
Disclaimer: Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union. Neither the European Union nor

the granting authority can be held responsible for them

D7.2 Report on

requirements and

thematic modules

definition for the physics

domain
Status: FINAL

Dissemination Level: public

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 2

Abstract

Key Words Particle detector simulation, Lattice QCD, Radio Astronomy,

Gravitational Waves, High Energy Physics, Digital Twin

interTwin co-designs and implements the prototype of an interdisciplinary Digital Twin

Engine (DTE). The developed DTE will be an open source platform that includes

software components for modelling and simulation to integrate application-specific

Digital Twins. InterTwin WP7 will provide the aforementioned sets of software

components, called thematic modules, for the use cases defined in WP4.

The current document consists of a report on the high-level description of the physics

domain use cases and of the related designed thematic modules. Additionally, this

deliverable includes the set of common requirements derived from the analysis of the

use cases and thematic modules that will need to be available in the DTE core modules,

designed in WP6.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 3

Document Description

D7.2 Report on requirements and thematic modules definition for the physics domain

Work Package number WP7

Document type Deliverable

Document status FINAL Version 1

Dissemination Level Public

Copyright Status

This material by Parties of the interTwin Consortium is licensed

under a Creative Commons Attribution 4.0 International License.

Lead Partner CERN

Document link https://documents.egi.eu/document/3956

DOI https://doi.org/10.5281/zenodo.8036997

Author(s)

• Kalliopi Tsolaki (CERN)

• Sofia Vallecorsa (CERN)

• David Rousseau (IN2P3)

• Isabel Campos (CSIC)

• Yurii Pidopryhora (MPG)

• Sara Vallero (INFN)

• Alberto Gennai (INFN)

• Massimiliano Razzano (INFN)

Reviewers
• Andrea Manzi (EGI)

• Daniele Spiga (INFN)

Moderated by:
• Sjomara Specht (EGI)

• Charis Chatzikyriakou (EODC)

Approved by Christoph Reimer (EODC) on behalf of TCB

http://creativecommons.org/licenses/by/4.0/
https://documents.egi.eu/document/3956

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 4

Revision History

Version Date Description Contributors

V0.1 28/02/2023 ToC
Kalliopi Tsolaki, (CERN)

Sofia Vallecorsa (CERN)

V0.2 30/03/2023

First phase of

contributions in

section 2

Kalliopi Tsolaki, (CERN)

Sofia Vallecorsa, (CERN)

Isabel Campos (CSIC)

V0.3 17/04/2023

Second phase of

contributions in

sections 2, 3, 4

Kalliopi Tsolaki, (CERN)

Sofia Vallecorsa, (CERN)

Isabel Campos, (CSIC)

Yurii Pidopryhora (MPG)

V0.4 30/04/2023 First draft version

Kalliopi Tsolaki, (CERN)

Sofia Vallecorsa, (CERN)

David Rousseau, (IN2P3)

Isabel Campos, (CSIC)

Yurii Pidopryhora, (MPG)

Sara Vallero, (INFN)

Alberto Gennai (INFN)

V0.5 05/05/2023 Complete draft

Kalliopi Tsolaki, (CERN)

Sofia Vallecorsa, (CERN)

David Rousseau, (IN2P3)

Isabel Campos, (CSIC)

Yurii Pidopryhora, (MPG)

Sara Vallero, (INFN)

Alberto Gennai (INFN)

V0.6 15/05/2023
First version with

reviewers comments

Andrea Manzi, (EGI)

Daniele Spiga (INFN)

V0.7 25/05/2023
Version Addressing

reviewers comments

Kalliopi Tsolaki, (CERN)

Sofia Vallecorsa, (CERN)

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 5

David Rousseau, (IN2P3)

Isabel Campos, (CSIC)

Yurii Pidopryhora, (MPG)

Sara Vallero, (INFN)

Alberto Gennai, (INFN)

Massimiliano Razzano (INFN)

V0.8 02/06/2023 Section 2.1 extended Isabel Campos (CSIC)

V0.9 09/06/2023
Version ready for TCB

approval
Christoph Reimer (EODC)

V1.0 13/06/2023 Final

Terminology / Acronyms

Term/Acronym Definition

GW Gravitational Wave

QCD Quantum Chromodynamics

GAN Generative Adversarial Network

HEP High Energy Physics

MC Monte Carlo

HL-LHC High Luminosity - Large Hadron Collider

Terminology / Acronyms: https://confluence.egi.eu/display/EGIG

https://confluence.egi.eu/display/EGIG

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 6

Table of Contents

1 Introduction ..9

1.1 Scope .. 9

1.2 Document Structure ... 9

2 Initial design of thematic modules in the physics domain ... 10

2.1 T7.1 Lattice QCD simulations and data management ... 10

2.1.1 Advanced Data management for Lattice QCD ...10

2.1.2 Generative models using Machine Learning..12

2.2 T7.2 Noise simulation for radio astronomy ... 13

2.2.1 Astrophysical analysis of the real data...18

2.2.2 Theoretical modelling of the source/telescope system ..19

2.2.3 Development of a fast and scalable C++ implementation. ..20

2.3 T7.3 GAN-based thematic modules to manage noise simulation, low-latency de-noising
and veto generation for Gravitational Waves .. 22

2.3.1 Use-case description ..22

2.3.2 High-level architecture of the DT implementation ..23

2.3.3 The Training DT subsystem ..24

2.3.4 The Inference DT subsystem ..24

2.4 T7.7 Fast particle detector simulation with GAN ... 27

2.4.1 Use case overview ..27

2.4.2 3DGAN component implementation ...30

3 Requirements for the thematic modules in the physics domain 34

3.1.1 General Description and Categorization of requirements ...34

3.2 Storage I/O .. 35

3.2.1 Input data requirements ..35

3.2.2 Expected data volume ..35

3.3 Databases .. 35

3.4 Computing ... 36

3.5 OS and execution framework ... 36

3.6 Machine Learning .. 36

3.7 Real-time data acquisition and processing .. 36

3.8 Data formats.. 36

3.9 Software stack ... 36

3.10 Visualisation .. 37

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 7

3.11 Data Sharing .. 37

4 Testbed infrastructure ... 38

4.1 Fast particle detector simulation with GAN testbed .. 38

5 Conclusions ... 40

6 References .. 41

Table of Figures

Figure 1 - Description of the modules involved in the workflow of the simulation 11

Figure 2 - C4 graphical representation of the Data Lake architecture needed in Lattice QCD 12

Figure 3 - Graphical representation of the classical generation of configurations using Monte Carlo
algorithms ... 13

Figure 4 - Graphical representation of the Normalizing Flows method including a correcting accept/reject
step to account for the fact that the model cannot be perfectly trained. ... 13

Figure 5 - Examples of the 4 basic time-frame types .. 16

Figure 6 - Distribution of the four main types of time frames in the Effelsberg/Crab pulsar data set. 17

Figure 7 - Three parallel interacting subprojects of the task ... 18

Figure 8 - General outline of the pulsar signal digital twin structure. ... 19

Figure 9 - Tentative overview of languages and libraries in the final software product. 20

Figure 10 - Diagram of the final software product (in the C4 model ... 21

Figure 11 - High-level architecture of the DT.. 23

Figure 12 - System Context diagram (in the C4 model) of the DT for the veto pipeline. 23

Figure 13 - Container diagram (in the C4 model) of the Training subsystem. .. 25

Figure 14 - Container diagram (in the C4 model) of the Inference subsystem... 26

Figure 15 - Shower created by primary particle entering the detector volume and interacting with the
detector material. ... 28

Figure 16 - Detailed (full) particle simulation with Geant4 (R3) .. 29

Figure 17 - Detailed (full) particle simulation; fast particle simulation using ML techniques (R3) 29

Figure 18 - Fast particle detector simulation using ML techniques high level workflow composition (R3) . 29

Figure 19 - Fast particle detector simulation using ML techniques high level workflow composition and its
connections with other work packages’ components in C4 format diagram ... 31

Figure 20 - 3DGAN model architecture .. 38

https://d.docs.live.net/52cc9010b268cd3a/01_EGI_Doc/interTwin/Deliverables/00_Q-phase/D7.2%20Report%20on%20requirements%20and%20thematic%20modules%20definition%20for%20the%20physics%20domain%20first%20version/interTwin%20D7.2%20V1%20Public%20Final.docx#_Toc137624672
https://d.docs.live.net/52cc9010b268cd3a/01_EGI_Doc/interTwin/Deliverables/00_Q-phase/D7.2%20Report%20on%20requirements%20and%20thematic%20modules%20definition%20for%20the%20physics%20domain%20first%20version/interTwin%20D7.2%20V1%20Public%20Final.docx#_Toc137624672
https://d.docs.live.net/52cc9010b268cd3a/01_EGI_Doc/interTwin/Deliverables/00_Q-phase/D7.2%20Report%20on%20requirements%20and%20thematic%20modules%20definition%20for%20the%20physics%20domain%20first%20version/interTwin%20D7.2%20V1%20Public%20Final.docx#_Toc137624673
https://d.docs.live.net/52cc9010b268cd3a/01_EGI_Doc/interTwin/Deliverables/00_Q-phase/D7.2%20Report%20on%20requirements%20and%20thematic%20modules%20definition%20for%20the%20physics%20domain%20first%20version/interTwin%20D7.2%20V1%20Public%20Final.docx#_Toc137624674
https://d.docs.live.net/52cc9010b268cd3a/01_EGI_Doc/interTwin/Deliverables/00_Q-phase/D7.2%20Report%20on%20requirements%20and%20thematic%20modules%20definition%20for%20the%20physics%20domain%20first%20version/interTwin%20D7.2%20V1%20Public%20Final.docx#_Toc137624675
https://d.docs.live.net/52cc9010b268cd3a/01_EGI_Doc/interTwin/Deliverables/00_Q-phase/D7.2%20Report%20on%20requirements%20and%20thematic%20modules%20definition%20for%20the%20physics%20domain%20first%20version/interTwin%20D7.2%20V1%20Public%20Final.docx#_Toc137624677

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 8

Executive summary
The present deliverable D7.2 consists of a report on requirements and thematic modules

definition for the physics domain Digital Twins applications. It is a collective document

written by scientists involved in the development of the physics domain thematic

modules. This document describes the different use cases that will derive the

aforementioned thematic modules which will be integrated into the Digital Twin Engine

(DTE) that the interTwin project is developing. Moreover, an analysis of the specific

thematic modules’ design and implementation requirements is included. The DTE needs

to provide support for use cases’ technical requirements concerning the following

aspects: I/O storage, databases, operating systems and execution frameworks, machine

learning, real-time data acquisition and processing, data formats, software stack, as well

as visualisation and data sharing methods. Lastly, already developed proof of concepts

are described to showcase thematic modules capabilities and functionalities.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 9

1 Introduction

1.1 Scope

This document gives an overview of the physics domain thematic modules (T7.1, T7.2,

T7.3, T7.7) and their requirements developed by the interTwin project.

The thematic modules will enhance the capabilities of the core engine running the Digital

Twins by adding functionalities to several fields, such as:

● Machine Learning (ML) based analysis for QCD simulation configurations and for

time series

● Noise signals classification, noise analysis, de-noising, and veto generation

● Generative Adversarial Networks (GAN) based Lattice QCD configurations

generation, noise simulation, particle detector simulation

● Particle physics validation techniques capable of assessing different aspects of

model performance

● Fast simulation of High Energy Physics detectors

The design of the thematic modules will follow the specific requirements provided by the

WP4 – Technical co-design and validation with research communities, where the use

cases are being defined. Additionally, specific requirements for each thematic module will

be defined and listed in this document.

1.2 Document Structure

The document is structured in the following manner:

● Section 2 includes the description of the initial design of the thematic modules

developed for each individual physics use case, starting with the lattice QCD

simulations and data management (T7.1), the noise simulation for radio

astronomy (T7.2), the GAN-based thematic modules to manage noise simulation,

low-latency de-noising and veto generation for Gravitational Waves (T7.3), and

closing with the fast particle detector simulation with GAN (T7.7).

● Section 3 collects the requirements for the thematic modules described in section

2. It is divided into several categories: input and output data requirements, data

volumes, databases, computing, OS and execution frameworks, machine learning

requirements, real-time data acquisition and processing, data formats, software

stack, visualisation, and data sharing.

● Section 4: Testbed infrastructure presents frameworks developed as proof of

concepts that test the capabilities of the physics domain thematic modules.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 10

● The deliverable ends with section 5 that draws conclusions from the perspective

of the physics use cases: it summarises studies and analyses performed during

the first eight months of project’s life, that resulted in the first design of the

thematic modules and their technical requirements.

2 Initial design of thematic modules in

the physics domain

2.1 T7.1 Lattice QCD simulations and data

management

The aim of Lattice QCD is shedding light on the properties of Quantum Chromodynamics

in the limit of low energies/strong couplings, where perturbation theory breaks down,

and numerical approaches become mandatory. In interTwin the objectives are exploring

two use cases addressing the status of Lattice QCD simulations: a classical scenario, with

large scale simulations in HPC; and a second scenario, Machine Learning-based

simulations, an area under development in the community, at the proof-of-concept level,

therefore requiring few resources.

2.1.1 Advanced Data management for Lattice QCD

Simulations are executed at large scale in HPC systems controlled by a batch system (such

as slurm1). The workflow involves generation of configurations and data analysis, both

are computing-intensive tasks. The simulation modules needed are shown in the Figure

1;

1 https://slurm.schedmd.com

https://slurm.schedmd.com/

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 11

Figure 1 - Description of the modules involved in the workflow of the simulation

The simulation codes are available in Gitlab2 and described in a paper [R11].

In order to facilitate data analysis, the configurations should be made readily available to

the members of the collaboration in a controlled way, for example by using federated

identities, and group-based access control. In the most frequent scenario, the members

of the collaboration should have group-access enabled to read the data. A few of them,

those in charge of generating data, should also have writing access rights. A data sharing

model following a Data Lake architecture (WP5) would be desirable.

Two types of runs are executed: generation and measurement runs. Generation takes

place in large HPC facilities. Analysis can be off-loaded to smaller facilities, provided the

data generated in the HPC system is made available. In both cases, certain files (the gauge

configurations, or simply configurations) are regularly written and read to/from disk. The

size of a configuration in this example is about 20GB. Usually orders of 1000

configurations are generated. Reading a configuration from disk takes 111s and writing

it to disk takes 72s in a modern HPC parallel filesystem such as LUSTRE. For illustration

purposes, generating one configuration takes about 7 hours in 4096 cores.

In the measurement runs, a configuration is read from the disc and the desired

observable is calculated. In this case, I/O operations constitute 5% of the total run time.

Each run also reads an input file at the beginning and writes log files with monitoring

information and the result of the calculated observables. These extra I/O operations

involve a stream of a few kBytes of data, and their impact on the total run time is

completely negligible.

2 https://gitlab.com/rcstar/openQxD

https://gitlab.com/rcstar/openQxD

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 12

Figure 2 - C4 graphical representation of the Data Lake architecture needed in Lattice QCD

2.1.2 Generative models using Machine Learning

The efficiency of general purpose Monte Carlo algorithms decreases dramatically when

the simulations need to take place near critical points due to critical slowing down. This

is a general phenomenon in simulations in Physics related to phase transitions, which

happens as well in Lattice QCD, for example with simulations at very fine distances that

are needed for extrapolation to the continuum limit. Simulations need to take place in

areas of the parameter space where topology freezing (among other factors) induce very

large autocorrelations.

If Machine Learning could help speed-up the field configuration generation in those parts

of the parameter space is a subject under investigation. A series of recent studies suggest

that using Normalizing Flows (a class of deep generative models) may help to improve

this situation (a review is available for instance at [R12] and a block diagram illustrating

the method is shown in Figure 2). The underlying idea is using Machine Learning

techniques to map the theory of interest to a “simpler” theory, easier to simulate. This

approach has the potential to become more efficient than traditional sampling especially

when the concept of transfer learning is utilised.

However, the costs associated with the (highly complex) sampling from the path integral,

are transferred to the training of a model. The question under investigation is therefore

how expensive it is to train a model compared with making a classical Monte Carlo

simulation.

Preliminary studies [R13], have demonstrated the proof of concept for simple models in

two dimensions. However, further studies indicate that the training cost in CPU time can

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 13

be, in general, prohibitively high for large lattices, and the acceptance rates in the

accept/reject step (Figure 2) drop fast as the lattice size increases unless better

architectures and methods are achieved (see for example [R14])

Figure 3 - Graphical representation of the classical generation of configurations using Monte Carlo algorithms

Figure 4 - Graphical representation of the Normalizing Flows method including a correcting accept/reject step to

account for the fact that the model cannot be perfectly trained.

The purpose of this work is designing better architectures for Machine Learning models

so that the acceptance rates become reasonable (~50% or more) as the volume of the

lattice increases. The requirements in terms of resources are not as in the classical Monte

Carlo simulation since the methodology is still at the proof of concept level.

A typical Jupter notebook of the type required for these studies can be found in this

reference[R15].

2.2 T7.2 Noise simulation for radio astronomy

This task is designed to be instrumental in solving a big problem that is about to arise in

modern observational astronomy in general and radio astronomy in particular, and to

become one of the largest issues in the whole field: the problem of data overflow.

Previous generations of telescopes typically produced no more than a few petabytes of

data per year, thus the raw data was generally kept either indefinitely or long enough for

the science team to reduce and analyse it, and then approve the deletion, which meant

several months or even years. With the arrival of the new so-called Square Kilometre

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 14

Array3 "pathfinders", such as South African MeerKAT4 or Australian ASKAP5, the data

acquisition rate increases enormously, these tools can easily produce several petabytes

of raw data per week6. No current astronomical institution can handle keeping such

volumes of data even for a month or employ a team of experts large enough to quickly

process it or sort through it manually. Thus, it is crucial to develop automated decision-

making systems that can sort through the raw data in real or near-real time (since

telescopes usually have downtime due to maintenance or source availability, the data can

be pooled for short periods of time of order of days) and separate the data flow into the

scientifically important data that must be kept and the rest that can be safely deleted.

Another reason to be able to automatically sort through the incoming data is that modern

radio astronomy is increasingly interested in transient sources. Previously sources had to

be observed for long periods of time to be able to achieve the necessary signal to noise

ratio, thus it was possible to observe reliably or even discover at all only permanent or

fast periodic7 sources like pulsars. Since the new telescopes are much more sensitive,

they can systematically probe the transient radio sky, which currently is generally

unknown. Such studies are very important, since it is believed that the transients8 result

from very far and enormously energetic exotic events (like black hole collisions) that may

provide essential clues for the areas of physics that cannot be studied experimentally in

any other way, e.g., quantum gravity. An automated expert system can help with this: if

something like a transient source (or unusual in general) signature is found in the data

flow, it can immediately trigger the "target of opportunity" mode of observation for the

detected anomaly, and alert the scientists on duty, who would decide the best course of

further action. This will also allow us to easily organise concerted efforts of observing rare

important sources by a number of instruments, covering a range of wavelengths, e.g.,

combining Earth-based radio observations with space-based optical and X-ray

3 SKAO: https://www.skao.int/en

4 MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/

5 ASKAP-radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope

6 Predicted data rate for an SKA pathfinder like MeerKAT is of order 10 Gbytes/s or up to 1 Pbytes/day. The SKA

itself is expected to produce up to 200 Pbytes/day, which is ~70 exabytes per year. To put it into perspective,
the latter is about the same as the expected data rate of CERN’s LHC after the High-Luminosity upgrade (60
exabytes per year) and at about the same time (SKA’s first light is expected in 2027 and the High-Luminosity LHC
should go online in 2029).

7 Known pulsars have periods from a few milliseconds to 8 seconds, thus over a typical observational session of

several hours one can observe many pulses, which makes pulsars relatively easy to detect and observe. However,
if we imagine a transient phenomenon similar to a pulse of a pulsar, but either non-periodic or with periods of
order of hours or days, discovering it is close to impossible except by sheer luck.

8 Examples of such transients that attract a lot of attention in the radio astronomical community are “fast radio

bursts” (FRBs), see e.g., arXiv: 2107.10113 and references thereof.

https://www.skao.int/en
https://www.sarao.ac.za/gallery/meerkat/
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope
https://arxiv.org/abs/2107.10113

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 15

observations — it is already done today, but with typical response times very far from

ideal9.

The third reason for this task is that current common radio astronomy software tools are

inadequate, they are computationally slow and handle parallelization poorly. For the

tasks at hand, we would like to build tools that can be efficiently run on modern HPC

clusters, with scalability to at least hundreds of cores. It is connected to the main task of

the ML data classification system in way that, although the classification system itself will

be run on ordinary observatory computers embedded in a telescope’s data acquisition

system, the training of new models before each new type of observation, which is the

most computationally intensive task, will probably have to be performed on

supercomputers.

Of course, to be able to detect special and important events in the data, one has first to

understand the regular and mundane features of the data stream well. In radio

astronomy this primarily means noise and radio-frequency interference (RFI).

Our starting point for this task is building a ML-based data-labelling system that reads the

data flow coming from a real telescope observing a pulsar. Pulsars are ideal test subjects

for this task since they reliably produce periodic bursts of scientifically significant data

with certain variability in signal strength and other parameters.

However, because of the nature of the pulsars, objects that are “silent” most of the time,

a telescope observing a pulsar mostly records either an "empty" data stream, i.e., only

the noise, or some sort of radio-frequency interference (RFI) due to artificial or natural

electro-magnetic phenomena unrelated to space. We separate two main types of RFI:

narrow-band RFI (NBRFI) that is present only on some frequencies of the observation

band and broad-band RFI (BBRFI) that covers the whole observation band. Examples of

the 4 basic time-frame types are shown in Figure 5. Thus, the basic task of the ML

classifier is to label each small fragment of the data stream (a time frame) as one of the

standard categories: signal, none (noise), NBRFI and BBRFI. In reality a few extra labels

need to be introduced: "other" (something that cannot be classified into known

categories) and mixed ones (e.g., signal with NBRFI, or NBRFI with short bursts of BBRFI).

9 Even in the best case scenario when a special “target of opportunity” (ToO) event is expected, and a change of

scheduling is proposed in advance for all the observatories involved, the actual triggering of such an event is a
complicated and disruptive procedure involving many exchanges between various personnel of many
institutions, thus the response time is rarely shorter than a day. Using an automated decision making system
with pre-approved criteria can change this to minutes, most of the time taken to actually reposition the
telescopes.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 16

Figure 5 - Examples of the 4 basic time-frame types

As shown in Figure 5, the examples of four main types of data “time frames” in a pulsar-

observation data set, visualised as 256x256 images. The vertical axis corresponds to

frequency, horizontal to time, the value of each point is signal intensity. The top left frame

is the most common one, “none” or “empty”, it contains only noise, amplified differently

because the telescope’s sensitivity is different for different frequencies, leading to

apparent horizontal banding; the top right and bottom left frames contain broad-band

(BB) and narrow-band (NB) radio-frequency interference (RFI) represented by brighter

vertical or horizontal stripes, these types of data are undesirable but often recorded

because the telescope is sensitive to various artificial or natural electro-magnetic

phenomena (radio transmissions, emissions by various devices, electric storms etc.).

Finally, the bottom-right frame contains a pulsar’s pulse, represented by the diagonal

slightly curved line; this is the only desirable type of data frame that we would like to

separate from all the other types.

Our first test data set is about 20 minutes of data collected by the Effelsberg 100m radio

telescope10 observing one of the brightest and well-studied pulsars, the Crab pulsar. The

size of the dataset is ~12.2 Gb. The set is broken into more than 50,000 time frames, each

with 256 spectra in it. These frames were looked through and labelled by hand, so the

labelled set can be used for ML training or quality assessment. In the future we will use

much longer data sets (up to 100 TB), of different sources and produced by other

telescopes. In particular we have already arranged to get data from one of the SKA

10 Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg

https://www.mpifr-bonn.mpg.de/en/effelsberg

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 17

pathfinders, MeerKAT11, which will be the final testbed for this task and, as we hope, will

ultimately use our software or its descendants in its actual day-to-day operation.

Figure 6 - Distribution of the four main types of time frames in the Effelsberg/Crab pulsar data set.

As shown in Figure 6, the Effelsberg/Crab pulsar data set has 94.7% of "none" frames,

4.7% NBRFI, 0.4% BBRFI and only 0.2% of signal frames (there are only a few mixed-type

or unidentifiable time frames, so their percentage is negligible and they are not included

in this distribution). This illustrates the whole concept well: only 0.2% of the data is

scientifically significant, everything else can be safely deleted right as it is being observed,

with only some basic info (like time duration of empty periods) kept.

The work is split into three parallel and interacting subprojects (Figure 7) which are

described in the following sections.

11 The data will come from an ongoing scientific project led by MPIfR radio astronomers. Despite the embargo

applicable, we expect hardly any limitations, since we work with low-level unprocessed partial data that has
little scientific value. However, this is going to place certain restrictions on access to the original data sets outside
of the MPIfR.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 18

Figure 7 - Three parallel interacting subprojects of the task

2.2.1 Astrophysical analysis of the real data.

First of all, we need to understand the data we already have. That means not just labelling,

but their detailed signal, noise and RFI properties. And a ML tool is being built to reliably

label the dataflow: a convolutional neural network (CNN) based classifier, implemented

with TensorFlow in Python, that can label the data with 90% or better accuracy, and is

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 19

constantly improved. In the process of creating and improving this tool we study both the

data and the ML architecture12 and implementation strategy.

2.2.2 Theoretical modelling of the source/telescope system

Figure 8 - General outline of the pulsar signal digital twin structure.

This is the main digital twin creation subproject. In it we build a sophisticated model of

the pulsar signal, anything that interferes with it and the way it is finally recorded by a

telescope. This model will produce data that ideally is indistinguishable from a real

telescope observing a real source, with a number of parameters that can be adjusted.

The model (Figure 8) starts with the simple "lighthouse" representation of a pulsar, but

then adds to it interstellar matter (ISM) effects, other cosmic sources, influence of the

Earth atmosphere, terrestrial sources, and effects of the telescope's receiving and

recording equipment.

Because a lot both in the modelling and in the astrophysical block is highly experimental

and based on trial and error, everything in these two blocks is first implemented in

Python, for the reason of transparency, clarity, and ease of modification.

12 Typical questions we are trying to answer at this stage are: what are the best parameters and architecture of

the CNN network? What preprocessing of the data (e.g., filtering or averaging) is helpful for optimal handling by
the network? Can any other ML algorithms (e.g., SVM) deal better with the same classification task?

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 20

2.2.3 Development of a fast and scalable C++ implementation.

Figure 9 - Tentative overview of languages and libraries in the final software product.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 21

Figure 10 - Diagram of the final software product (in the C4 model

The stable versions of the ML classifier and the source/telescope digital twin of the

activities described in sections 2.2.2 and 2.2.3 are then being rewritten in C++, with speed

and scalability being a priority. The software (Figure 9 and Figure 10) has a Jupyter

notebook / Python based user interface. All of it is to be included in a Singularity container

for easy distribution to any platform.

The purpose of the digital twin development is twofold. On one hand we would like to

have an endless supply of training/testing material for the ML-based classifier with

parameters that can be adjusted for a particular observation. On the other hand, building

a digital twin of a telescope signal with known parameters can help with identification of

the real signals in the telescope's data flow. For example, at the end we would like to be

able to classify the scientifically significant part of the data not just as a "signal", but "a

pulse of a pulsar with such and such physical parameters".

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 22

The final version of the classifier is intended for use with the real data flow of the MeerKAT

telescope, and, later, possibly with other telescopes as well. But these goals are already

beyond the scope of the current project.

2.3 T7.3 GAN-based thematic modules to manage

noise simulation, low-latency de-noising and veto

generation for Gravitational Waves

2.3.1 Use-case description

The sensitivity of Gravitational Wave (GW) interferometers is limited by noise. We will use

Generative Adversarial Networks (GANs) to produce a Digital Twin (DT) of the Virgo

interferometer to realistically simulate transient noise in the detector. In the first phase,

we will use the GAN-based DT to generate synthetic strain data. Strain is the channel that

measures the deformation induced by the passage of a gravitational wave. Furthermore,

the detector is equipped with sensors that monitor the status of the detector’s

subsystems as well as the environmental conditions (wind, temperature, seismic

motions) and whose output is saved in the so-called auxiliary channels. In a

second phase, also in the perspective of the Einstein Telescope, we will use the trained

model to characterise the noise and optimise the use of auxiliary channels in vetoing and

denoising the signal in low-latency searches, i.e., those data analysis pipelines that search

for transient astrophysical signals in almost real time. This will allow the low-latency

searches (not part of the DT) to send out more reliable triggers to observatories for multi-

messenger astronomy.

Figure 11 shows the high-level architecture of the DT. Data streams from auxiliary

channels are used to find the transfer function of the system producing non-linear noise

in the detector output. The output function compares the simulated and the real signals

in order to issue a veto decision (to further process incoming data in low-latency

searches) or to remove the noise contribution from the real signal (denoising).

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 23

Figure 11 - High-level architecture of the DT

2.3.2 High-level architecture of the DT implementation

Figure 12 shows the System Context diagram (in the C4 model) of the DT for the veto

pipeline. In the rest of the document, we will focus on the veto pipeline only, but similar

diagrams also apply to the denoising pipeline.

Figure 12 - System Context diagram (in the C4 model) of the DT for the veto pipeline.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 24

Two main subsystems characterise the DT architecture: the Training DT subsystem and the

Inference DT subsystem. The Training subsystem is responsible for the periodical re-

training of the DT model on a buffered (on disk) subsample of most recent data. The

Inference subsystem processes a stream of incoming data, identifies glitches, and issues

a decision about further processing (veto).

The above subsystems are operated by a DT Operator, which could be a person or an

automated procedure (in a later stage) that operates the DT during data-taking. The DT

Operator monitors the operations of the DT by leveraging a Monitoring System that collects

and displays metrics on training convergence and inference accuracy. The Monitoring

System is not specific to this use-case and it’s a part of the core components developed

by WP6.

2.3.3 The Training DT subsystem

Figure 13 shows the Container diagram (in the C4 model) of the Training subsystem. The

main components of the subsystem are:

● The Training application, based on Pytorch (or Tensorflow), which is

responsible for training the GAN model on most recent data. This

component needs to be interfaced to the DT Operator and the Monitoring

system.

● The Preprocessing API, based on Python and proprietary IGWN libraries,

which prepares the input data in a format suited for the Training

application.

● The Data Store API, based on Python and proprietary IGWN libraries, which

converts the Kafka13 stream of detector data to files.

● The Data buffer, most likely a POSIX filesystem, which stores a buffer of

most recent detector data to train the GAN model.

The flow of detector data at various processing steps (grey arrows) is also shown in the

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the only

produced artefact is the trained model.

2.3.4 The Inference DT subsystem

Figure 14 shows the Container diagram (in the C4 model) of the Inference subsystem.

The main components of the subsystem are:

● The Simulation application, based on Pytorch (or Tensorflow), which is the

GAN inference application that simulates the strain channel starting from

the auxiliary channels data. This component needs to be interfaced to the

Monitoring system.

13 https://kafka.apache.org/

https://kafka.apache.org/

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 25

● The Preprocessing API, based on Python and proprietary IGWN libraries,

which prepares the input data in a format suited for the Inference

application. It can be the same module as the one belonging to the Training

subsystem.

● The Analysis application, based on Python and proprietary IGWN libraries,

calculates the probability for the strain data to contain a glitch and/or a

signal. It needs to receive as input both the simulated and the real strain

data.

● The Veto API, based on Python and proprietary IGWN libraries, which is an

interface to the Virgo Low Latency framework.

The flow of detector data at various processing steps (grey arrows) is also shown in the

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the DT artefacts

are the trained model from the Training subsystem, the simulated strain data, a veto

decision in a data representation internal to the DT system and a veto decision in a data

representation compatible with the Virgo Low Latency framework.

Figure 13 - Container diagram (in the C4 model) of the Training subsystem.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 26

Figure 14 - Container diagram (in the C4 model) of the Inference subsystem.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 27

2.4 T7.7 Fast particle detector simulation with GAN

The two components present in the thematic module of T7.7 are:

● the simulation component that incorporates the Monte Carlo-based simulation

framework (R9)

● the deep learning (3D Generative Adversarial Network) component (R2), which will

produce deep learning models based on a specified particle detector set up.

These models are integrated and can be run during the simulation step.

More specifically, the objectives of T7.7 are summarised below:

● Optimising the Generative Adversarial Network (GAN)-based model developed for

a selected set of detector geometries.

● Integrating WP6 tools for distributed training and hyperparameter optimization.

● Implementing validation techniques capable of assessing different performance

aspects, such as accuracy and comparison to classical Monte Carlo, uncertainty

estimation, coverage of the support space. This activity will be contributing to the

development of an agreed validation standard among the HEP community.

2.4.1 Use case overview

Particle detectors measure different particle properties at colliders such as the Large

Hadron Collider (LHC). More specifically, the detectors called calorimeters are key

components of the whole experimental setup, which are responsible for measuring the

energy of the particles. In a collider, the emerging particles travel through the detector

and interact with the detector material through the fundamental forces. In particular,

within electromagnetic or hadronic calorimeters, showers of secondary particles are

created due to the interaction of each new particle with the dense calorimeter material

(Figure 15).

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 28

The secondary particle creation process is inherently a complex stochastic process, and

it is typically modelled using Monte Carlo (MC) techniques. These simulations have a

crucial role in High Energy Physics (HEP) experiments, and at the same time are very

resource-intensive from a computing perspective. Recent estimates show that the HEP

community devotes more than 50% of the WLCG computing Grid14 (which has a total of

1.4 million CPU-cores running 24/7/365 worldwide) to simulation-related tasks (R10).

Moreover, Monte Carlo simulations are constrained by the need for accuracy, which will

further increase, in the near future with the High Luminosity upgrade of the LHC (HL-

LHC15). HL-LHC will increase the demand in terms of simulations, and consequently the

need for computing resources, as well as the complexity of the associated detector data

(R3).

Detector simulation allows scientists to design detectors and perform physics analyses.

The simulation toolkit that has been developed and performs particle physics simulations

based on MC methods, and is also used in our use case, is Geant4. It provides a highly

flexible simulation framework in C++. Moreover, Geant4 is used by large scale

experiments and projects from the domains of nuclear medicine, astrophysics, and HEP.

It constitutes a set of components which include, geometry and tracking descriptions,

detector response modelling, event management, user interfaces and much more.

Given the expected HL-LHC requirements in terms of simulation, the community has long

since started developing faster alternatives to Monte Carlo, including deep learning based

techniques (R4, R5, R6).

14 WLCG computing Grid : https://home.cern/science/computing/grid

15 HL-LHC: https://hilumilhc.web.cern.ch/

Figure 15 - Shower created by primary particle entering the detector volume and interacting with

the detector material.

https://geant4.web.cern.ch/
https://home.cern/science/computing/grid
https://hilumilhc.web.cern.ch/

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 29

In the calorimeter case, deep learning based fast simulation directly generates the

detector output, without reproducing, step by step, each single particle that interacts with

the detector material. More specifically, generative models have been used in related HEP

applications, as they are able to combine deep learning with statistical inference and

probabilistic modelling. A generative model's goal is to learn how to generate data based

on a true, unknown distribution describing a finite number of observations. There are

several variants of generative models found in literature with the most well-known ones

being the Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and

Autoregressive Models (R1, R7, R8). The thematic module under task 7.7 designed for

CERN’s use case concerns a fast particle detector simulation paradigm using GANs.

Compared to other generative approaches, the Generative Adversarial Network

approach is able to demonstrate highly realistic and sharp images (R1). A GAN can learn

a distribution implicitly as it doesn’t rely on the explicit computation of probability

densities. This use case uses a convolutional GAN, 3DGAN, as calorimeter detectors can

be regarded as huge cameras taking pictures of particle interactions (R2). The voxels (3D

calorimeter cells) are generated as monochromatic pixelated images with the pixel

intensities representing the cell energy depositions.

Figure 16 - Detailed (full) particle simulation with Geant4 (R3)
Figure 17 - Detailed (full) particle simulation; fast particle

simulation using ML techniques (R3)

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 30

Figure 18 - Fast particle detector simulation using ML techniques high level workflow composition (R3)

2.4.2 3DGAN component implementation

An implementation of the 3DGAN approach has been developed and a more detailed

description follows. Under section 4 of this document the implementation testbed is

referenced.

The 3DGAN architecture can be seen in Figure 20. The generator network implements

stochasticity through a latent vector drawn from a Gaussian distribution. The generator

input includes the primary particle’s initial energy and the angle that it entered the

detector, concatenated to the latent vector. The generator network then maps the input

to a layer of linear neurons followed by 3D convolutional layers. The discriminator input

is an image while the network has only 3D convolutional layers. Batch normalisation is

performed between the layers and the LeakyRelu16 activation function is used for the

discriminator layers while the Relu13 activation function is used for the generator layers.

The model’s loss function is the weighted sum of individual losses concerning the

discriminator outputs and domain-related constraints, which are essential to achieve

high level agreement over the very large dynamic range of the image pixel intensity

distribution in a HEP task.

The training of this model was inspired by the concept of transfer learning. Meaning that

the 3DGAN was trained first for images in a limited energy range and after the GAN

converged, the same trained model was further trained with the data from the whole

available energy range. The first training step was run for 130 epochs and the second

step was run for 30 epochs, both runs utilised GPU infrastructure.

16 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 31

Figure 19 - Fast particle detector simulation using ML techniques high level workflow composition and its

connections with other work packages’ components in C4 format diagram

Figure 18 shows our digital twin application’s workflow, as well as the different

components it consists of. Moreover, in Figure 19 the relationships with other work

packages and our thematic module are depicted. The ML workflow that includes the

3DGAN model consists of several other modules, the data pre-processing module, the

model definition and training module, the validation and hyperparameter optimization

module.

● The preprocessing module is responsible for preparing (cleaning, scaling, etc.) and

converting into a suitable format (HDF5 format) the simulated data created by

GEANT4 (ROOT format). It also encodes the input information such as the

calorimeter’s geometry identifier, the energy of the primary particle initiating the

shower, the angle at which the particle enters the detector, and also its type and/or

initial position.

● The preprocessed data are then passed to the GAN model (currently developed

using Tensorflow v217 and re-implemented in PyTorch18 in the future) for training.

● The hyperparameter optimization (HPO) tuning module is used for searching for

the best set of model hyperparameters (e.g., AutoML19, Optuna20 etc.).

17 Tensorflow: https://www.tensorflow.org/

18 PyTorch: https://pytorch.org/

19 AutoML: https://www.automl.org/automl/

20 Optuna: https://optuna.org/

https://www.tensorflow.org/
https://pytorch.org/
https://www.automl.org/automl/
https://optuna.org/

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 32

● The validation module verifies the performance through a set of physics-

motivated steps, both at single image quality level and at the sample level.

● Finally, the model is converted into ONNX21 format and used for inference within

GEANT4 (C++ based).

Describing in more detail the above processes and the involved components will help us

uncover the technical requirements concerning our digital twin particle detector

application.

The dataset used for studying and developing the 3DGAN model (R2) (public dataset)

consists of calorimeter 3D images/arrays of energy depositions with shape 51x51x25,

which represent the particle showers. These images were created from simulations

performed with GEANT4 software. The output of the Geant4 simulation is ROOT22 files,

which need to be converted into a ML-friendly format HDF5 in order to train the model.

The datasets and the converted data (ROOT to HDF5) need to reside in cloud file or object

storage, as the volumes do not exceed several 100s of GB. The pre-processing of the data

(cleaning, scaling, encoding etc.) is being performed in memory.

During pre-processing, simulation inputs are defined and encoded, i.e., the detector

geometry, the energy and angle of the incoming particle. The 3DGAN training requires

multiple GPU access and the best model weights need to be saved in a model registry

repository, in order to be available during inference.

The performance of the model is evaluated in the validation module through the creation

of histograms describing particle shower observables. Shower observables are among

others, total energy distribution (sum of all cell energy deposits), cell energy deposits

distribution, longitudinal profile which represents the energy deposited by a shower as a

function of the depth of the calorimeter and lateral profile which represents the energy

density distribution as function of the radius of the calorimeter. Moreover, the physics-

based validation process includes accuracy verification of those key distributions' first

moments and precise evaluation of the tails of distributions that usually require larger

amounts of samples. The GEANT4 and 3DGAN distributions are compared during this

evaluation process. At inference time, a secondary validation is performed by the GEANT4

application to ensure that the fast simulation is accurate after mapping the inferred

energies to positions in the calorimeter. The simulation time and the memory footprint

of the model are also considered.

Once the model is trained, tested, and validated, it is deployed into the broader GEANT4

framework, and in order to do so, it is converted to a format readable by the C++ GEANT4

environment. This process is achieved using the external library for ML inference,

ONNXRuntime23.

21 ONNX: https://onnx.ai/

22 ROOT: https://root.cern/

23 ONNXRuntime: https://onnxruntime.ai/

https://zenodo.org/record/3603086#.ZDhB8c5Byqi
https://root.cern/
https://www.hdfgroup.org/solutions/hdf5/
https://onnx.ai/
https://root.cern/
https://onnxruntime.ai/

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 33

The model architecture and the weights are also stored, respectively in the JSON HDF5

formats. This operation can be easily done in Python. Open Neural Network Exchange

Runtime or ONNXRuntime is a framework for neural networks inference. After training,

the model should be saved in a format that can be used for inference in C++. Then should

be converted into an ONNX format using the tf2onnx24 library. The disk space required

for the weights, saved as HDF5 file, is about several hundreds of MBs and the model's

architecture, saved as a JSON file, is hundreds of KBs.

24 tf2onnx: https://github.com/onnx/tensorflow-onnx

https://github.com/onnx/tensorflow-onnx

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 34

3 Requirements for the thematic

modules in the physics domain

Section 3 is dedicated to reporting the requirements concerning the thematic modules

to be developed for the physics domain use cases. The four physics domain use cases

include lattice QCD simulations (T7.1) and particle detector simulation in High Energy

Physics (T7.7), as well as noise simulation in radio astronomy (T7.2) and the VIRGO noise

detector in astrophysics (T7.3).

Thematic modules requirements consolidation resulted from the activities performed so

far under work package 4 (WP4), which concerns the technical co-design and validation

of the digital twin engine among research communities. Under this scope the objective

was to introduce use-case specific requirements for the thematic modules, based on the

DTE infrastructure (WP5) and core modules (WP6). Digital twin engine core modules

described in work package 6 are responsible for capabilities concerning workflow

compositions, real-time acquisition of data and processing, quality and uncertainty

tracing, data fusion, big data analytics, as well as AI/ML workflow.

3.1.1 General Description and Categorization of requirements

With respect to the DTE core modules and after research studies and analysis, institute,

and community wise, the physics domain thematic modules requirements were

gathered, agreeing that use cases present similar processing operations throughout their

workflows. If a requirement category is not applicable to any of the use case’s, this will be

specifically mentioned in the respective subsection. Each requirement category is

represented by a dedicated subsection following the description. The requirement

categories compiling use cases’ capabilities components are introduced as follows:

● Input and output storage: this subsection describes the input and output data

requirements concerning data storage architecture utilised, HPC centres where

data are available and stored, and any pre-processing methods and steps

required. Moreover, the expected data volumes will be reported with respect to

both input and output data.

● Databases subsection includes the form of databases and the database

management systems that are being utilised for storage of data and metadata

during use case processes.

● Computing is a general term that we use here to describe all the requirements

related to computation resources in terms of CPUs and/or GPUs. This subsection

describes the computing set up that should be provisioned for each digital twin,

concerning cloud computation resources, High Performance Computing, High

Throughput Computing and MPI infrastructure.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 35

● OS and execution framework includes the DT requirements for the operating

system and the OS-level virtualization framework for delivering DT software.

● Machine Learning subsection includes requirements concerning the exploitation

of machine learning by each physics use case, in terms of software development

language, ML frameworks, machine/deep learning models, statistical learning

models, monitoring, (re)training and validation.

● Real-time data acquisition and processing refers to the use cases’ capability of

data/metadata being processed in real-time. This subsection also includes the

platforms/frameworks being used for that purpose and how real-time processing

is approached by the concerned use cases.

● Data formats subsection describes the different formats that data and metadata

coming from the physics use cases present. As well as, to which formats are the

original data being converted to in case of pre-processing and post-processing.

● The subsection of software stack describes all software tools and their

requirements for each digital twin thematic module.

● Visualisation subsection includes the different forms and methods of visualising

the results in terms of quality verification and validation.

● In the data sharing subsection, the processes of making data resources available

are presented.

3.2 Storage I/O

3.2.1 Input data requirements

The majority of the physics thematic modules require file or object- based storage or they

have already data stored in HPC centres. In particular, the T7.3 thematic module requires

space on a POSIX filesystem. Same requirements apply for output data storage.

Necessary pre and post processing techniques need to be applied for each one of the

thematic modules, which are described in more detail in the respective subsections of

section 2.

3.2.2 Expected data volume

The data volumes that physics domain thematic modules are expecting range from O(10)

GB to at most O(100) TB.

3.3 Databases

The use cases presented in this document do not require any external database to write

and read data, but they do recognize the importance of having a service to store models’

histories and metadata, such as a ML model registry. Similarly, for use case specific

metadata.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 36

3.4 Computing

Concerning computing resources, physics thematic modules require systems with

multiple GPU support, HPC centres computing power with MPI infrastructure. As well as

support for distributed computing, availability of GPUs for machine learning workloads,

and ability to scale up or down computing resources based on demand.

3.5 OS and execution framework

To support all the related processes from modelling and ML training to inference and

validation, Linux based operating systems, containerized environments (i.e., Docker,

Singularity) are required at the current stage of the thematic modules.

3.6 Machine Learning

Most of the physics use cases use Python to perform ML related processes. Therefore,

Python ML frameworks, like Tensorflow and PyTorch are being utilised for the

development of the individual, use case specific machine learning frameworks.

Tensorflow is the one that is used by the majority of the thematic modules. Statistics and

neural network-based ML models are used, as well as monitoring tools, such as

Tensorboard. Moreover, ML validation frameworks will be implemented for model

validation and quality check.

3.7 Real-time data acquisition and processing

Most of the thematic modules in physics do not incorporate any real-time data acquisition

procedure and therefore no related tools are required. Though, capabilities of online data

processing are developed by T7.1 and T7.3, and especially T7.3 processes require

streaming platforms, e.g., Apache Kafka. T7.2 ultimately aims at the development of a

(quasi) real-time data classification tool, but this goal is for the future and is not a part of

the current task, which only relies on pre-acquired data.

3.8 Data formats

Different data formats are produced together with different pre-processing and post-

processing requirements. Therefore, data and metadata formats concerning T7.7 are

ROOT and HDF5, binary and textual data for T7.1, time series data in binary form with

text header for T7.2 and gwf files for T7.3.

3.9 Software stack

Requirements in terms of software stacks include:

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 37

● C and C++

● Python

● GEANT4

● Tensorflow, PyTorch

● JupyterLab

● Conda

● Docker, Singularity

● Workflow tools: Kubeflow, Jupyter Notebooks

● Streaming platforms: Apache Kafka

● Big data analytics tools: Apache Spark

● ML monitoring tools: Tensorboard, Prometheus, Grafana

3.10 Visualisation

The applications’ results are going to be presented using open-source visualisation

libraries and dashboards, where plots analysing the produced outcome will be displayed.

3.11 Data Sharing

Support for metadata management tools for tracking data lineage and ensuring data

quality. Ability to share data across different teams and organisations. Tools such as

GitHub and Zenodo are examples of the above.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 38

4 Testbed infrastructure

In this section we report about details of testbeds used by the tasks for their PoC or early

testing.

4.1 Fast particle detector simulation with GAN testbed

The fast particle detector simulation with GAN thematic module consists of two

inseparable components as we have already discussed in section 2.4. These two

components are the machine learning framework and the particle simulation framework.

For the ML framework the 3DGAN model (R2), has been implemented using Tensorflow.

The code is available on GitHub25 and it has been tested and ran on a single Linux node

using 4 GPUs.

Concerning the particle simulation framework component of our thematic module, there

have been testbeds developed that are incorporating different ML models than the

3DGAN. Therefore, our current and future efforts focus on integrating the 3DGAN model

in the simulation framework that uses the GEANT4 environment and is implemented in

C++. An example of the use of ML techniques for the fast detector simulation and how to

incorporate inference libraries into C++ framework is the Par04 example developed by

25 https://github.com/CERN-IT-INNOVATION/3DGAN/tree/main/Accelerated3DGAN/src/Accelerated3DGAN

Figure 20 - 3DGAN model architecture

https://github.com/CERN-IT-INNOVATION/3DGAN/tree/main/Accelerated3DGAN/src/Accelerated3DGAN

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 39

the GEANT4 community and can be found on CERN Gitlab 26. This example depends on

the external libraries used for the ML inference, LWTNN27 and ONNXRuntime. The ML

model used in this example is a Variational Autoencoder (VAE), trained externally in

Python on full GEANT4 detector simulation response data.

26 https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04

27Lightweight Trained Neural Network: https://github.com/lwtnn/lwtnn

https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://github.com/lwtnn/lwtnn

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 40

5 Conclusions

The Digital Twin Engine’s physics thematic modules concerning tasks T7.1, T7.2, T7.3 and

T7.7 have been designed and analysed throughout the first 8 months of the interTwin

project. Additionally, the scientists involved in the analysis activities of WP7, and physics

domain tasks have identified the technical requirements that are important for the

development of the specific applications. Those requirements need to be implemented

in the DTE in order for the thematic modules to be run seamlessly by community users.

In this document each physics related application has been defined and analysed in

detail. More specifically, applications concern lattice QCD simulations and data

management, noise simulation for radio astronomy, GAN-based thematic modules that

manage noise simulation, low-latency de-noising and veto generation for gravitational

waves, as well as fast particle detector simulation with GAN.

The definition of the applications and the consolidation of their requirements described

above resulted in the following conclusions. All of the thematic modules presented here

are interesting for the communities use cases that are leveraging state of the art machine

learning advancements, and each one presents unique significance in the field’s research

development. Commonalities between the applications can be observed with respect to

the machine learning components incorporated, as well as to their processing workflow

composition. At the same time, there are particularities that describe the physics

thematic modules in terms of data format produced and used, along with the relevant

data processing methods utilised by each application. Finally, we observe that the nature

of the majority of the use cases require modern frameworks, such as Python and ML

based, to be combined with frameworks that require low level programming languages

such as C/C++.

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 41

6 References

Reference

No Description / Link

R1 Generative Adversarial Networks. Ian J. Goodfellow et al.

https://arxiv.org/abs/1406.2661

DOI: https://doi.org/10.48550/arXiv.1406.2661

R2 Fast Simulation of a High Granularity Calorimeter by Generative

Adversarial Networks. Gul Rukh Khattak et al.

https://arxiv.org/abs/2109.07388

DOI: https://doi.org/10.48550/arXiv.2109.07388

R3 https://g4fastsim.web.cern.ch/

R4 Fast Simulation for ATLAS: Atlfast-II and ISF. W. Lukas. Technical Report

ATL-SOFT-PROC-2012-065, CERN, Geneva, Jun

(2012) DOI: https://doi.org/10.1088/1742-6596/396/2/022031

R5 Fast simulation of the CMS detector. D. Orbaker. J. Phys. Conf.

Ser., (219):32–53, 2010. Part of Proceedings, 17th International

Conference on Computing in High Energy and Nuclear Physics

(CHEP 2009): Prague, Czech Republic (2009).

DOI: https://doi.org/10.1088/1742-6596/219/3/032053

R6 Fast simulation of electromagnetic showers

in the ATLAS calorimeter: Frozen showers. E. Barberio et al. J. Phys. Conf.

Ser.,160, 012082, (2009).

DOI: https://doi.org/10.1088/1742-6596/160/1/012082

R7 Auto-Encoding Variational Bayes. D. P. Kingma et al.

DOI: https://doi.org/10.48550/arXiv.1312.6114

R8 Pixel Recurrent Neural Networks. Aaron van den Oord et al. DOI:

https://doi.org/10.48550/arXiv.1601.06759

R9 GEANT4: https://geant4.web.cern.ch/

R10 HEP Software Foundation Community White Paper Working Group -

Detector Simulation. HEP Software Foundation. DOI:

https://doi.org/10.48550/arXiv.1803.04165

R11 openQ*D code: a versatile tool for QCD+QED simulations. I. Campos,

P. Fritzsch, M. Hansen, M. K. Marinkovic, A. Patella, A. Ramos & N. Tantalo

https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://arxiv.org/abs/2109.07388
https://doi.org/10.48550/arXiv.2109.07388
https://g4fastsim.web.cern.ch/
https://doi.org/10.1088/1742-6596/396/2/022031
https://doi.org/10.1088/1742-6596/219/3/032053
https://doi.org/10.1088/1742-6596/160/1/012082
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1601.06759
https://geant4.web.cern.ch/
https://doi.org/10.48550/arXiv.1803.04165
https://link.springer.com/article/10.1140/epjc/s10052-020-7617-3#auth-Martin-Hansen

D7.2 Report on requirements and thematic modules definition for the physics domain

interTwin – 101058386 42

The European Physical Journal C, 80, Article number: 195 (2020)

DOI: https://doi.org/10.1140/epjc/s10052-020-7617-3

volum

R12 Normalizing Flows: An Introduction and Review of Current Methods.

Ivan Kobyzev; Simon J.D. Prince; Marcus A. Brubaker. IEEE Transactions on

Pattern Analysis and Machine Intelligence (Volume: 43, Issue: 11, 01

November 2021) DOI: https://doi.org/10.1109/TPAMI.2020.2992934

R13 Flow-based generative models for Markov chain Monte Carlo in lattice

field theory. M. S. Albergo, G. Kanwar, and P. E. ShanahanPhys. Rev. D 100,

034515 – Published 22 August 2011

https://link.aps.org/doi/10.1103/PhysRevD.100.034515

R14
Efficient modeling of trivializing maps for lattice

Φ4 theory using normalizing flows: A first look at scalability.

Luigi Del Debbio, Joe Marsh Rossney, and Michael Wilson

Phys. Rev. D 104, 094507 – Published 15 November 2021

https://link.aps.org/doi/10.1103/PhysRevD.104.094507

R15
Introduction to Normalizing Flows for Lattice Field Theory

Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Kyle

Cranmer, Sébastien Racanière, Danilo Jimenez Rezende, Phiala E. Shanahan

https://doi.org/10.48550/arXiv.2101.0817

https://doi.org/10.1140/epjc/s10052-020-7617-3
https://doi.org/10.1109/TPAMI.2020.2992934
https://link.aps.org/doi/10.1103/PhysRevD.100.034515
https://link.aps.org/doi/10.1103/PhysRevD.104.094507
https://doi.org/10.48550/arXiv.2101.08176

	1 Introduction
	1.1 Scope
	1.2 Document Structure

	2 Initial design of thematic modules in the physics domain
	2.1 T7.1 Lattice QCD simulations and data management
	2.1.1 Advanced Data management for Lattice QCD
	2.1.2 Generative models using Machine Learning

	2.2 T7.2 Noise simulation for radio astronomy
	2.2.1 Astrophysical analysis of the real data.
	2.2.2 Theoretical modelling of the source/telescope system
	2.2.3 Development of a fast and scalable C++ implementation.

	2.3 T7.3 GAN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for Gravitational Waves
	2.3.1 Use-case description
	2.3.2 High-level architecture of the DT implementation
	2.3.3 The Training DT subsystem
	2.3.4 The Inference DT subsystem

	2.4 T7.7 Fast particle detector simulation with GAN
	2.4.1 Use case overview
	2.4.2 3DGAN component implementation

	3 Requirements for the thematic modules in the physics domain
	3.1.1 General Description and Categorization of requirements
	3.2 Storage I/O
	3.2.1 Input data requirements
	3.2.2 Expected data volume

	3.3 Databases
	3.4 Computing
	3.5 OS and execution framework
	3.6 Machine Learning
	3.7 Real-time data acquisition and processing
	3.8 Data formats
	3.9 Software stack
	3.10 Visualisation
	3.11 Data Sharing

	4 Testbed infrastructure
	4.1 Fast particle detector simulation with GAN testbed

	5 Conclusions
	6 References

