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Abstract 

Key Words Particle detector simulation, Lattice QCD, Radio Astronomy, 

Gravitational Waves, High Energy Physics, Digital Twin 

interTwin co-designs and implements the prototype of an interdisciplinary Digital Twin 

Engine (DTE). The developed DTE will be an open source platform that includes 

software components for modelling and simulation to integrate application-specific 

Digital Twins. InterTwin WP7 provides the aforementioned sets of software 

components, called thematic modules, for the use cases defined in WP4. 

The current document consists of an update of the D7.2 deliverable, containing a high-

level description  of the physics domain use cases and of the related designed thematic 

modules, specifying their stage of development. This deliverable also includes a 

description of the data and computing requirements of the thematic modules, which 

will need to be available in the DTE infrastructure designed in WP5 and in the core 

modules developed in WP6. 
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Executive summary 
The present deliverable D7.6 consists of an update on the previous D7.2 and D7.5 

deliverables on requirements and thematic modules definition for the physics domain 

Digital Twins applications. It is a collective document written by scientists working on the 

development of the physics domain thematic modules. This document describes how the 

different use cases derive the modules that are under development and how such 

modules are being integrated into the interTwin Digital Twin Engine (DTE). The technical 

requirements for the different modules were consolidated and are presented in this 

document. The use-case specific requirements are reported, focusing on the following 

aspects: input data requirements, expected data volume, core components integration 

and computing requirements. 
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1 Introduction 

1.1 Scope 

This document gives an overview of the physics domain thematic modules (T7.1, T7.2, 

T7.3, T7.7) and their requirements developed by the interTwin project. 

The thematic modules will enhance the capabilities of the core engine running the Digital 

Twins by adding functionalities to several fields, such as: 

● Machine Learning (ML) based analysis for QCD simulation configurations and for 

time series 

● Generative Neural Network (GNN) based analysis for Gravitational Wave (GW) 

Interferometer data, noise signals classification, noise analysis, de-noising, and 

veto generation 

● Generative Adversarial Networks (GAN) based Lattice QCD configurations 

generation, noise simulation, particle detector simulation 

● Particle physics validation techniques capable of assessing different aspects of 

model performance 

● Fast simulation of High Energy Physics detectors 

The design of the thematic modules will follow the specific requirements provided by the 

WP4 – Technical co-design and validation with research communities, where the use 

cases are being defined. Additionally, specific requirements for each thematic module will 

be defined and listed in this document. 

1.2 Document Structure 

The document is an updated version of the previous D7.2 Report on requirements and 

thematic modules definition for the physics domain. Most of the information are 

therefore common to the two documents, refer to Sections: 

● 2.1.1 (removal of a C4 graph representing the data lake architecture, added details 

on ILDG integration and normflow developments), 

● 2.2 (updated figures, and detailed design in subsection 2.2.1, 2.2.2 and 2.2.3) 

● 2.3 (added the latest design of the components of the high-level architecture), 

● 2.4.1 (updated the diagram of the high level workflow composition), 

● 2.4.2  (included diagram of 3DGAN model architecture),  

● 3 (updated the general data and computing requirements) , 

for significant changes and updates. 

 

The document is structured in the following manner: 
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● Section 2 includes the description of the current design of the thematic modules 

developed for each individual physics use case, starting with the lattice QCD 

simulations and data management (T7.1), the noise simulation for radio 

astronomy (T7.2), the GAN-based thematic modules to manage noise simulation, 

low-latency de-noising and veto generation for Gravitational Waves (T7.3), and 

closing with the fast particle detector simulation with GAN (T7.7). 

● Section 3 collects the requirements for the thematic modules described in section 

2. It is divided into several categories: input and output data requirements, data 

volumes, databases, computing, OS and execution frameworks, machine learning 

requirements, real-time data acquisition and processing, data formats, software 

stack, visualisation, and data sharing. 

● The deliverable ends with section 4 that draws conclusions from the perspective 

of the physics use cases: it summarises studies and analyses performed during 

the first eight months of project’s life, that resulted in the first design of the 

thematic modules and their technical requirements.  

2 Progress in the design of thematic 

modules in the physics domain  

2.1 T7.1 Lattice QCD simulations and data 

management 

Lattice QCD involves the study of the properties of Quantum Chromodynamics in the low 

energy/strong coupling limit, where perturbation theory breaks down and numerical 

approaches are required. Within interTwin two parallel and complementary tracks are 

being explored that address the practical and theoretical challenges of Lattice QCD 

simulations. These are the practical challenge of storing and moving the ever increasing 

amounts of data associated with traditional large scale HPC simulations and the 

theoretical challenge of exploring, at the proof-of-concept level, the extent to which 

modern Machine-Learning techniques can improve lattice calculations. 

2.1.1  Advanced Data management for Lattice QCD 

Lattice QCD simulations are executed at large scale on HPC systems that are controlled 

by a batch system (such as SLURM1). A typical workflow involves the generation of lattice 

field configurations, the measurement of an observable of interest over those 

 

1 https://slurm.schedmd.com  

https://slurm.schedmd.com/
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configurations, and the statistical analysis of those measurements. All of these steps, 

especially the generation of configurations, can be highly computationally intensive.  

 

 

Figure 1 - The modules that make up the openQxD software 

The openQxD simulation software is a C code designed to simulate QCD and QCD+QED 

theories on a lattice. It is available on Gitlab2 and is described at length in the literature 

[R11]. A concise description of the software is given in section 3.1 of D7.2[R16] along with 

links to further technical documentation. The modules that make up the code are shown 

in Figure 1. It is under active development though most of this work is not being done 

as part of the interTwin project. Within interTwin our work is focussed on incorporating 

the recent OCLint integration of WP6's SQAaaS framework, into our prototype openQxD 

development workflow. 

In previous deliverables, we described some of the issues encountered by lattice 

researchers when trying to store and access their data [R16]. We argued that lattice 

configurations should be made more easily available to the members of a collaboration. 

 

2 https://gitlab.com/rcstar/openQxD 

https://gitlab.com/rcstar/openQxD


D7.6 Updated report on requirements and thematic modules functionalities for the physics 

domain 

            

12 

interTwin – 101058386                          

It was realised early on that the use of federated identities and group-based access 

control would be crucial to achieving this goal of easier access in a controlled way. The 

DataLake framework proposed and developed by WP5 followed naturally. In this 

framework, the members of a collaboration would have group-access enabled read 

permission for their data while a subset of the collaboration, those in charge of 

generating configurations, would also have write permission. In D7.4 [R17] we described 

our efforts relating to testing and benchmarking the DataLake prototype with real and 

toy lattice data [R17]. After providing feedback to the DataLake developers it was decided 

that the Lattice group should get its own VO in order to satisfy its particular read/write 

permission specifications. 

Since the last update there have been several discussions between the ILDG3 and 

interTwin's WP5 with regards to the scope of potential interoperability between the data 

lake and the ILDG Metadata/File catalogues. The current proposal is to extend the ILDG 

catalogue to support the data lake as a possible source of data. In this scenario, for files 

(i.e. lattice gauge field configurations) stored in the data lake the ILDG would record a URL 

that encodes the information a user needs to interact with the data lake. The data lake, 

appearing to the user as a Rucio instance, would not know to which dataset any file 

belongs, it would carry out operations only at the level of individual files. 

The ILDG can support multiple locations for each file. Each location is recorded as a URL. 

DataLake support would be included by letting ILDG accept URLs that look like so: 

➢ rucio://rucio.example.org:8443/LatticeQCD/RAY:my_test_file 

where 

● rucio.example.org identifies the Rucio endpoint, 

● 8443 is the port on which Rucio is listening, 

● LatticeQCD is the name of the Virtual Organisation, and 

● RAY:my_test_file is the file’s Rucio Data Identifier (RAY is the file’s scope and 

my_test_file is the filename). 

 

2.1.2 Generative models using Machine Learning 

The efficiency of general purpose Monte Carlo algorithms decreases dramatically when 

the simulations need to take place near critical points due to critical slowing down. This 

is a general phenomenon in simulations in Physics related to phase transitions, which 

happens as well in Lattice QCD, for example with simulations at very fine distances that 

are needed for extrapolation to the continuum limit. Simulations need to take place in 

areas of the parameter space where topology freezing (among other factors) induce very 

large autocorrelations. 

 There is a developing  literature that argues Normalising Flows (a class of deep generative 

models) may help to improve this situation (a review is available for instance at [R12] and 

 
3 https://hpc.desy.de/ldg/ 

https://hpc.desy.de/ldg/
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a block diagram illustrating the method is shown in Figure 2). The underlying idea is using 

Machine Learning techniques to map the theory of interest to a “simpler” theory, easier 

to simulate.  This approach has the potential to become more efficient than traditional 

sampling especially when the concept of transfer learning is utilised.  

However, the costs associated with the (highly complex) sampling from the path integral, 

are transferred to the training of a model. The question under investigation is therefore 

how expensive it is to train a model compared with making a classical Monte Carlo 

simulation. 

Several papers, such as [R13], have demonstrated the proof of concept for simple 

models. However, further studies indicate that the training cost in CPU time can be, in 

general, prohibitively high for large lattices, and the acceptance rates in the accept/reject 

step (Figure 3) drop fast as the lattice size increases unless better architectures and 

methods are achieved (see for example [R14]). 

 

Figure 2 - Graphical representation of the classical generation of configurations using Monte Carlo algorithms 

 

 

Figure 3 - Graphical representation of the Normalising Flows method including a correcting accept/reject step to 

account for the fact that the model cannot be perfectly trained. 

The purpose of this work is designing better architectures for Machine Learning models 

so that the acceptance rates become reasonable (~50% or more) as the volume of the 

lattice increases. The requirements in terms of resources are not as in the classical Monte 

Carlo simulation since the methodology is still at the proof of concept level.  

A typical Jupter notebook of the type required for these studies can be found in this 

reference [R15]. 
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Through the development of normflow4, we have shown that Machine Learning can 

speed-up field configuration generation with scalar theories on smaller low dimensional 

lattices in certain regions of parameter phase space. 

 

2.2 T7.2 Noise simulation for radio astronomy 

This task is designed to be instrumental in solving a big problem that is about to arise in 

modern observational astronomy in general and radio astronomy in particular, and to 

become one of the largest issues in the whole field: the problem of data overflow. 

Previous generations of telescopes typically produced no more than a few petabytes of 

data per year, thus the raw data was generally kept either indefinitely or long enough for 

the science team to reduce and analyse it, and then approve the deletion, which meant 

several months or even years. With the arrival of the new so-called Square Kilometre 

Array5 "pathfinders", such as South African MeerKAT6 or Australian ASKAP7, the data 

acquisition rate increases enormously, these tools can easily produce several petabytes 

of raw data per week8. No current astronomical institution can handle keeping such 

volumes of data even for a month or employ a team of experts large enough to quickly 

process it or sort through it manually. Thus, it is crucial to develop automated decision-

making systems that can sort through the raw data in real or near-real time (since 

telescopes usually have downtime due to maintenance or source availability, the data can 

be pooled for short periods of time of order of days) and separate the data flow into the 

scientifically important data that must be kept while the rest that can be safely deleted. 

Another reason to be able to automatically sort through the incoming data is that modern 

radio astronomy is increasingly interested in transient sources. Previously sources had to 

be observed for long periods of time to be able to achieve the necessary signal to noise 

ratio, thus it was possible to observe reliably or even discover at all only permanent or 

fast periodic9 sources like pulsars. Since the new telescopes are much more sensitive, 

they can systematically probe the transient radio sky, which currently is generally 

 
4 https://github.com/jkomijani/normflow_ 

5 SKAO: https://www.skao.int/en 

6 MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/ 

7 ASKAP-radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope 

8 Predicted data rate for an SKA pathfinder like MeerKAT is of order 10 Gbytes/s or up to 1 Pbytes/day. The SKA 

itself is expected to produce up to 200 Pbytes/day, which is ~70 exabytes per year. To put it into perspective, 
the latter is about the same as the expected data rate of CERN’s LHC after the High-Luminosity upgrade (60 
exabytes per year) and at about the same time (SKA’s first light is expected in 2027 and the High-Luminosity LHC 
should go online in 2029).  

9 Known pulsars have periods from a few milliseconds to 8 seconds, thus over a typical observational session of 

several hours one can observe many pulses, which makes pulsars relatively easy to detect and observe. However, 
if we imagine a transient phenomenon similar to a pulse of a pulsar, but either non-periodic or with periods of 
order of hours or days, discovering it is close to impossible except by sheer luck.  

https://github.com/jkomijani/normflow_
https://www.skao.int/en
https://www.sarao.ac.za/gallery/meerkat/
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope
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unknown. Such studies are very important, since it is believed that the transients10 result 

from very far and enormously energetic exotic events (like a collapsing supermassive 

star) that may provide essential clues for the areas of physics that cannot be studied 

experimentally in any other way, e.g., quantum gravity. An automated expert system can 

help with this: if something like a transient source (or unusual in general) signature is 

found in the data flow, it can immediately trigger the "target of opportunity" mode of 

observation for the detected anomaly, and alert the scientists on duty, who would decide 

the best course of further action. This will also allow us to easily organise concerted 

efforts of observing rare important sources by a number of instruments, covering a range 

of wavelengths, e.g., combining Earth-based radio observations with space-based optical 

and X-ray observations — it is already done today, but with typical response times very 

far from ideal11. 

The third reason for this task is that current common radio astronomy software tools are 

inadequate, they are computationally slow and handle parallelization poorly. For the 

tasks at hand, we are building tools that can be efficiently run on modern HPC clusters, 

with scalability to at least hundreds of cores. It is connected to the main task of the ML 

data classification system in way that, although the classification system itself will be run 

on ordinary observatory computers embedded in a telescope’s data acquisition system, 

the training of new models before each new type of observation, which is the most 

computationally intensive task, will have to be performed on supercomputers.  

To be able to detect special and important events in the data, one has first to well 

understand the regular and mundane features of the data stream that in radio 

astronomy translates into noise and radio-frequency interference (RFI). 

Motivated by these points we are developing a framework for extracting pulsar signals 

from radio-astronomical observatory data streams, under the designation of ML-PPA 

(Machine Learning-based Pipeline for Pulsar Analysis): a ML-based data-labelling system 

that reads the data flow coming from a real telescope observing a pulsar. An important 

separate component is a DT of an astronomical source-telescope system (developed in 

T4.3), able to generate synthetic output signals identical to the data recorded by a real 

telescope. The resulting DT-generated data is to be used to train the ML data-

classification tool.  

Pulsars are ideal test subjects for this task since they reliably produce periodic bursts of 

scientifically significant data with certain variability in signal strength and other 

parameters.However, because of their nature “silent” most of the time, a telescope 

 

10 Examples of such transients that attract a lot of attention in the radio astronomical community are “fast radio 

bursts” (FRBs), see e.g., arXiv: 2107.10113 and references thereof. 

11 Even in the best case scenario when a special “target of opportunity” (ToO) event is expected, and a change 

of scheduling is proposed in advance for all the observatories involved, the actual triggering of such an event is 
a complicated and disruptive procedure involving many exchanges between various personnel of many 
institutions, thus the response time is rarely shorter than a day. Using an automated decision making system 
with pre-approved criteria can change this to minutes, most of the time taken to actually reposition the 
telescopes. 

https://arxiv.org/abs/2107.10113
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observing a pulsar mostly records either an "empty" data stream, i.e., only the noise, or 

some sort of RFI due to artificial or natural electro-magnetic phenomena unrelated to 

space. 

We separate two main types of RFI: narrow-band RFI (NBRFI) that is present only on some 

frequencies of the observation band and broad-band RFI (BBRFI) that covers the whole 

observation band. Examples of the 4 basic time-frame types are shown in Figure 4. Thus, 

the basic task of the ML classifier is to label each small fragment of the data stream (a 

time frame) as one of the standard categories: signal, none (noise), NBRFI and BBRFI. In 

reality a few extra labels need to be introduced: "other" (something that cannot be 

classified into known categories) and mixed ones (e.g., signal with NBRFI, or NBRFI with 

short bursts of BBRFI). 

 

 

Figure 4 - Examples of four main types of data “time frames” in a pulsar-observation data set, visualised as 256x256 

images. Vertical axis corresponds to frequency, horizontal to time, the value of each point is signal intensity. The 

top left frame is the most common one, “none” or “empty”, it contains only noise, amplified differently because the 

telescope’s sensitivity is different for different frequencies, leading to apparent horizontal banding; the top right and 

bottom left frames contain broad-band (BB) and narrow-band (NB) radio-frequency interference (RFI) represented 

by brighter vertical or horizontal stripes, these types of data are undesirable but often recorded because the 

telescope is sensitive to various artificial or natural electro-magnetic phenomena (radio transmissions, emissions 

by various devices, electric storms etc.). Finally, the bottom-right frame contains a pulsar’s pulse, represented by the 

diagonal slightly-curved line; this is the only desirable type of data frame that we would like to separate from all the 

other types. 
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Figure 5- Distribution of the four main types of time frames in a typical pulsar data set. About 20 minutes of data 

observing one of the brightest and well-studied pulsars, the Crab pulsar, represented as more than 50,000 time 

frames, the size of the dataset is ~12.2 GB. There are only a few mixed-type or unidentifiable time frames, so their 

percentage is negligible and they are not included in this distribution  

As shown in Figure 5, in a typical pulsar data set (in this case collected by the Effelsberg 

100m radio telescope12)  the "none" frames is by far the most common category, with 

only 5% of various types of RFI and a tiny 0.2% of signal frames. This illustrates the whole 

concept well: only 0.2% of the data is scientifically significant, everything else can be safely 

deleted right as it is being observed, with only some basic info (like time duration of empty 

periods) kept. So of 12 GB of data only 25 MB needs to be kept.  It also shows that we 

cannot rely on the actual data for training the ML expert system, because the distribution 

of the time frame types in the real data is severely biassed. 

he developed ML-PPA framework is also being tested on longer data sets of different 

sources and produced not only by the Effelsberg, but also by one of the SKA pathfinders, 

MeerKAT13, which is the final testbed for this task and, as we hope, will ultimately use our 

software or its descendants in its actual day-to-day operation.   

The work is split into three parallel and interacting subprojects (Figure 6) which are 

described in the following sections. 

 

12 Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg 

13 The data comes from ongoing scientific projects led by MPIfR radio astronomers. 

https://www.mpifr-bonn.mpg.de/en/effelsberg
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Figure 6 - Three parallel interacting subprojects of the task 

2.2.1 Empirical block 

This subproject focuses on the real data. The ML classifier (PulsarRFI_NN) is being 

developed to reliably label the dataflow: a convolutional neural network (CNN) based tool, 

implemented with TensorFlow in Python, that can label the data with 90% or better 

accuracy. Another aspect of this subproject is following the empirical approach in creating 

a DT (PulsarRFI_Gen) that generates different types of time frames by mimicking 

available real data (based on the geometry of images, noise characteristics etc.) rather 

than following the physical first principles as the theoretical block does. This alternative 

path allows to compare the results with the physical DT and to always have enough 

training data for the ML classifier during the development stages.  

 



D7.6 Updated report on requirements and thematic modules functionalities for the physics 

domain 

            

19 

interTwin – 101058386                          

2.2.2 Theoretical block 

 

 

Figure 7 -  General outline of the DT structure: modelling the astrophysical source (pulsar), transmission of the 

signal through the interstellar matter, receiving and processing by a radio telescope, adding sources of both 

natural and artificial interference and noise. 

This is the main digital twin (PulsarDT) creation subproject. In it we build a sophisticated 

physical model of the pulsar signal, anything that interferes with it and the way it is finally 

recorded by a telescope. This model produces data that is as close as possible to that 

produced by a real telescope observing a real source, with a number of parameters that 

can be adjusted. The model (Figure 7) starts with the "lighthouse" representation of a 

pulsar and then adds to it propagation through interstellar matter (ISM) effects, other 

cosmic sources, influence of the Earth atmosphere, terrestrial sources, and effects of the 

telescope's receiving and recording equipment.  

The purpose of the digital twin development is twofold. On one hand we would like to 

have an endless supply of training/testing material for the ML-based classifier with 

parameters that can be adjusted for a particular observation. On the other hand, building 

a digital twin of a telescope signal with known parameters can help with identification of 

the real signals in the telescope's data flow. For example, at the end we would like to be 

able to classify the scientifically significant part of the data not just as a "signal", but "a 

pulse of a pulsar with such and such physical parameters". 
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2.2.3 C++ development block 

 

 

Figure 8 - Layered software architecture of the framework ML–PPA 
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Figure 9 - Diagram of the final software product (in the C4 model) 

The stable versions of the ML classifier and the source/telescope digital twin of the 

activities described in sections 2.2.2 and 2.2.3 are then being rewritten in C++ (as 

PulsarDT++), with speed and scalability being a priority. The software (Figure 8 and 

Figure 9) has a Jupyter notebook / Python based user interface. All of it included in a 

Singularity container for easy deployment to any platform. 

The final version of the classifier is intended for use with the real data flow of the MeerKAT 

telescope, and, later, possibly with other telescopes as well. But these goals are already 

beyond the scope of the current project. 
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2.3 T7.3 GNN-based thematic modules to manage 

noise simulation, low-latency de-noising and veto 

generation for Gravitational Waves 

2.3.1 Use-case description 

The sensitivity of Gravitational Wave (GW) interferometers is limited by noise. We have 

been using Generative Neural Networks (GNNs) to produce a Digital Twin (DT) of the Virgo 

interferometer to realistically simulate transient noise in the detector. We have used the 

GNN-based DT to generate synthetic strain data (a channel that measures the 

deformation induced by the passage of a gravitational wave). Furthermore, the detector 

is equipped with sensors that monitor the status of the detector’s subsystems as well as 

the environmental conditions (wind, temperature, seismic motions) and whose output is 

saved in the so-called auxiliary channels. Therefore, in a second phase, also in the 

perspective of the Einstein Telescope, we will use the trained model to characterise the 

noise and optimise the use of auxiliary channels in vetoing and denoising the signal in 

low-latency searches, i.e., those data analysis pipelines that search for transient 

astrophysical signals in almost real time. This will allow the low-latency searches (not part 

of the DT) to send out more reliable triggers to observatories for multi-messenger 

astronomy.  

Figure 10 shows the high-level architecture of the DT. Data streams from auxiliary 

channels are used to find the transfer function of the system producing non-linear noise 

in the detector output. The output function compares the simulated and the real signals 

in order to issue a veto decision (to further process incoming data in low-latency 

searches) or to remove the noise contribution from the real signal (denoising). 

 

 

Figure 10 - High-level architecture of the DT 
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2.3.2 High-level architecture of the DT implementation 

Figure 11 shows the System Context diagram (in the C4 model) of the DT for the veto 

pipeline. In the rest of the document, we will focus on the veto pipeline only, but similar 

diagrams also apply to the denoising pipeline.   

 

 

Figure 11 - System Context diagram (in the C4 model) of the DT for the veto pipeline. 

Two main subsystems characterise the DT architecture: the Training DT subsystem and the 

Inference DT subsystem. The Training subsystem is responsible for the periodical re-

training of the DT model on a buffered (on disk) subsample of most recent data. The 

Inference subsystem processes a stream of incoming data, identifies glitches, and issues 

a decision about further processing (veto). 

The above subsystems are operated by a DT Operator, which could be a person or an 

automated procedure (in a later stage) that operates the DT during data-taking. The DT 

Operator monitors the operations of the DT by leveraging a Monitoring System that collects 

and displays metrics on training convergence and inference accuracy.  

The monitoring and coordination of the sub-systems are achieved by implementing the 

modules as Kubernetes Pods orchestrated by Airflow14. This is achieved via several 

interconnected services designed for managing and processing the data, as shown in 

Figure 12. 

 

 
14 https://airflow.apache.org/ 

https://airflow.apache.org/
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Figure 12 -  Airflow DAG for training sub-system, as shown in the Airflow Dashboard 

                              

● The Data Buffer, implemented in Go15 using the Gin framework16, stores GW data 

and state information, utilising Go's concurrency for thread-safe operations.  

● The Datastore Logic service, built with Python's Flask17 and running on 

Gunicorn18, handles datastore functionalities including freezing the system when 

a size limit is reached. The Flask-based Datastore Logic service communicates with 

the Go-based Data Buffer service via HTTP requests, where Flask handles high-

level datastore management and forwards data and status queries to the Go 

service for storage and state handling. 

 
15 Go: https://go.dev/ 
16Gin:  https://gin-gonic.com/ 
17 Flask: https://flask.palletsprojects.com/en/3.0.x/ 
18Gunicorn:  https://gunicorn.org/ 

https://go.dev/
https://gin-gonic.com/
https://flask.palletsprojects.com/en/3.0.x/
https://gunicorn.org/
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● The GlitchFlowApi, developed with FastAPI and hosted on Unicorn, provides an 

async API layer for external interactions and relies on Datastore Logic for request 

handling.  

The entire system operates within a Kubernetes setup, with the Data Buffer as a stateful 

set and other services as deployments. Apache Airflow orchestrates these components, 

managing the workflow through tasks like freezing the datastore and monitoring buffer 

status, utilising various Airflow operators to enforce flow control and handle conditions. 

A similar Airflow DAG for the inference sub-system is under development. 

 

2.3.3 The Virgo Data Lake 

The transient noise data is being stored in the InterTwin Data Lake, which we are 

managing in synergy with the developers of task 5.1. The Data Lake is managed by the 

Rucio software, which ensures scalable and efficient data transfer and storage. 

Specifically, we registered two Rucio Storage Elements (RSEs): one at INFN, where the data 

is originally stored on tape, and one at the Vega EuroHPC19 . The RSEs are part of a private 

Virgo Virtual Organisation (virgo.intertwin.eu), created to restrict data access to only 

authorised people who are part of the Virgo community. The data is transferred from the 

former RSE to the latter via a Transfer File System mediated by Rucio. It is then possible 

to use the data to develop and deploy the different modules directly on Vega, making full 

use of the computational resources made available by the collaboration. 

 

2.3.4 The Training DT subsystem 

Figure 13 shows the Container diagram (in the C4 model) of the Training subsystem. The 

main modules of the subsystem are: 

● ANNALISA (“Advanced Nonlinear transient-Noise Analyser of Laser 

Interferometer Sensor Arrays”) is a tool that makes use of time-frequency domain 

analysis of the data, namely the q-transform, to evaluate correlations among the 

main and auxiliary channels as the ratio of temporally coincident spikes in the 

energetic content of the signals above a critical threshold over the total number 

of spikes in the main channel. 

 

● GlitchFlow is the module which contains the Generative Neural Network (GNN) 

for generating the glitches. In this first implementation of GlitchFlow, we rely on a 

ResNet12 architecture, due to it being simple and fast to train.  

 

● Preprocessing_API is a module based on Python and proprietary IGWN libraries, 

which prepares the input data in a format suited for the Training application. 

 
19 Vega: https://en-vegadocs.vega.izum.si/introduction/ 

https://en-vegadocs.vega.izum.si/introduction/
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Figure 13 - Container diagram (in the C4 model) of the Training subsystem 

The flow of detector data at various processing steps (grey arrows) is also shown in the 

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the only 

produced artefact is the trained model. 

2.3.5 The Inference DT subsystem 

Figure 14 shows the Container diagram (in the C4 model) of the Inference sub-system.  

The Inference sub-system is still under development. 

The main components of the sub-system are:  

● Preprocessing_API, common to the Training sub-system 

● Generative_API, the module which employs the pre-trained GNN-model 

to map the transient noise in the auxiliary channels to the one observed in 

the strain channel (under development). 

● Veto_API, based on Python and proprietary IGWN libraries, is an interface 

to the Virgo Low Latency framework (under development) . 

The flow of detector data at various processing steps (grey arrows) is also shown in the 

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the DT artefacts 

are the trained model from the Training subsystem, the simulated strain data, a veto 

decision in a data representation internal to the DT system and a veto decision in a data 

representation compatible with the Virgo Low Latency framework. 
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Figure 14 - Container diagram (in the C4 model) of the Inference subsystem 

 

 

2.4 T7.7 Fast particle detector simulation with GAN 

The two components cooperating in the thematic module of T7.7 are: 

● the simulation component that incorporates the Monte Carlo-based (MC) 

simulation framework which produced data that consist of energy depositions in 

interactions with detector matter (R9)  
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● the deep learning (3D Generative Adversarial Network) component (R2), which, by 

leveraging the MC simulated data, trains deep learning models based on the 

chosen particle detector set up.  

These models are integrated and can be run during the fast simulation process. 

More specifically, the objectives of T7.7 are summarised below: 

● Optimising the Generative Adversarial Network (GAN)-based model developed for 

a selected set of detector geometries. 

● Integrating WP6 tools for distributed training and hyperparameter optimization. 

● Implementing validation techniques capable of assessing different performance 

aspects, such as accuracy and comparison to classical Monte Carlo, uncertainty 

estimation, coverage of the support space. This activity will be contributing to the 

development of an agreed validation standard among the HEP community. 

 

2.4.1 Use case overview 

Particle detectors measure different particle properties at colliders such as the Large 

Hadron Collider (LHC). More specifically, the detectors called calorimeters are key 

components of the whole experimental setup, which are responsible for measuring the 

energy of the particles. In a collider, the emerging particles travel through the detector 

and interact with the detector material through the fundamental forces. In particular, 

within electromagnetic or hadronic calorimeters, showers of secondary particles are 

created due to the interaction of each new particle with the dense calorimeter material 

(Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 - Simulation of a particle shower created by the primary particle entering the detector volume, 

interacting with its material. 
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The secondary particle creation process is inherently a complex stochastic process, and 

it is typically modelled using Monte Carlo (MC) techniques. These simulations have a 

crucial role in High Energy Physics (HEP) experiments, and at the same time are very 

resource-intensive from a computing perspective. Recent estimates show that the HEP 

community devotes more than 50% of the WLCG computing Grid20 (which has a total of 

1.4 million CPU-cores running 24/7/365 worldwide) to simulation-related tasks (R10). 

Moreover, Monte Carlo simulations are constrained by the need for accuracy, which will 

further increase, in the near future with the High Luminosity upgrade of the LHC (HL-

LHC21). HL-LHC will increase the demand in terms of simulations, and consequently the 

need for computing resources, as well as the complexity of the associated detector data 

(R3). 

Detector simulation allows scientists to design detectors and perform physics analyses. 

The simulation toolkit that has been developed to perform particle physics simulations 

based on MC methods, and is also used in our use case, is Geant4. It provides a highly 

flexible simulation framework in C++. Moreover, Geant4 is used by large scale 

experiments and projects from the domains of nuclear medicine, astrophysics, and HEP. 

It constitutes a set of components which include, geometry and tracking descriptions, 

detector response modelling, event management, user interfaces and much more. 

Given the expected HL-LHC requirements in terms of simulation, the community has long 

since started developing faster alternatives to Monte Carlo, including generative 

approaches, such as deep learning based techniques (R4, R5, R6).   

In the calorimeter case, deep learning based fast simulation directly generates the 

detector output, without reproducing, step by step, each single particle that interacts with 

the detector material. More specifically, generative models have been used in related HEP 

applications, as they are able to combine deep learning with statistical inference and 

probabilistic modelling. A generative model's goal is to learn how to generate data based 

on a true, unknown distribution describing a finite number of observations. There are 

several variants of generative models found in literature with the most well-known ones 

being the Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and 

Autoregressive Models (R1, R7, R8). The thematic module under task 7.7 designed for 

CERN’s use case concerns a fast particle detector simulation paradigm using GANs. 

 

 

 

 

 

20 WLCG computing Grid : https://home.cern/science/computing/grid  

21  HL-LHC: https://hilumilhc.web.cern.ch/ 

https://geant4.web.cern.ch/
https://home.cern/science/computing/grid
https://hilumilhc.web.cern.ch/
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Figure 16 - Detailed (full) particle simulation with Geant4 (left) and fast particle simulation using generative ML 

techniques (right) (R3) 

Compared to other generative approaches, the Generative Adversarial Network 

approach is able to demonstrate highly realistic and sharp images (R1). A GAN can learn 

a distribution implicitly as it doesn’t rely on the explicit computation of probability 

densities. This use case leverages a 3D convolutional GAN, 3DGAN, as calorimeter 

detectors can be regarded as huge cameras taking pictures of particle interactions (R2). 

The voxels (3D calorimeter cells) are generated as monochromatic pixelated images with 

the pixel intensities representing the cell energy depositions. 
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Figure 17 - Fast particle detector simulation using ML techniques high level workflow composition 

 

2.4.2 3DGAN component implementation 

An implementation of the 3DGAN approach has been developed and a more detailed 

description follows. 3DGAN (R2), has been implemented using Tensorflow v222 and 

recently has been updated leveraging PyTorch23. The code is available on GitHub24,25 and 

it has been tested and run locally on a single Linux node using 4 GPUs, but also on HPC 

nodes in distributed manner. 

The 3DGAN architecture can be seen in Figure 18. The generator network implements 

stochasticity through a latent vector drawn from a Gaussian distribution. The generator 

input includes the primary particle’s initial energy and the angle that it entered the 

detector, concatenated to the latent vector. The generator network then maps the input 

 
22  https://www.tensorflow.org/  
23  https://pytorch.org/  

24 https://github.com/CERN-IT-INNOVATION/3DGAN/tree/main/Accelerated3DGAN/src/Accelerated3DGAN  

25 https://github.com/interTwin-eu/DetectorSim-3DGAN  

https://docs.google.com/document/d/17cu4vImdJHxk-sw41nlC1NtW2UUv7Qk1/edit?pli=1#heading=h.2dlolyb
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/CERN-IT-INNOVATION/3DGAN/tree/main/Accelerated3DGAN/src/Accelerated3DGAN
https://github.com/interTwin-eu/DetectorSim-3DGAN
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to a layer of linear neurons followed by 3D convolutional layers. The discriminator input 

is an image while the network has only 3D convolutional layers. Batch normalisation is 

performed between the layers and the LeakyRelu26 activation function is used for the 

discriminator layers while the Relu13 activation function is used for the generator layers. 

The model’s loss function is the weighted sum of individual losses concerning the 

discriminator outputs and domain-related constraints, which are essential to achieve 

high level agreement over the very large dynamic range of the image pixel intensity 

distribution in a HEP task.  

 

 

 

 

 

 

 

 

 

 

Figure 18 - 3DGAN model architecture 

The training of the prototype model was inspired by the concept of transfer learning. 

Meaning that the 3DGAN was trained first for images in a limited energy range and after 

the GAN converged, the same trained model was further trained with the data from the 

whole available energy range. The first training step was run for 130 epochs and the 

second step was run for 30 epochs, both runs utilised GPU infrastructure. 

 

 

 

 

26 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)  

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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Figure 19 - Fast particle detector simulation using ML techniques high level workflow composition and its 

connections with other work packages’ components in C4 format diagram 

 

 

Figure 17 shows our digital twin application’s workflow, as well as the different 

components it consists of. Moreover, in Figure 19 the relationships with other work 

packages and our thematic module are depicted. The ML workflow that includes the 

3DGAN model consists of several other modules, the data pre-processing module, the 

model definition and training module, the validation and hyperparameter optimization 

module. 

● The preprocessing module is responsible for preparing (cleaning, scaling, etc.) and 

converting into a suitable format (HDF5 format) the simulated data created by 

GEANT4 (ROOT format). It also encodes the input information such as the 

calorimeter’s geometry identifier, the energy of the primary particle initiating the 

shower, the angle at which the particle enters the detector, and also its type and/or 

initial position. 

● The preprocessed data are then passed to the GAN model for training. 

● The hyperparameter optimization (HPO) tuning module is used for searching for 

the best set of model hyperparameters (e.g., AutoML27, Optuna28 etc.). 

 

27 AutoML: https://www.automl.org/automl/ 

28 Optuna: https://optuna.org/  

https://www.automl.org/automl/
https://optuna.org/
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● The validation module verifies the performance through a set of physics-

motivated steps, both at single image quality level and at the sample level. 

● Finally, the model is converted into ONNX29 format and can be used to generate 

images that replicate the detector’s response or for inference within a potential 

GEANT4 application (C++ based). The second option for the time being is not under 

the use case’s scope. 

Describing in more detail the above processes and the involved components will help us 

uncover the technical requirements concerning our digital twin particle detector 

application. 

The dataset used for studying and developing the 3DGAN model (R2) (public dataset) 

consists of calorimeter 3D images/arrays of energy depositions with shape 51x51x25, 

which represent the particle showers. These images were created from simulations 

performed with GEANT4 software. The output of the Geant4 simulation is ROOT30 files, 

which need to be converted into a ML-friendly format HDF5 in order to train the model. 

The datasets and the converted data (ROOT to HDF5) need to reside in cloud file or object 

storage, as the volumes do not exceed several 100s of GB. The pre-processing of the data 

(cleaning, scaling, encoding etc.) is being performed in memory. 

During pre-processing, simulation inputs are defined and encoded, i.e., the detector 

geometry, the energy and angle of the incoming particle. The 3DGAN training requires 

multiple GPU access and the best model weights need to be saved in a model registry 

repository, in order to be available during inference. 

The performance of the model is evaluated in the validation module, which is currently 

being developed, through the creation of histograms describing particle shower 

observables. Shower observables are among others, total energy distribution (sum of all 

cell energy deposits), cell energy deposits distribution, longitudinal profile which 

represents the energy deposited by a shower as a function of the depth of the calorimeter 

and lateral profile which represents the energy density distribution as function of the 

radius of the calorimeter. Moreover, the physics-based validation process includes 

accuracy verification of those key distributions' first moments and precise evaluation of 

the tails of distributions that usually require larger amounts of samples. The GEANT4 and 

3DGAN distributions are compared during this evaluation process.  

Once the model is trained, tested, and validated, it is ready to be deployed in a Python 

application. The model architecture and the weights are also stored, respectively in the 

JSON HDF5 formats. These operations can be easily done in Python. Open Neural 

Network Exchange Runtime (ONNXRuntime) is a framework for neural networks 

inference. After training, the model can be saved in a format that can potentially be used 

for inference in a GEANT4 based application. The disk space required for the weights, 

 

29 ONNX: https://onnx.ai/  

30 ROOT: https://root.cern/  

https://zenodo.org/record/3603086#.ZDhB8c5Byqi
https://root.cern/
https://www.hdfgroup.org/solutions/hdf5/
https://onnx.ai/
https://root.cern/
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saved as HDF5 file, is about several hundreds of MBs and the model's architecture, saved 

as a JSON file, is hundreds of KBs. 

 

3 Requirements for the thematic 

modules in the physics domain  

Section 3 is dedicated to reporting the requirements concerning the thematic modules 

to be developed for the physics domain use cases. The four physics domain use cases 

include lattice QCD simulations (T7.1) and particle detector simulation in High Energy 

Physics (T7.7), as well as noise simulation in radio astronomy (T7.2) and the VIRGO noise 

detector in astrophysics (T7.3). 

Thematic modules requirements consolidation resulted from the activities performed so 

far under work package 4 (WP4), which concerns the technical co-design and validation 

of the digital twin engine among research communities. Under this scope the objective 

was to introduce use-case specific requirements for the thematic modules, based on the 

DTE infrastructure (WP5) and core modules (WP6). Digital twin engine core modules 

described in work package 6 are responsible for capabilities concerning workflow 

compositions, real-time acquisition of data and processing, quality and uncertainty 

tracing, data fusion, big data analytics, as well as AI/ML workflow. 

3.1 Input data requirements 

The majority of the physics thematic modules require file or object-storage or they have 

already data stored in HPC centres. In particular, the T7.3 thematic module requires space 

on a POSIX-like filesystem. Same requirements apply for output data storage. Necessary 

pre and post processing techniques need to be applied for each one of the thematic 

modules, which are described in more detail in the respective subsections of section 2.  

3.2 Expected data volume 

The data volumes that physics domain thematic modules, in the content of the interTwin 

project are expecting, range from O(10) GB to at most O(100) TB. 
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3.3 DTE Infrastructure and Core components 

integration requirements 

DTE Infrastructure and Core Modules  designed and developed in work package  5 and 

6 respectively, can be used  to handle allocation of computing resources, composition of 

Thematic Modules into workflows, and data management.  

3.3.1  DTE Infrastructure components 

As documented in deliverable D5.2  a first version of the DTE infrastructure components 

have been released.  

Most of the thematic modules in physics do not incorporate any real-time data acquisition 

procedure and therefore no related tools are required. Though, capabilities of online data 

processing are developed by T7.1 and T7.3, and especially T7.3 processes require 

streaming platforms, e.g., Apache Kafka. T7.2 ultimately aims at the development of a 

(quasi) real-time data classification tool, but this goal is for the future and is not a part of 

the current task, which only relies on pre-acquired data.  

Different data formats are produced together with different pre-processing and post-

processing requirements. Therefore, data and metadata formats concerning T7.7 are 

ROOT and HDF5, binary and textual data for T7.1, time series data in binary form with 

text header for T7.2 and gwf files for T7.3. 

To support all the related processes from modelling and ML training to inference and 

validation, Linux based operating systems, containerized environments (i.e., Docker, 

Singularity) are required at the current stage of the thematic modules. 

 

3.3.2  DTE Core components 

As documented in deliverable D6.2  a first version of the DTE core components have been 

released. In particular the components from WP7 are integrated with the AI framework 

(itwinai). Most of the physics use cases use Python to perform ML related processes. 

Therefore, Python ML frameworks, like Tensorflow and PyTorch are being utilised for the 

development of the individual, use case specific machine learning frameworks. 

Tensorflow is the one that is used by the majority of the thematic modules. Statistics and 

neural network-based ML models are used, as well as monitoring tools, such as 

Tensorboard. Moreover, ML validation frameworks will be implemented for model 

validation and quality check. 

Support for metadata management tools for tracking data lineage and ensuring data 

quality. Ability to share data across different teams and organisations. Tools such as 

GitHub and Zenodo are examples of the above. 
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The applications’ results are going to be presented using open-source visualisation 

libraries and dashboards, where plots analysing the produced outcome will be displayed. 

Requirements in terms of software stacks to be supported in Core modules include:  

● Tensorflow, PyTorch 

● JupyterLab 

● Conda 

● Docker, Singularity 

● ML platform: Kubeflow 

● Streaming platforms: Apache Kafka 

● Big data analytics tools: Apache Spark 

● ML monitoring tools: Tensorboard, Prometheus, Grafana 

 

3.3.3 Computing requirements 

Concerning computing resources, physics thematic modules require systems with 

multiple GPU support, HPC centres computing power with MPI infrastructure. As well as 

support for distributed computing, availability of GPUs for machine learning workloads, 

and ability to scale up or down computing resources based on demand. 
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4 Conclusions 

 

The Digital Twin Engine’s physics thematic modules concerning tasks T7.1, T7.2, T7.3 and 

T7.7 have been designed and significant parts of them have been developed throughout 

the first 24 months of the interTwin project. Additionally, the scientists involved in the 

analysis activities of WP7 and physics domain tasks have identified the technical 

requirements that are important for the development of the specific applications; they 

have been working together with their collaborators involved in WP5 and WP6 to 

integrate the core modules and underlying infrastructure in their work, leveraging the 

computing resources that were put at their disposal by the collaboration. 

In this deliverable the applications of the four thematic modules are presented, together 

with a detailed discussion of their main components. The applications concern lattice 

QCD simulations and data management, noise simulation for radio astronomy, GAN-

based thematic modules that manage noise simulation, low-latency de-noising and veto 

generation for gravitational waves, as well as fast particle detector simulation with GAN. 

The presentation of the developed modules and the evolution of their requirements 

detailed in the document resulted in the following conclusions. Each of the modules 

presented aims at tackling relevant issues faced by the different communities they refer 

to; in most cases they do this by employing state-of-the-art deep learning techniques 

which are starting to show their full potential in a vast number of areas. These include, 

among others, generative adversarial networks, normalising flows and variational 

autoencoders. The projects exploit the potential of machine learning both for 

classification tasks and for generation, often sharing common architecture of the neural 

networks and the logic of the different high level components. There is a significant 

variation in the size of the data needed for the training of the neural networks in the 

different modules, going from tens of Gigabytes to hundreds of Terabytes. All the 

projects, however, share similar requirements for the formats of the input data. Finally, 

we observe that the nature of the majority of the use cases require modern frameworks, 

such as Python and ML based, to be combined with frameworks that require low level 

programming languages such as C/C++. 
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