server will be based on the open-source StoRM

WebDAV software. Some customisations of these components may be needed. The

other components (WebDAV service manager, Identity Mapping, Report Generator and

Usage Agent) will largely be written within interTwin, reusing existing components

whenever possible.

4.2.6 Interaction with other components

Most components will interact with Rucio for federated data management aspects, or

directly with some storage fabric to read data from a file. Such interactions include

querying the locality of data, specifying that data should be copied elsewhere.

Workflow engines may trigger data transfer; however, they would then need to wait until

the data is available before starting the analysis workflow.

4.3 Intelligent providers orchestration

4.3.1 General description and Functionalities

Resource orchestration is a critical element in the DTE infrastructure architecture. Its

main function is to automate the deployment and setup of user-defined services, as well

as make decisions regarding provider selection. The orchestration system is expected to

be capable of making intelligent identification of the best Cloud provider by utilising a

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 42

variety of features based on both static and dynamic metrics. The static metrics can be

defined in advance, while dynamic information must be collected at runtime and

continuously updated.

Furthermore, the orchestration system will be designed to enable and support the

workload offloading mechanism that was previously described in Section. 4.1 by

meaning that on-demand deployed services will be automatically configured to offload

payloads. For the system to successfully implement the workload offloading mechanism,

it is essential to include and rely on a detailed information system that collects and

publishes information about the different heterogeneous providers in the federation.

This information system will allow access to key features and capabilities of the providers,

such as computing capacity, specialised hardware, and data location. With this

information, the orchestration system will be able to spawn services that are ready for

making workload offloading, without requiring any further configuration by the user. The

deployed service will be set up with all the necessary configurations for offloading, thus

making the process completely transparent for the user.

Resource orchestration will be exposed directly to the WP6 managed services. Being

based on the INDIGO PaaS Orchestration system, the interaction will be based on TOSCA

language and APIs. On the other side, the interaction of such a layer will be with Cloud

resources providers. There are few requirements for a site to fulfil for an effective

integration. Those span from the support of an OAuth2 authentication mechanism,

configuration of the service account to grant access to the federated projects, and

information to configure with PaaS operators such as name of the site, name of the

project configured for a specific Virtual Organization, quotas for each federated project

endpoints.

4.3.2 Technology stack

The following components constitute the technology stack for the orchestration system:

● INDIGO PaaS Orchestrator: built with Java technologies and on the open-source

Workflow Manager "Flowable", the Orchestrator allows federating heterogeneous

resource providers and orchestrating the deployment of TOSCA templates,

selecting the best provider according to criteria like data location, SLA, and

monitoring information. It provides a set of APIs to create, monitor, and manage

the deployments.

● PaaS Dashboard: a Flask application with a SQL database that enables users to

interact easily with the services of the PaaS, particularly the Orchestrator, to create

TOSCA-based deployments. The dashboard provides a user-friendly interface for

managing and monitoring deployments.

● Infrastructure Manager: a Python tool designed to simplify the access and

usability of IaaS clouds for scientific applications. It automates the selection,

deployment, configuration, monitoring, and update of virtual appliances. It

supports APIs from various cloud platforms, provides a contextualization system

for installing and configuring user-required applications, and offers multiple

access methods including a web-based GUI, an XML-RPC API, a REST API, and a

command-line application.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 43

● The Federated Service Catalogue is an upcoming component that will gather and

publish information about the federated providers, their services, and resource

availability. Automatic and dynamic registration of new providers/services will be

supported via REST API.

● Monitoring and Metering System: this new component will collect metrics from

the federated providers in order to monitor their status and provide the

Orchestrator with useful information for selecting the optimal deployment path.

This component has a distinct role with respect to the resource accounting system

described in Section. 4.4.

● Cloud Provider Ranker: a Java application built on top of the open-source Rule

Engine "Drools" that computes a rank for each federated provider considering

parameters like the resources quota provided to the users groups, and the

monitoring information (services availability, performance metrics). This

component will be enhanced in order to improve the scheduling mechanism of

the Orchestrator.

Figure 12 - Diagram showing the components making up the PaaS Orchestration services.

4.3.3 Interaction with other components

The Resource Orchestration system will work with the Cloud interacting directly via the

cloud-exposed API while with HPC Providers the interaction will not be direct but through

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 44

the dedicated offloading mechanism. Moreover, the Resource Orchestration will

communicate with the Data Management and Federation System to optimise the

deployments performance and resource allocation. In particular, the Federated Service

Catalog will receive information about the provider services and resources through

specific tools that will be developed. Monitoring metrics will be included as well through

the interaction with the Monitoring & Metering System that will act as a gateway for

collecting the metrics coming from the different providers (and eventually from external

monitoring systems). This information will be consumed by the Orchestrator together

with the information provided by the Data Management and Federation Service (data

availability and location, replicas, etc.) in order to identify the optimal path for the

deployment. Moreover, in the “offloading-enabled” scenario, the Orchestrator will

leverage the information from the Federated Service Catalog to prepare the needed

service configuration. Regarding the authentication and authorization, the resource

orchestration will interact with external JWT issuers.

4.4 Accounting

4.4.1 General Description and functionalities

To ensure resources in a heterogeneous distributed environment are allocated and used

fairly, a centralised resource accounting system is needed to aggregate usage records

from across the infrastructure.

APEL20 is a compute resource usage accounting tool that collects and processes usage

data from resource providers participating in distributed infrastructures. Typically,

accounting data is collected from different probes run at the resource provider level and

then sent to a central repository, where it is processed to generate statistical summaries

that are available through visualisations. APEL encompasses the open source client and

server software, as well as the service that’s centred around a central accounting

repository, all developed and run by UKRI STFC21. APEL currently supports a number of

types of accounting including for grid batch jobs, cloud virtual machines, and storage

space22. It also supports a range of different systems within those types such as different

batch systems or cloud platforms.

20 https://github.com/apel/apel

21 https://www.ukri.org/councils/stfc/

22 https://docs.egi.eu/providers/high-throughput-compute/storage-accounting/

https://github.com/apel/apel
https://www.ukri.org/councils/stfc/
https://docs.egi.eu/providers/high-throughput-compute/storage-accounting/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 45

Figure 13 - Diagram showing high-level overview of the APEL accounting workflow

4.4.2 Technology stack

APEL uses MySQL relational database schemas to store accounting records, currently

implemented for MariaDB23, with a Grafana dashboard to display the data. Records from

resource providers are sent via the ARGO Messaging Service (AMS)24 using the APEL SSM25

messaging component.

23 https://mariadb.org/en/

24 https://argoeu.github.io/argo-messaging/

25 https://github.com/apel/ssm

https://mariadb.org/en/
https://argoeu.github.io/argo-messaging/
https://github.com/apel/ssm

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 46

As mentioned in the previous section, APEL already supports a number of resource

platforms, but developments will be needed to support the additional platforms that

interTwin will use.

Figure 14 - Diagram showing the service components of the APEL accounting system.

Developments required:

● Probes for the interTwin HPC environment

○ Scripts and tooling that can interact with the interTwin HPC and container

(Kubernetes) environments, to extract accounting data and write it into an

APEL-compatible format

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 47

● Developing an interTwin specific accounting dashboard to explore the data

Deployment steps:

● Creating and configuring messaging queues in AMS, for resource providers to

send accounting records via. This includes agreeing on AAI methods

● Deploying a dedicated central database using APEL schemas

● Deploying a Grafana instance with the interTwin accounting dashboard to display

the data from the central database

4.4.3 Interaction with other components

APEL interacts with resource providers via the resource usage records that get forwarded

to the Accounting Repository through AMS. The records need to be generated to an APEL

specific schema and they are then bundled into messages and sent using the APEL SSM

messaging component.

For OpenStack cloud systems, resource providers can use the cASO26 accounting reporter

to extract usage records from OpenStack for sending to an APEL repository.

For grid batch systems, the APEL client software comes with a variety of parsers for

different batch systems or alternatively resource providers can use the in-built support

for APEL format records that certain batch systems come with.

26 https://caso.readthedocs.io/en/stable/

https://caso.readthedocs.io/en/stable/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 48

5 Policies for resource access

5.1 Background

Secure and sustainable operation of any technical implementation of interoperable DTs

can only be achieved if based on a trusted platform. The technical challenges posed by

interTwin’s core objectives push the requirements for such a platform beyond existing

distributed computing models to encompass diverse research communities accessing

highly heterogeneous resources seamlessly through orchestration. Enabling such

interoperability in a secure manner across this diversity and heterogeneity requires not

only technical solutions but also a security policy framework establishing transitive trust

between all participants: communities must trust that their data is safe, and results are

reliable; resource providers must protect their resources from misuse and account for

use.

The Authentication and Authorisation for Research Collaborations (AARC)27 projects

published the AARC Blueprint Architecture, implementing federated access management

solutions for international research collaborations, together with a Policy Development

Kit (PDK) of nine template policy documents to regulate and facilitate the trust

requirements outlined above. The AARC outputs have been used by a number of large-

scale research communities28. In addition, the PDK provides a basis for the

implementation of an operational incident response capability (Sirtfi29) and the

trustworthy operation of infrastructure services (Snctfi framework30) in a distributed,

federated environment, both derived from requirements arising from The SCI Trust

Framework31, endorsed by a number of research infrastructures.

Whilst the deployment of Cloud and HTC compute and storage resources within a

distributed federated environment has been widely adopted in the research domain,

access to HPC remains typically based on local account management. Access to such

resources with the scale and ease foreseen within the interTwin objectives, whilst

retaining appropriate security and accountability is one of the policy challenges for the

project. Linked to account management is the problem of presenting multiple, diverse

terms of use agreements (AUPs etc.) from each potential resource at which a user’s work

(compute or storage of data) to users who do not have a direct relationship with the

resource owner. The WISE AUP, providing a common baseline set of rules governing

users’ behaviour, discussed below, is one solution proposed for this problem.

27 AARC (aarc-community.org)

28 AARC in Action – AARC (aarc-community.org)

29 Sirtfi – AARC (aarc-community.org)

30 Snctfi – AARC (aarc-community.org)

31 WG: Security for Collaborating Infrastructures (SCI-WG) – WISE Community (wise-community.org)

https://aarc-community.org/
https://aarc-community.org/aarc-in-action/
https://aarc-community.org/policies/sirtfi/
https://aarc-community.org/policies/snctfi/
https://wise-community.org/sci/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 49

Similarly, establishing a common security baseline for the operation of resources, with

provisions including incident response, traceability and personal data handling provides

minimum expectations and requirements of the behaviour of those offering services to

users and communities. Here, we consider the EOSC Security Operational Baseline

202232,33, accepted as part of the EOSC Interoperability Framework34, to be a very useful

evolution of the AARC PDK, and that this could provide the basis for starting consultation

with the resource providers and other stakeholders regarding interoperable policies.

To help establish interTwin providers’ alignment, if any, with the WISE AUP and EOSC IF

Security Operational Baseline, and to begin to highlight problems in the adoption of such

baseline policies in the interTwin DT environment, three questions were inserted into the

WP5 questionnaire, described in section 2, to resource providers: “How do you grant

access to compute and data resources?”, “What are the requirements for users’

acceptance of terms and conditions for resource usage?” and “What is your alignment

with the EOSC Security Operational Baseline?”. Answers to these questions provide an

overview of the problem space for further policy development and engagement with

participants. The answers provided in the responses to the questionnaire have been

examined and no resource provider has identified any problem with starting

development of the interTwin policies on templates based on the WISE AUP and the EOSC

Security Operational Baseline so that is indeed where we plan to start.

Whilst the policy-driven requirements on resource and service providers may be driven

by interoperability across other resources and services, establishing trust in and across a

broad range of user communities, of varying scale and organisation will be an ongoing

challenge. The development of the DT policies for resource access will also have to take

the providers existing policies and national and EU legal requirements (e.g., NIS2 and

GDPR) into account.

5.2 Provider and community onboarding

“Onboarding” means registering and publishing resources to a portal or other access to

an IT infrastructure. As an example of how this is done elsewhere, the EOSC Onboarding

Team - EPOT35 - follows operational procedures36 on the EOSC Portal to facilitate the

addition of new Resource Providers and Resources and abides by the EOSC Inclusion

criteria37. It also ensures that resources continue to adhere to these criteria.

32 EOSC Security Operational Baseline - EOSC Future Private Space - Wiki EOSC Future

33 EOSC Security Operational Baseline 2022 | Zenodo

34 EOSC Interoperability Framework | EOSC Portal (eosc-portal.eu)

35 https://confluence.egi.eu/display/EOSCOB/EOSC+Portal+Onboarding+Team+-+EPOT

36 https://wiki.eoscfuture.eu/display/EOSCOB/EPOT+Procedures

37 https://eosc-portal.eu/providers-documentation/eosc-provider-portal-inclusion-criteria

https://wiki.eoscfuture.eu/display/EOSCF/EOSC+Security+Operational+Baseline
https://zenodo.org/record/7396725
https://eosc-portal.eu/eosc-interoperability-framework
https://wise-community.org/sci/
https://wise-community.org/sci/
https://wise-community.org/sci/

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 50

5.3 Harmonised access policies for service providers

We will start from the AARC policy development toolkit to develop appropriate security

policies and rules of engagement, namely Acceptable Use Policies (AUP), security

operations, privacy, data, escalation, and assurance. Security policies will need to apply

to sites and resource providers and will be developed to be interoperable with

collaborating infrastructures (such as EOSC) and its participants and will be compatible

with the WISE Security for Collaborating Infrastructures trust framework. We will consult

all resource providers and other stakeholders and especially consider new types of

providers, such as HPC, who have not previously used AARC policy templates.

5.4 Harmonised access policies for communities

As in the previous section we will also develop access policies for users and research

communities. The development will require engagement with some communities and

any other relevant stakeholders in such development.

An Acceptable Use Policy and Conditions of Use (“AUP”), for example, defines the rules

and conditions that govern access and use (including transmission, processing, and

storage of data) of the resources and services (“Services”) as granted by

community/agency/infrastructure for specific purposes.38

There are 10 base clauses listed in the WISE baseline AUP39, from where we will start

development. These are immutable and are important for the creation of any AUP. They

can be added to with additional clauses. The base 10 clauses are:

1. You shall only use the Services in a manner consistent with the purposes and

limitations described above; you shall show consideration towards other users

including by not causing harm to the Services; you have an obligation to

collaborate in the resolution of issues arising from your use of the Services.

2. You shall only use the Services for lawful purposes and not breach, attempt to

breach, nor circumvent administrative or security controls.

3. You shall respect intellectual property and confidentiality agreements.

4. You shall protect your access credentials (e.g., passwords, private keys, or multi-

factor tokens); no intentional sharing is permitted.

5. You shall keep your registered information correct and up to date.

38 EOSC AUP and use template

39 WISE Baseline AUP

https://wiki.eoscfuture.eu/pages/viewpage.action?pageId=1804748
https://wiki.geant.org/display/AARC/Acceptable+Use+Policy+and+Conditions+of+Use+-+WISE+Baseline+AUP

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 51

6. You shall promptly report known or suspected security breaches, credential

compromise, or misuse to the security contact stated below; and report any

compromised credentials to the relevant issuing authorities.

7. Reliance on the Services shall only be to the extent specified by any applicable

service level agreements listed below. Use without such agreements is at your own

risk.

8. Your personal data will be processed in accordance with the privacy statements

referenced below.

9. Your use of the Services may be restricted or suspended, for administrative,

operational, or security reasons, without prior notice and without compensation.

10. If you violate these rules, you may be liable for the consequences, which may

include your account being suspended and a report being made to your home

organisation or to law enforcement.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 52

6 Conclusions

The architecture of the Digital Twin Engine Infrastructure has been designed and the

relationship between main components have been analysed throughout the first 8

months of the project. All the needed components and interaction to effectively build a

continuum model have been defined combining the two main concepts described by this

document namely Cloud Orchestration and compute offloading. The two allow to build

the Compute Federation. Regarding the data, a key for the project, the Data Lake model

as developed by ESCAPE has been considered the foundation. Finally, the main challenge

for the accounting and policies access have been identified.

The relevant stakeholders involved in the WP5 contributed identifying the technical

requirements that are key to the design of the DTE infrastructure. Particularly

requirements from resource providers as well as from WP6 have been collected and

thoroughly analysed. More in detail requirements concerning the interfaces to exploit the

compute capacity have been considered. In addition, requirements concerning data

access and storage capability were considered and finally access policies have been

discussed. The outcome has been that we need to deal with a highly heterogeneous set

of resources and that the heterogeneity applies to several aspects spanning from

interface to access and exploit resources up to the actual hardware and system

architectures passing from very distinct approaches to the quality of the services and

access policies.

From the community perspective the main focus has been on requirements from

modules belonging to WP6. These are supposed to be the primary consumers of the WP5

infrastructure. Here we received useful feedback for the initial phase of the architectural

definition although we expect more details will come during the upcoming phase of the

project when we plan to start pilots and testbeds.

Before designing the architecture, a comprehensive scouting of the tools and services

already available has been carried on and successfully identified several services and

software’s to be enhanced to meet the objectives of the project. Namely we analysed the

results and the blueprints of C-Scale, ESCAPE, EGI-ACE and other open source initiatives

and we maximise the services to adopt while building the interTwin toolkit.

After describing the overview of the architecture, all the main components described

deep into the details the solutions as well as the specific services. All of them highlighted

where they build on and what is expected to be enhanced within interTwin.

As a future activity we identified the prototyping step as the most urgent. The vision in

this respect is that testbeds will implement the playground that will actually enable the

fruitful process of the co-design. In other words, the testbeds are meant, at least in the

initial part of the project implementation, the place where all the relevant stakeholders

can actively contribute to the process of: testing - gathering feedback - processing

requests and implementing the needed features.

D5.1 First Architecture design and implementation Plan

interTwin – 101058386 53

7 References

Reference

No Description / Link

R1 interTwin Deliverable D3.1 “Blueprint architecture, functional specifications

and requirements analysis first version”

https://documents.egi.eu/document/3930

https://documents.egi.eu/document/3930

	1 Introduction
	1.1 Scope
	1.2 Document Structure

	2 Requirements
	2.1 Resource Providers at interTwin
	2.2 Survey for providers
	2.2.1 Compute resources and access interfaces:
	2.2.2 Data and Storage
	2.2.3 Policies

	2.3 Requirements from providers
	2.4 Requirements from WP6
	2.4.1 Advanced Workflow Composition (T6.1)
	2.4.2 Quality Assurance (T6.2)
	2.4.3 Data Fusion (T6.3)
	2.4.4 Big Data Analytics (T6.4)
	2.4.5 Advanced AI workflows (T6.5)

	3 WP5 Architecture
	3.1 General overview of the architecture
	3.2 Adoption of existing technologies

	4 Components
	4.1 Federated Compute
	4.1.1 General Description and functionalities
	4.1.2 Technology stack: the interTwin API
	4.1.3 Interaction with other components

	4.2 Federated data infrastructure.
	4.2.1 General description and Functionalities
	4.2.1.1 Data availability and caching

	4.2.2 New data notification
	4.2.3 Storage technology abstraction
	4.2.4 Dataset Management
	4.2.5 Storage edge service
	4.2.6 Interaction with other components

	4.3 Intelligent providers orchestration
	4.3.1 General description and Functionalities
	4.3.2 Technology stack
	4.3.3 Interaction with other components

	4.4 Accounting
	4.4.1 General Description and functionalities
	4.4.2 Technology stack
	4.4.3 Interaction with other components

	5 Policies for resource access
	5.1 Background
	5.2 Provider and community onboarding
	5.3 Harmonised access policies for service providers
	5.4 Harmonised access policies for communities

	6 Conclusions
	7 References

