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Abstract 

Key Words Particle detector simulation, Lattice QCD, Radio Astronomy, 

Gravitational Waves, High Energy Physics, Digital Twin 

interTwin co-designs and implements the prototype of an interdisciplinary Digital Twin 

Engine (DTE). The developed DTE will be an open source platform that includes 

software components for modelling and simulation to integrate application-specific 

Digital Twins. InterTwin WP7 will provide the aforementioned sets of software 

components, called thematic modules, for the use cases defined in WP4. 

The current document consists of a report on the high-level description of the physics 

domain use cases and of the related designed thematic modules. Additionally, this 

deliverable includes the set of common requirements derived from the analysis of the 

use cases and thematic modules that will need to be available in the DTE core modules, 

designed in WP6. 
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Executive summary 
The present deliverable D7.2 consists of a report on requirements and thematic modules 

definition for the physics domain Digital Twins applications. It is a collective document 

written by scientists involved in the development of the physics domain thematic 

modules. This document describes the different use cases that will derive the 

aforementioned thematic modules which will be integrated into the Digital Twin Engine 

(DTE) that the interTwin project is developing. Moreover, an analysis of the specific 

thematic modules’ design and implementation requirements is included. The DTE needs 

to provide support for use cases’ technical requirements concerning the following 

aspects: I/O storage, databases, operating systems and execution frameworks, machine 

learning, real-time data acquisition and processing, data formats, software stack, as well 

as visualisation and data sharing methods. Lastly, already developed proof of concepts 

are described to showcase thematic modules capabilities and functionalities. 

 

 

 

  



D7.2 Report on requirements and thematic modules definition for the physics domain 

            

 

interTwin – 101058386                          9 

1 Introduction 

1.1 Scope 

This document gives an overview of the physics domain thematic modules (T7.1, T7.2, 

T7.3, T7.7) and their requirements developed by the interTwin project. 

The thematic modules will enhance the capabilities of the core engine running the Digital 

Twins by adding functionalities to several fields, such as: 

● Machine Learning (ML) based analysis for QCD simulation configurations and for 

time series 

● Noise signals classification, noise analysis, de-noising, and veto generation 

● Generative Adversarial Networks (GAN) based Lattice QCD configurations 

generation, noise simulation, particle detector simulation 

● Particle physics validation techniques capable of assessing different aspects of 

model performance 

● Fast simulation of High Energy Physics detectors 

The design of the thematic modules will follow the specific requirements provided by the 

WP4 – Technical co-design and validation with research communities, where the use 

cases are being defined. Additionally, specific requirements for each thematic module will 

be defined and listed in this document. 

1.2 Document Structure 

The document is structured in the following manner: 

● Section 2 includes the description of the initial design of the thematic modules 

developed for each individual physics use case, starting with the lattice QCD 

simulations and data management (T7.1), the noise simulation for radio 

astronomy (T7.2), the GAN-based thematic modules to manage noise simulation, 

low-latency de-noising and veto generation for Gravitational Waves (T7.3), and 

closing with the fast particle detector simulation with GAN (T7.7). 

● Section 3 collects the requirements for the thematic modules described in section 

2. It is divided into several categories: input and output data requirements, data 

volumes, databases, computing, OS and execution frameworks, machine learning 

requirements, real-time data acquisition and processing, data formats, software 

stack, visualisation, and data sharing. 

● Section 4: Testbed infrastructure presents frameworks developed as proof of 

concepts that test the capabilities of the physics domain thematic modules. 
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● The deliverable ends with section 5 that draws conclusions from the perspective 

of the physics use cases: it summarises studies and analyses performed during 

the first eight months of project’s life, that resulted in the first design of the 

thematic modules and their technical requirements.  

2 Initial design of thematic modules in 

the physics domain  

2.1 T7.1 Lattice QCD simulations and data 

management 

The aim of Lattice QCD is shedding light on the properties of Quantum Chromodynamics 

in the limit of low energies/strong couplings, where perturbation theory breaks down, 

and numerical approaches become mandatory. In interTwin the objectives are exploring 

two use cases addressing the status of Lattice QCD simulations: a classical scenario, with 

large scale simulations in HPC; and a second scenario, Machine Learning-based 

simulations, an area under development in the community, at the proof-of-concept level, 

therefore requiring few resources. 

2.1.1  Advanced Data management for Lattice QCD 

Simulations are executed at large scale in HPC systems controlled by a batch system (such 

as slurm1). The workflow involves generation of configurations and data analysis, both 

are computing-intensive tasks. The simulation modules needed are shown in the Figure 

1; 

 

 

1 https://slurm.schedmd.com  

https://slurm.schedmd.com/
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Figure 1 - Description of the modules involved in the workflow of the simulation 

The simulation codes are available in Gitlab2 and described in a paper [R11]. 

In order to facilitate data analysis, the configurations should be made readily available to 

the members of the collaboration in a controlled way, for example by using federated 

identities, and group-based access control. In the most frequent scenario, the members 

of the collaboration should have group-access enabled to read the data. A few of them, 

those in charge of generating data, should also have writing access rights. A data sharing 

model following a Data Lake architecture (WP5) would be desirable.  

Two types of runs are executed: generation and measurement runs. Generation takes 

place in large HPC facilities. Analysis can be off-loaded to smaller facilities, provided the 

data generated in the HPC system is made available. In both cases, certain files (the gauge 

configurations, or simply configurations) are regularly written and read to/from disk. The 

size of a configuration in this example is about 20GB. Usually orders of 1000 

configurations are generated. Reading a configuration from disk takes 111s and writing 

it to disk takes 72s in a modern HPC parallel filesystem such as LUSTRE. For illustration 

purposes, generating one configuration takes about 7 hours in 4096 cores.  

In the measurement runs, a configuration is read from the disc and the desired 

observable is calculated. In this case, I/O operations constitute 5% of the total run time. 

Each run also reads an input file at the beginning and writes log files with monitoring 

information and the result of the calculated observables. These extra I/O operations 

involve a stream of a few kBytes of data, and their impact on the total run time is 

completely negligible. 

 

2 https://gitlab.com/rcstar/openQxD 

https://gitlab.com/rcstar/openQxD
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Figure 2 - C4 graphical representation of the Data Lake architecture needed in Lattice QCD 

2.1.2 Generative models using Machine Learning 

The efficiency of general purpose Monte Carlo algorithms decreases dramatically when 

the simulations need to take place near critical points due to critical slowing down. This 

is a general phenomenon in simulations in Physics related to phase transitions, which 

happens as well in Lattice QCD, for example with simulations at very fine distances that 

are needed for extrapolation to the continuum limit. Simulations need to take place in 

areas of the parameter space where topology freezing (among other factors) induce very 

large autocorrelations. 

If Machine Learning could help speed-up the field configuration generation in those parts 

of the parameter space is a subject under investigation. A series of recent studies suggest 

that using Normalizing Flows (a class of deep generative models) may help to improve 

this situation (a review is available for instance at [R12] and a block diagram illustrating 

the method is shown in Figure 2). The underlying idea is using Machine Learning 

techniques to map the theory of interest to a “simpler” theory, easier to simulate.  This 

approach has the potential to become more efficient than traditional sampling especially 

when the concept of transfer learning is utilised.  

However, the costs associated with the (highly complex) sampling from the path integral, 

are transferred to the training of a model. The question under investigation is therefore 

how expensive it is to train a model compared with making a classical Monte Carlo 

simulation. 

Preliminary studies [R13], have demonstrated the proof of concept for simple models in 

two dimensions. However, further studies indicate that the training cost in CPU time can 
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be, in general, prohibitively high for large lattices, and the acceptance rates in the 

accept/reject step (Figure 2) drop fast as the lattice size increases unless better 

architectures and methods are achieved (see for example [R14] ) 

 

Figure 3 - Graphical representation of the classical generation of configurations using Monte Carlo algorithms 

 

Figure 4 - Graphical representation of the Normalizing Flows method including a correcting accept/reject step to 

account for the fact that the model cannot be perfectly trained. 

The purpose of this work is designing better architectures for Machine Learning models 

so that the acceptance rates become reasonable (~50% or more) as the volume of the 

lattice increases. The requirements in terms of resources are not as in the classical Monte 

Carlo simulation since the methodology is still at the proof of concept level.  

A typical Jupter notebook of the type required for these studies can be found in this 

reference[R15]. 

2.2 T7.2 Noise simulation for radio astronomy 

This task is designed to be instrumental in solving a big problem that is about to arise in 

modern observational astronomy in general and radio astronomy in particular, and to 

become one of the largest issues in the whole field: the problem of data overflow. 

Previous generations of telescopes typically produced no more than a few petabytes of 

data per year, thus the raw data was generally kept either indefinitely or long enough for 

the science team to reduce and analyse it, and then approve the deletion, which meant 

several months or even years. With the arrival of the new so-called Square Kilometre 
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Array3 "pathfinders", such as South African MeerKAT4 or Australian ASKAP5, the data 

acquisition rate increases enormously, these tools can easily produce several petabytes 

of raw data per week6. No current astronomical institution can handle keeping such 

volumes of data even for a month or employ a team of experts large enough to quickly 

process it or sort through it manually. Thus, it is crucial to develop automated decision-

making systems that can sort through the raw data in real or near-real time (since 

telescopes usually have downtime due to maintenance or source availability, the data can 

be pooled for short periods of time of order of days) and separate the data flow into the 

scientifically important data that must be kept and the rest that can be safely deleted. 

Another reason to be able to automatically sort through the incoming data is that modern 

radio astronomy is increasingly interested in transient sources. Previously sources had to 

be observed for long periods of time to be able to achieve the necessary signal to noise 

ratio, thus it was possible to observe reliably or even discover at all only permanent or 

fast periodic7 sources like pulsars. Since the new telescopes are much more sensitive, 

they can systematically probe the transient radio sky, which currently is generally 

unknown. Such studies are very important, since it is believed that the transients8 result 

from very far and enormously energetic exotic events (like black hole collisions) that may 

provide essential clues for the areas of physics that cannot be studied experimentally in 

any other way, e.g., quantum gravity. An automated expert system can help with this: if 

something like a transient source (or unusual in general) signature is found in the data 

flow, it can immediately trigger the "target of opportunity" mode of observation for the 

detected anomaly, and alert the scientists on duty, who would decide the best course of 

further action. This will also allow us to easily organise concerted efforts of observing rare 

important sources by a number of instruments, covering a range of wavelengths, e.g., 

combining Earth-based radio observations with space-based optical and X-ray 

 

3 SKAO: https://www.skao.int/en 

4 MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/ 

5 ASKAP-radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope 

6 Predicted data rate for an SKA pathfinder like MeerKAT is of order 10 Gbytes/s or up to 1 Pbytes/day. The SKA 

itself is expected to produce up to 200 Pbytes/day, which is ~70 exabytes per year. To put it into perspective, 
the latter is about the same as the expected data rate of CERN’s LHC after the High-Luminosity upgrade (60 
exabytes per year) and at about the same time (SKA’s first light is expected in 2027 and the High-Luminosity LHC 
should go online in 2029).  

7 Known pulsars have periods from a few milliseconds to 8 seconds, thus over a typical observational session of 

several hours one can observe many pulses, which makes pulsars relatively easy to detect and observe. However, 
if we imagine a transient phenomenon similar to a pulse of a pulsar, but either non-periodic or with periods of 
order of hours or days, discovering it is close to impossible except by sheer luck.  

8 Examples of such transients that attract a lot of attention in the radio astronomical community are “fast radio 

bursts” (FRBs), see e.g., arXiv: 2107.10113 and references thereof. 

https://www.skao.int/en
https://www.sarao.ac.za/gallery/meerkat/
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope
https://arxiv.org/abs/2107.10113
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observations — it is already done today, but with typical response times very far from 

ideal9. 

The third reason for this task is that current common radio astronomy software tools are 

inadequate, they are computationally slow and handle parallelization poorly. For the 

tasks at hand, we would like to build tools that can be efficiently run on modern HPC 

clusters, with scalability to at least hundreds of cores. It is connected to the main task of 

the ML data classification system in way that, although the classification system itself will 

be run on ordinary observatory computers embedded in a telescope’s data acquisition 

system, the training of new models before each new type of observation, which is the 

most computationally intensive task, will probably have to be performed on 

supercomputers.  

Of course, to be able to detect special and important events in the data, one has first to 

understand the regular and mundane features of the data stream well. In radio 

astronomy this primarily means noise and radio-frequency interference (RFI). 

Our starting point for this task is building a ML-based data-labelling system that reads the 

data flow coming from a real telescope observing a pulsar. Pulsars are ideal test subjects 

for this task since they reliably produce periodic bursts of scientifically significant data 

with certain variability in signal strength and other parameters.  

However, because of the nature of the pulsars, objects that are “silent” most of the time, 

a telescope observing a pulsar mostly records either an "empty" data stream, i.e., only 

the noise, or some sort of radio-frequency interference (RFI) due to artificial or natural 

electro-magnetic phenomena unrelated to space. We separate two main types of RFI: 

narrow-band RFI (NBRFI) that is present only on some frequencies of the observation 

band and broad-band RFI (BBRFI) that covers the whole observation band. Examples of 

the 4 basic time-frame types are shown in Figure 5. Thus, the basic task of the ML 

classifier is to label each small fragment of the data stream (a time frame) as one of the 

standard categories: signal, none (noise), NBRFI and BBRFI. In reality a few extra labels 

need to be introduced: "other" (something that cannot be classified into known 

categories) and mixed ones (e.g., signal with NBRFI, or NBRFI with short bursts of BBRFI). 

 

9 Even in the best case scenario when a special “target of opportunity” (ToO) event is expected, and a change of 

scheduling is proposed in advance for all the observatories involved, the actual triggering of such an event is a 
complicated and disruptive procedure involving many exchanges between various personnel of many 
institutions, thus the response time is rarely shorter than a day. Using an automated decision making system 
with pre-approved criteria can change this to minutes, most of the time taken to actually reposition the 
telescopes. 
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Figure 5 - Examples of the 4 basic time-frame types 

As shown in Figure 5, the examples of four main types of data “time frames” in a pulsar-

observation data set, visualised as 256x256 images. The vertical axis corresponds to 

frequency, horizontal to time, the value of each point is signal intensity. The top left frame 

is the most common one, “none” or “empty”, it contains only noise, amplified differently 

because the telescope’s sensitivity is different for different frequencies, leading to 

apparent horizontal banding; the top right and bottom left frames contain broad-band 

(BB) and narrow-band (NB) radio-frequency interference (RFI) represented by brighter 

vertical or horizontal stripes, these types of data are undesirable but often recorded 

because the telescope is sensitive to various artificial or natural electro-magnetic 

phenomena (radio transmissions, emissions by various devices, electric storms etc.). 

Finally, the bottom-right frame contains a pulsar’s pulse, represented by the diagonal 

slightly curved line; this is the only desirable type of data frame that we would like to 

separate from all the other types. 

Our first test data set is about 20 minutes of data collected by the Effelsberg 100m radio 

telescope10 observing one of the brightest and well-studied pulsars, the Crab pulsar. The 

size of the dataset is ~12.2 Gb. The set is broken into more than 50,000 time frames, each 

with 256 spectra in it. These frames were looked through and labelled by hand, so the 

labelled set can be used for ML training or quality assessment. In the future we will use 

much longer data sets (up to 100 TB), of different sources and produced by other 

telescopes. In particular we have already arranged to get data from one of the SKA 

 

10 Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg 

https://www.mpifr-bonn.mpg.de/en/effelsberg
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pathfinders, MeerKAT11, which will be the final testbed for this task and, as we hope, will 

ultimately use our software or its descendants in its actual day-to-day operation.   

 

 

Figure 6 - Distribution of the four main types of time frames in the Effelsberg/Crab pulsar data set. 

As shown in Figure 6, the Effelsberg/Crab pulsar data set has 94.7% of "none" frames, 

4.7% NBRFI, 0.4% BBRFI and only 0.2% of signal frames (there are only a few mixed-type 

or unidentifiable time frames, so their percentage is negligible and they are not included 

in this distribution). This illustrates the whole concept well: only 0.2% of the data is 

scientifically significant, everything else can be safely deleted right as it is being observed, 

with only some basic info (like time duration of empty periods) kept. 

The work is split into three parallel and interacting subprojects (Figure 7) which are 

described in the following sections. 

 

11 The data will come from an ongoing scientific project led by MPIfR radio astronomers. Despite the embargo 

applicable, we expect hardly any limitations, since we work with low-level unprocessed partial data that has 
little scientific value. However, this is going to place certain restrictions on access to the original data sets outside 
of the MPIfR. 



D7.2 Report on requirements and thematic modules definition for the physics domain 

            

 

interTwin – 101058386                          18 

 

Figure 7 - Three parallel interacting subprojects of the task 

2.2.1 Astrophysical analysis of the real data. 

First of all, we need to understand the data we already have. That means not just labelling, 

but their detailed signal, noise and RFI properties. And a ML tool is being built to reliably 

label the dataflow: a convolutional neural network (CNN) based classifier, implemented 

with TensorFlow in Python, that can label the data with 90% or better accuracy, and is 
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constantly improved. In the process of creating and improving this tool we study both the 

data and the ML architecture12 and implementation strategy. 

2.2.2 Theoretical modelling of the source/telescope system 

 

 

Figure 8 - General outline of the pulsar signal digital twin structure. 

This is the main digital twin creation subproject. In it we build a sophisticated model of 

the pulsar signal, anything that interferes with it and the way it is finally recorded by a 

telescope. This model will produce data that ideally is indistinguishable from a real 

telescope observing a real source, with a number of parameters that can be adjusted. 

The model (Figure 8) starts with the simple "lighthouse" representation of a pulsar, but 

then adds to it interstellar matter (ISM) effects, other cosmic sources, influence of the 

Earth atmosphere, terrestrial sources, and effects of the telescope's receiving and 

recording equipment.  

Because a lot both in the modelling and in the astrophysical block is highly experimental 

and based on trial and error, everything in these two blocks is first implemented in 

Python, for the reason of transparency, clarity, and ease of modification.  

 

 

12 Typical questions we are trying to answer at this stage are: what are the best parameters and architecture of 

the CNN network? What preprocessing of the data (e.g., filtering or averaging) is helpful for optimal handling by 
the network? Can any other ML algorithms (e.g., SVM) deal better with the same classification task? 
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2.2.3 Development of a fast and scalable C++ implementation. 

 

 

Figure 9 - Tentative overview of languages and libraries in the final software product. 
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Figure 10 - Diagram of the final software product (in the C4 model 

The stable versions of the ML classifier and the source/telescope digital twin of the 

activities described in sections 2.2.2 and 2.2.3 are then being rewritten in C++, with speed 

and scalability being a priority. The software (Figure 9 and Figure 10) has a Jupyter 

notebook / Python based user interface. All of it is to be included in a Singularity container 

for easy distribution to any platform. 

The purpose of the digital twin development is twofold. On one hand we would like to 

have an endless supply of training/testing material for the ML-based classifier with 

parameters that can be adjusted for a particular observation. On the other hand, building 

a digital twin of a telescope signal with known parameters can help with identification of 

the real signals in the telescope's data flow. For example, at the end we would like to be 

able to classify the scientifically significant part of the data not just as a "signal", but "a 

pulse of a pulsar with such and such physical parameters". 
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The final version of the classifier is intended for use with the real data flow of the MeerKAT 

telescope, and, later, possibly with other telescopes as well. But these goals are already 

beyond the scope of the current project. 

2.3 T7.3 GAN-based thematic modules to manage 

noise simulation, low-latency de-noising and veto 

generation for Gravitational Waves 

2.3.1 Use-case description 

The sensitivity of Gravitational Wave (GW) interferometers is limited by noise. We will use 

Generative Adversarial Networks (GANs) to produce a Digital Twin (DT) of the Virgo 

interferometer to realistically simulate transient noise in the detector. In the first phase, 

we will use the GAN-based DT to generate synthetic strain data. Strain is the channel that 

measures the deformation induced by the passage of a gravitational wave. Furthermore, 

the detector is equipped with sensors that monitor the status of the detector’s 

subsystems as well as the environmental conditions (wind, temperature, seismic 

motions) and whose output is saved in the so-called auxiliary channels. In a 

second phase, also in the perspective of the Einstein Telescope, we will use the trained 

model to characterise the noise and optimise the use of auxiliary channels in vetoing and 

denoising the signal in low-latency searches, i.e., those data analysis pipelines that search 

for transient astrophysical signals in almost real time. This will allow the low-latency 

searches (not part of the DT) to send out more reliable triggers to observatories for multi-

messenger astronomy.  

Figure 11 shows the high-level architecture of the DT. Data streams from auxiliary 

channels are used to find the transfer function of the system producing non-linear noise 

in the detector output. The output function compares the simulated and the real signals 

in order to issue a veto decision (to further process incoming data in low-latency 

searches) or to remove the noise contribution from the real signal (denoising). 
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Figure 11 - High-level architecture of the DT 

2.3.2 High-level architecture of the DT implementation 

Figure 12 shows the System Context diagram (in the C4 model) of the DT for the veto 

pipeline. In the rest of the document, we will focus on the veto pipeline only, but similar 

diagrams also apply to the denoising pipeline.   

 

 

Figure 12 - System Context diagram (in the C4 model) of the DT for the veto pipeline. 
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Two main subsystems characterise the DT architecture: the Training DT subsystem and the 

Inference DT subsystem. The Training subsystem is responsible for the periodical re-

training of the DT model on a buffered (on disk) subsample of most recent data. The 

Inference subsystem processes a stream of incoming data, identifies glitches, and issues 

a decision about further processing (veto). 

The above subsystems are operated by a DT Operator, which could be a person or an 

automated procedure (in a later stage) that operates the DT during data-taking. The DT 

Operator monitors the operations of the DT by leveraging a Monitoring System that collects 

and displays metrics on training convergence and inference accuracy. The Monitoring 

System is not specific to this use-case and it’s a part of the core components developed 

by WP6. 

2.3.3 The Training DT subsystem 

Figure 13 shows the Container diagram (in the C4 model) of the Training subsystem. The 

main components of the subsystem are: 

● The Training application, based on Pytorch (or Tensorflow), which is 

responsible for training the GAN model on most recent data. This 

component needs to be interfaced to the DT Operator and the Monitoring 

system. 

● The Preprocessing API, based on Python and proprietary IGWN libraries, 

which prepares the input data in a format suited for the Training 

application. 

● The Data Store API, based on Python and proprietary IGWN libraries, which 

converts the Kafka13 stream of detector data to files. 

● The Data buffer, most likely a POSIX filesystem, which stores a buffer of 

most recent detector data to train the GAN model. 

The flow of detector data at various processing steps (grey arrows) is also shown in the 

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the only 

produced artefact is the trained model. 

2.3.4 The Inference DT subsystem 

Figure 14 shows the Container diagram (in the C4 model) of the Inference subsystem. 

The main components of the subsystem are:  

● The Simulation application, based on Pytorch (or Tensorflow), which is the 

GAN inference application that simulates the strain channel starting from 

the auxiliary channels data. This component needs to be interfaced to the 

Monitoring system. 

 

13 https://kafka.apache.org/  

https://kafka.apache.org/
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● The Preprocessing API, based on Python and proprietary IGWN libraries, 

which prepares the input data in a format suited for the Inference 

application. It can be the same module as the one belonging to the Training 

subsystem. 

● The Analysis application, based on Python and proprietary IGWN libraries, 

calculates the probability for the strain data to contain a glitch and/or a 

signal. It needs to receive as input both the simulated and the real strain 

data. 

● The Veto API, based on Python and proprietary IGWN libraries, which is an 

interface to the Virgo Low Latency framework. 

The flow of detector data at various processing steps (grey arrows) is also shown in the 

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the DT artefacts 

are the trained model from the Training subsystem, the simulated strain data, a veto 

decision in a data representation internal to the DT system and a veto decision in a data 

representation compatible with the Virgo Low Latency framework. 

 

 

Figure 13 - Container diagram (in the C4 model) of the Training subsystem. 
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Figure 14 - Container diagram (in the C4 model) of the Inference subsystem. 
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2.4 T7.7 Fast particle detector simulation with GAN 

The two components present in the thematic module of T7.7 are: 

● the simulation component that incorporates the Monte Carlo-based simulation 

framework (R9)  

● the deep learning (3D Generative Adversarial Network) component (R2), which will 

produce deep learning models based on a specified particle detector set up.  

These models are integrated and can be run during the simulation step. 

More specifically, the objectives of T7.7 are summarised below: 

● Optimising the Generative Adversarial Network (GAN)-based model developed for 

a selected set of detector geometries. 

● Integrating WP6 tools for distributed training and hyperparameter optimization. 

● Implementing validation techniques capable of assessing different performance 

aspects, such as accuracy and comparison to classical Monte Carlo, uncertainty 

estimation, coverage of the support space. This activity will be contributing to the 

development of an agreed validation standard among the HEP community. 

2.4.1 Use case overview 

Particle detectors measure different particle properties at colliders such as the Large 

Hadron Collider (LHC). More specifically, the detectors called calorimeters are key 

components of the whole experimental setup, which are responsible for measuring the 

energy of the particles. In a collider, the emerging particles travel through the detector 

and interact with the detector material through the fundamental forces. In particular, 

within electromagnetic or hadronic calorimeters, showers of secondary particles are 

created due to the interaction of each new particle with the dense calorimeter material 

(Figure 15). 
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The secondary particle creation process is inherently a complex stochastic process, and 

it is typically modelled using Monte Carlo (MC) techniques. These simulations have a 

crucial role in High Energy Physics (HEP) experiments, and at the same time are very 

resource-intensive from a computing perspective. Recent estimates show that the HEP 

community devotes more than 50% of the WLCG computing Grid14 (which has a total of 

1.4 million CPU-cores running 24/7/365 worldwide) to simulation-related tasks (R10). 

Moreover, Monte Carlo simulations are constrained by the need for accuracy, which will 

further increase, in the near future with the High Luminosity upgrade of the LHC (HL-

LHC15). HL-LHC will increase the demand in terms of simulations, and consequently the 

need for computing resources, as well as the complexity of the associated detector data 

(R3). 

Detector simulation allows scientists to design detectors and perform physics analyses. 

The simulation toolkit that has been developed and performs particle physics simulations 

based on MC methods, and is also used in our use case, is Geant4. It provides a highly 

flexible simulation framework in C++. Moreover, Geant4 is used by large scale 

experiments and projects from the domains of nuclear medicine, astrophysics, and HEP. 

It constitutes a set of components which include, geometry and tracking descriptions, 

detector response modelling, event management, user interfaces and much more. 

Given the expected HL-LHC requirements in terms of simulation, the community has long 

since started developing faster alternatives to Monte Carlo, including deep learning based 

techniques (R4, R5, R6).   

 

14 WLCG computing Grid : https://home.cern/science/computing/grid  

15  HL-LHC: https://hilumilhc.web.cern.ch/ 

Figure 15 - Shower created by primary particle entering the detector volume and interacting with 

the detector material. 

https://geant4.web.cern.ch/
https://home.cern/science/computing/grid
https://hilumilhc.web.cern.ch/
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In the calorimeter case, deep learning based fast simulation directly generates the 

detector output, without reproducing, step by step, each single particle that interacts with 

the detector material. More specifically, generative models have been used in related HEP 

applications, as they are able to combine deep learning with statistical inference and 

probabilistic modelling. A generative model's goal is to learn how to generate data based 

on a true, unknown distribution describing a finite number of observations. There are 

several variants of generative models found in literature with the most well-known ones 

being the Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and 

Autoregressive Models (R1, R7, R8). The thematic module under task 7.7 designed for 

CERN’s use case concerns a fast particle detector simulation paradigm using GANs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compared to other generative approaches, the Generative Adversarial Network 

approach is able to demonstrate highly realistic and sharp images (R1). A GAN can learn 

a distribution implicitly as it doesn’t rely on the explicit computation of probability 

densities. This use case uses a convolutional GAN, 3DGAN, as calorimeter detectors can 

be regarded as huge cameras taking pictures of particle interactions (R2). The voxels (3D 

calorimeter cells) are generated as monochromatic pixelated images with the pixel 

intensities representing the cell energy depositions. 

 

 

 

 

 

Figure 16 - Detailed (full) particle simulation with Geant4 (R3) 
Figure 17 - Detailed (full) particle simulation; fast particle 

simulation using ML techniques (R3) 
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Figure 18 - Fast particle detector simulation using ML techniques high level workflow composition (R3) 

 

2.4.2 3DGAN component implementation 

An implementation of the 3DGAN approach has been developed and a more detailed 

description follows. Under section 4 of this document the implementation testbed is 

referenced. 

The 3DGAN architecture can be seen in Figure 20. The generator network implements 

stochasticity through a latent vector drawn from a Gaussian distribution. The generator 

input includes the primary particle’s initial energy and the angle that it entered the 

detector, concatenated to the latent vector. The generator network then maps the input 

to a layer of linear neurons followed by 3D convolutional layers. The discriminator input 

is an image while the network has only 3D convolutional layers. Batch normalisation is 

performed between the layers and the LeakyRelu16 activation function is used for the 

discriminator layers while the Relu13 activation function is used for the generator layers. 

The model’s loss function is the weighted sum of individual losses concerning the 

discriminator outputs and domain-related constraints, which are essential to achieve 

high level agreement over the very large dynamic range of the image pixel intensity 

distribution in a HEP task.  

The training of this model was inspired by the concept of transfer learning. Meaning that 

the 3DGAN was trained first for images in a limited energy range and after the GAN 

converged, the same trained model was further trained with the data from the whole 

available energy range. The first training step was run for 130 epochs and the second 

step was run for 30 epochs, both runs utilised GPU infrastructure. 

 

16 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)  

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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Figure 19 - Fast particle detector simulation using ML techniques high level workflow composition and its 

connections with other work packages’ components in C4 format diagram 

Figure 18 shows our digital twin application’s workflow, as well as the different 

components it consists of. Moreover, in Figure 19 the relationships with other work 

packages and our thematic module are depicted. The ML workflow that includes the 

3DGAN model consists of several other modules, the data pre-processing module, the 

model definition and training module, the validation and hyperparameter optimization 

module. 

● The preprocessing module is responsible for preparing (cleaning, scaling, etc.) and 

converting into a suitable format (HDF5 format) the simulated data created by 

GEANT4 (ROOT format). It also encodes the input information such as the 

calorimeter’s geometry identifier, the energy of the primary particle initiating the 

shower, the angle at which the particle enters the detector, and also its type and/or 

initial position. 

● The preprocessed data are then passed to the GAN model (currently developed 

using Tensorflow v217 and re-implemented in PyTorch18 in the future) for training. 

● The hyperparameter optimization (HPO) tuning module is used for searching for 

the best set of model hyperparameters (e.g., AutoML19, Optuna20 etc.). 

 

17 Tensorflow: https://www.tensorflow.org/  

18 PyTorch: https://pytorch.org/  

19 AutoML: https://www.automl.org/automl/ 

20 Optuna: https://optuna.org/  

https://www.tensorflow.org/
https://pytorch.org/
https://www.automl.org/automl/
https://optuna.org/


D7.2 Report on requirements and thematic modules definition for the physics domain 

            

 

interTwin – 101058386                          32 

● The validation module verifies the performance through a set of physics-

motivated steps, both at single image quality level and at the sample level. 

● Finally, the model is converted into ONNX21 format and used for inference within 

GEANT4 (C++ based). 

Describing in more detail the above processes and the involved components will help us 

uncover the technical requirements concerning our digital twin particle detector 

application. 

The dataset used for studying and developing the 3DGAN model (R2) (public dataset) 

consists of calorimeter 3D images/arrays of energy depositions with shape 51x51x25, 

which represent the particle showers. These images were created from simulations 

performed with GEANT4 software. The output of the Geant4 simulation is ROOT22 files, 

which need to be converted into a ML-friendly format HDF5 in order to train the model. 

The datasets and the converted data (ROOT to HDF5) need to reside in cloud file or object 

storage, as the volumes do not exceed several 100s of GB. The pre-processing of the data 

(cleaning, scaling, encoding etc.) is being performed in memory. 

During pre-processing, simulation inputs are defined and encoded, i.e., the detector 

geometry, the energy and angle of the incoming particle. The 3DGAN training requires 

multiple GPU access and the best model weights need to be saved in a model registry 

repository, in order to be available during inference. 

The performance of the model is evaluated in the validation module through the creation 

of histograms describing particle shower observables. Shower observables are among 

others, total energy distribution (sum of all cell energy deposits), cell energy deposits 

distribution, longitudinal profile which represents the energy deposited by a shower as a 

function of the depth of the calorimeter and lateral profile which represents the energy 

density distribution as function of the radius of the calorimeter. Moreover, the physics-

based validation process includes accuracy verification of those key distributions' first 

moments and precise evaluation of the tails of distributions that usually require larger 

amounts of samples. The GEANT4 and 3DGAN distributions are compared during this 

evaluation process. At inference time, a secondary validation is performed by the GEANT4 

application to ensure that the fast simulation is accurate after mapping the inferred 

energies to positions in the calorimeter. The simulation time and the memory footprint 

of the model are also considered. 

Once the model is trained, tested, and validated, it is deployed into the broader GEANT4 

framework, and in order to do so, it is converted to a format readable by the C++ GEANT4 

environment. This process is achieved using the external library for ML inference, 

ONNXRuntime23. 

 

21 ONNX: https://onnx.ai/  

22 ROOT: https://root.cern/  

23 ONNXRuntime: https://onnxruntime.ai/  

https://zenodo.org/record/3603086#.ZDhB8c5Byqi
https://root.cern/
https://www.hdfgroup.org/solutions/hdf5/
https://onnx.ai/
https://root.cern/
https://onnxruntime.ai/
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The model architecture and the weights are also stored, respectively in the JSON HDF5 

formats. This operation can be easily done in Python. Open Neural Network Exchange 

Runtime or ONNXRuntime is a framework for neural networks inference. After training, 

the model should be saved in a format that can be used for inference in C++. Then should 

be converted into an ONNX format using the tf2onnx24 library. The disk space required 

for the weights, saved as HDF5 file, is about several hundreds of MBs and the model's 

architecture, saved as a JSON file, is hundreds of KBs. 

 

  

 

24 tf2onnx: https://github.com/onnx/tensorflow-onnx  

https://github.com/onnx/tensorflow-onnx
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3 Requirements for the thematic 

modules in the physics domain  

Section 3 is dedicated to reporting the requirements concerning the thematic modules 

to be developed for the physics domain use cases. The four physics domain use cases 

include lattice QCD simulations (T7.1) and particle detector simulation in High Energy 

Physics (T7.7), as well as noise simulation in radio astronomy (T7.2) and the VIRGO noise 

detector in astrophysics (T7.3). 

Thematic modules requirements consolidation resulted from the activities performed so 

far under work package 4 (WP4), which concerns the technical co-design and validation 

of the digital twin engine among research communities. Under this scope the objective 

was to introduce use-case specific requirements for the thematic modules, based on the 

DTE infrastructure (WP5) and core modules (WP6). Digital twin engine core modules 

described in work package 6 are responsible for capabilities concerning workflow 

compositions, real-time acquisition of data and processing, quality and uncertainty 

tracing, data fusion, big data analytics, as well as AI/ML workflow. 

3.1.1 General Description and Categorization of requirements 

With respect to the DTE core modules and after research studies and analysis, institute, 

and community wise, the physics domain thematic modules requirements were 

gathered, agreeing that use cases present similar processing operations throughout their 

workflows. If a requirement category is not applicable to any of the use case’s, this will be 

specifically mentioned in the respective subsection. Each requirement category is 

represented by a dedicated subsection following the description. The requirement 

categories compiling use cases’ capabilities components are introduced as follows: 

● Input and output storage: this subsection describes the input and output data 

requirements concerning data storage architecture utilised, HPC centres where 

data are available and stored, and any pre-processing methods and steps 

required. Moreover, the expected data volumes will be reported with respect to 

both input and output data. 

● Databases subsection includes the form of databases and the database 

management systems that are being utilised for storage of data and metadata 

during use case processes. 

● Computing is a general term that we use here to describe all the requirements 

related to computation resources in terms of CPUs and/or GPUs. This subsection 

describes the computing set up that should be provisioned for each digital twin, 

concerning cloud computation resources, High Performance Computing, High 

Throughput Computing and MPI infrastructure. 
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● OS and execution framework includes the DT requirements for the operating 

system and the OS-level virtualization framework for delivering DT software. 

● Machine Learning subsection includes requirements concerning the exploitation 

of machine learning by each physics use case, in terms of software development 

language, ML frameworks, machine/deep learning models, statistical learning 

models, monitoring, (re)training and validation. 

● Real-time data acquisition and processing refers to the use cases’ capability of 

data/metadata being processed in real-time. This subsection also includes the 

platforms/frameworks being used for that purpose and how real-time processing 

is approached by the concerned use cases. 

● Data formats subsection describes the different formats that data and metadata 

coming from the physics use cases present. As well as, to which formats are the 

original data being converted to in case of pre-processing and post-processing. 

● The subsection of software stack describes all software tools and their 

requirements for each digital twin thematic module. 

● Visualisation subsection includes the different forms and methods of visualising 

the results in terms of quality verification and validation. 

● In the data sharing subsection, the processes of making data resources available 

are presented. 

3.2 Storage I/O 

3.2.1 Input data requirements 

The majority of the physics thematic modules require file or object- based storage or they 

have already data stored in HPC centres. In particular, the T7.3 thematic module requires 

space on a POSIX filesystem. Same requirements apply for output data storage. 

Necessary pre and post processing techniques need to be applied for each one of the 

thematic modules, which are described in more detail in the respective subsections of 

section 2.  

3.2.2 Expected data volume 

The data volumes that physics domain thematic modules are expecting range from O(10) 

GB to at most O(100) TB. 

3.3 Databases 

The use cases presented in this document do not require any external database to write 

and read data, but they do recognize the importance of having a service to store models’ 

histories and metadata, such as a ML model registry. Similarly, for use case specific 

metadata. 



D7.2 Report on requirements and thematic modules definition for the physics domain 

            

 

interTwin – 101058386                          36 

3.4 Computing 

Concerning computing resources, physics thematic modules require systems with 

multiple GPU support, HPC centres computing power with MPI infrastructure. As well as 

support for distributed computing, availability of GPUs for machine learning workloads, 

and ability to scale up or down computing resources based on demand. 

3.5 OS and execution framework 

To support all the related processes from modelling and ML training to inference and 

validation, Linux based operating systems, containerized environments (i.e., Docker, 

Singularity) are required at the current stage of the thematic modules. 

3.6 Machine Learning 

Most of the physics use cases use Python to perform ML related processes. Therefore, 

Python ML frameworks, like Tensorflow and PyTorch are being utilised for the 

development of the individual, use case specific machine learning frameworks. 

Tensorflow is the one that is used by the majority of the thematic modules. Statistics and 

neural network-based ML models are used, as well as monitoring tools, such as 

Tensorboard. Moreover, ML validation frameworks will be implemented for model 

validation and quality check. 

3.7 Real-time data acquisition and processing 

Most of the thematic modules in physics do not incorporate any real-time data acquisition 

procedure and therefore no related tools are required. Though, capabilities of online data 

processing are developed by T7.1 and T7.3, and especially T7.3 processes require 

streaming platforms, e.g., Apache Kafka. T7.2 ultimately aims at the development of a 

(quasi) real-time data classification tool, but this goal is for the future and is not a part of 

the current task, which only relies on pre-acquired data.  

3.8 Data formats 

Different data formats are produced together with different pre-processing and post-

processing requirements. Therefore, data and metadata formats concerning T7.7 are 

ROOT and HDF5, binary and textual data for T7.1, time series data in binary form with 

text header for T7.2 and gwf files for T7.3. 

3.9 Software stack 

Requirements in terms of software stacks include:  
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● C and C++ 

● Python 

● GEANT4 

● Tensorflow, PyTorch 

● JupyterLab 

● Conda 

● Docker, Singularity 

● Workflow tools: Kubeflow, Jupyter Notebooks 

● Streaming platforms: Apache Kafka 

● Big data analytics tools: Apache Spark 

● ML monitoring tools: Tensorboard, Prometheus, Grafana 

3.10  Visualisation 

The applications’ results are going to be presented using open-source visualisation 

libraries and dashboards, where plots analysing the produced outcome will be displayed. 

3.11 Data Sharing 

Support for metadata management tools for tracking data lineage and ensuring data 

quality. Ability to share data across different teams and organisations. Tools such as 

GitHub and Zenodo are examples of the above. 
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4 Testbed infrastructure 

In this section we report about details of testbeds used by the tasks for their PoC or early 

testing. 

4.1 Fast particle detector simulation with GAN testbed 

The fast particle detector simulation with GAN thematic module consists of two 

inseparable components as we have already discussed in section 2.4. These two 

components are the machine learning framework and the particle simulation framework. 

For the ML framework the 3DGAN model (R2), has been implemented using Tensorflow. 

The code is available on GitHub25 and it has been tested and ran on a single Linux node 

using 4 GPUs. 

 

 

 

 

 

 

 

 

 

 

Concerning the particle simulation framework component of our thematic module, there 

have been testbeds developed that are incorporating different ML models than the 

3DGAN. Therefore, our current and future efforts focus on integrating the 3DGAN model 

in the simulation framework that uses the GEANT4 environment and is implemented in 

C++. An example of the use of ML techniques for the fast detector simulation and how to 

incorporate inference libraries into C++ framework is the Par04 example developed by 

 

25 https://github.com/CERN-IT-INNOVATION/3DGAN/tree/main/Accelerated3DGAN/src/Accelerated3DGAN  

Figure 20 - 3DGAN model architecture 

https://github.com/CERN-IT-INNOVATION/3DGAN/tree/main/Accelerated3DGAN/src/Accelerated3DGAN
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the GEANT4 community and can be found on CERN Gitlab 26. This example depends on 

the external libraries used for the ML inference, LWTNN27 and ONNXRuntime. The ML 

model used in this example is a Variational Autoencoder (VAE), trained externally in 

Python on full GEANT4 detector simulation response data.  

 

  

 

26 https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04  

27Lightweight Trained Neural Network: https://github.com/lwtnn/lwtnn  

https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://github.com/lwtnn/lwtnn
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5 Conclusions 

The Digital Twin Engine’s physics thematic modules concerning tasks T7.1, T7.2, T7.3 and 

T7.7 have been designed and analysed throughout the first 8 months of the interTwin 

project. Additionally, the scientists involved in the analysis activities of WP7, and physics 

domain tasks have identified the technical requirements that are important for the 

development of the specific applications. Those requirements need to be implemented 

in the DTE in order for the thematic modules to be run seamlessly by community users. 

In this document each physics related application has been defined and analysed in 

detail. More specifically, applications concern lattice QCD simulations and data 

management, noise simulation for radio astronomy, GAN-based thematic modules that 

manage noise simulation, low-latency de-noising and veto generation for gravitational 

waves, as well as fast particle detector simulation with GAN. 

The definition of the applications and the consolidation of their requirements described 

above resulted in the following conclusions. All of the thematic modules presented here 

are interesting for the communities use cases that are leveraging state of the art machine 

learning advancements, and each one presents unique significance in the field’s research 

development. Commonalities between the applications can be observed with respect to 

the machine learning components incorporated, as well as to their processing workflow 

composition. At the same time, there are particularities that describe the physics 

thematic modules in terms of data format produced and used, along with the relevant 

data processing methods utilised by each application. Finally, we observe that the nature 

of the majority of the use cases require modern frameworks, such as Python and ML 

based, to be combined with frameworks that require low level programming languages 

such as C/C++. 
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