D7.9 DTE Thematic modules development and integration report
[image: interTwin logo
]

[bookmark: _heading=h.gjdgxs]D7.9 DTE Thematic modules development and integration report
Status: Under EC Review
Dissemination Level: Public
	Abstract

	Key Words
	Digital Twins, Thematic Modules, Radio Astronomy, Gravitational Waves, High Energy Physics, Environmental Monitoring, Climate Research, Machine Learning, Development, Integration, Software Release, Open-source

	interTwin co-designs and implements a prototype of an interdisciplinary Digital Twin Engine (DTE), an open-source platform integrating software components for modelling and simulation to support application-specific Digital Twins (DTs). Work Package 7 contributes to this effort by developing domain-specific software components, referred to as thematic modules, aligned with the use cases defined in WP4.
This final report provides an overview of the development status, integration, and maturity of the thematic modules across both the environmental and physics domains. It documents the final implemented functionalities and describes how the modules interface with the DTE infrastructure developed in WP5 and the core services from WP6. The report consolidates the progress made throughout the project and sets the foundation for the deployment and reuse of the thematic modules within a federated DTE ecosystem.

	Document Description

	D7.9 DTE Thematic modules development and integration report

	Work Package number 7

	Document type
	Deliverable

	Document status
	UNDER EC REVIEW
	Version
	1.0

	Dissemination Level
	Public

	Copyright Status
	[image:]
This material by Parties of the interTwin Consortium is licensed under a Creative Commons Attribution 4.0 International License.

	Lead Partner
	EODC

	Document link
	https://documents.egi.eu/document/4098

	DOI
	https://zenodo.org/records/16574058

	Author(s)
	· Charis Chatzikyriakou (EODC)
· Gaurav Sinha Ray (CSIC)
· Javad Komijani (ETHZ)
· Isabel Campos (CSIC)
· Yurii Pidopryhora (MPG)
· Sara Vallero (INFN)
· Francesco Sarandrea (INFN)
· Lorenzo Asprea (INFN)
· Donatello Elia (CMCC)
· Marco De Carlo (CMCC)
· Shahbaz Alvi (CMCC)
· Sandro Fiore (UNITN)
· Bjorn Backeberg (DELTARES)
· Willem Tromp (DELTARES)
· Iacopo Ferrario (EURAC)
· Suriyah Dhinakaran (EURAC)
· Michele Claus (EURAC)
· Alexander Jacob (EURAC)
· Christian Pagé (CERFACS)
· Atef Ben Asser (IPSL)
· Mathieu Vrac (IPSL)
· Matthias Schramm (TUW)
· Clay Harrison (TUW)
· Vera Maiboroda (CNRS)
· Sofia Vallecorsa (CERN)
· Matteo Bunino (CERN)

	Reviewers
	· Mario David (LIP)
· Thomas Geenen (ECMWF)

	Moderated by:
	· Charis Chatzikyriakou (EODC)
· Andrea Anzanello (EGI)

	Approved by
	Andrea Manzi (EGI) on behalf of TCB

	Revision History

	Version
	Date
	Description
	Contributors

	V0.1
	12/05/2025
	Created template
	Andrea Manzi (EGI), Charis Chatzikyriakou (EODC)

	V0.2
	10/07/2025
	Full draft ready for internal review
	All authors

	V0.3
	25/07/2025
	Reviewers’ comments addressed, ready for TCB review.
	All authors

	V0.4
	28/07/2025
	TCB reviewer’s comments addressed, ready for QA.
	All authors

	V1.0
	
	Final
	

	Terminology / Acronyms

	Term/Acronym
	Definition

	AI
	Artificial Intelligence

	API
	Application Programming Interface

	BIC
	Bayesian Information Criterion

	CEMS
	Copernicus Emergency Mapping Service

	CeCill-C
	CEA CNRS INRIA Logiciel Libre

	CLIC
	Compact Linear Collider

	CMIP6
	Coupled Model Intercomparison Project, Phase 6

	CNN
	Convolutional Neural Network

	COG
	Cloud Optimized GeoTIFF

	CSV
	Comma Separated Value

	CVAE
	Convolutional Variational Auto-Encoder

	CWL
	Common Workflow Language

	DAG
	Directed Acyclic Graph

	DestinE
	Destination Earth

	DID
	Data Identifier

	DNN
	Deep Neural Network

	DoA
	Description of Action

	DT
	Digital Twin

	DTE
	Digital Twin Engine

	ECMWF
	European Centre for Medium-Range Weather Forecasts

	EO
	Earth Observation

	ERA5
	ECMWF Reanalysis v5

	ESGF
	Earth System Grid Federation

	FAIR
	Findable, Accessible, Interoperable, and Reusable

	FC
	File Catalogue

	FESOM
	Finite-Element/volumE Sea ice-Ocean Model

	FIAT
	Fast Impact Assessment Tool

	FTS
	File Transfer Services

	GAN
	Generative Adversarial Network

	GenNN
	Generative Neural Network

	GNN
	Graph Neural Network

	GNU AGPLv3
	GNU Affero General Public License version 3

	GPLv2
	GNU General Public License version 2

	GPU
	Graphics Processing Unit

	GW
	Gravitational Wave

	HDF
	Hierarchical Data Format

	HEP
	High Energy Physics

	HL-LHC
	High Luminosity - Large Hadron Collider

	HPAR
	Harmonic Parameters

	HPC
	High-Performance Computing

	HPO
	Hyperparameter Optimization

	HTTP
	Hypertext Transfer Protocol

	IBTrACS
	International Best Track Archive for Climate Stewardship

	icclim
	Index Calculation for CLIMate

	ILDG
	International Lattice Data Grid

	JSON
	JavaScript Object Notation

	LSTM
	Long short-term memory

	MC
	Monte Carlo

	MDC
	Metadata Catalogue

	MCMC
	Markov Chain Monte Carlo

	ML
	Machine Learning

	ML-PPA
	Machine Learning-based Pipeline for Pulsar Analysis

	PLIA
	Projected Local Incidence Angle

	PoC
	Proof of Concept

	QCD
	Quantum Chromodynamics

	QED
	Quantum Electrodynamics

	RA2CE
	Resilience Assessment and Adaptation for Critical infrastructurE

	RSE
	Rucio Storage Elements

	RFI
	Radio Frequency Interference

	SE
	Storage Endpoint

	SEAS5
	ECMWF seasonal forecasts

	SFINCS
	Super-Fast INundation of CoastS

	SNR
	SIgnal-to-Noise Ratio

	SQL
	Structured Query Language

	STAC
	SpatioTemporal Asset Catalog

	TC
	Tropical Cyclone

	TCB
	Technical Coordination Board

	VGG
	Visual Geometry Group (a standard deep CNN)

	WP
	Work Package

	YAML
	Yet Another Markup Language

Terminology / Acronyms: https://confluence.egi.eu/display/EGIG

Table of Contents
Executive summary	10
1	Introduction	11
1.1	Scope	11
1.2	Document Structure	11
2	Overview of thematic modules	13
2.1	T7.1 Lattice QCD simulations and data management	13
2.1.1	Machine Learning for Lattice Simulations with normflow	13
2.1.2	The Lattice Data Lake	15
2.2	T7.2 Noise simulation for radio astronomy	17
2.2.1	Use-case description	17
2.2.2	Machine Learning-based Pipeline for Pulsar Analysis (ML-PPA)	18
2.3	T7.3 GenNN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for gravitational waves	20
2.3.1	Use-case description	20
2.3.2	High-level architecture of the DT implementation	21
2.3.3	The Training DT subsystem	22
2.3.4	The Inference DT subsystem	23
2.3.5	The Virgo Data Lake	23
2.4	T7.4 Climate analytics and data processing	23
2.5	T7.5 Earth Observation Modelling and Processing	24
2.5.2	High-level Architecture of the DT Implementation	25
2.5.4	Thematic Modules Integration	26
2.6	T7.6 Hydrological model data processing	27
2.6.1	Use-case Description	27
2.6.2	High-level Architecture of the DT Implementation	27
2.6.3	Modelbuilder Workflow	28
2.6.4	Scenario Workflow	29
2.6.5	Data Integration and Infrastructure	29
2.6.6	Summary	30
2.7	T7.7 Fast particle detector simulation	30
2.7.1	Use-case description	30
2.7.2	High-level Architecture of the DT Implementation	30
2.8	Summary of supported Digital Twins	33
3	Thematic modules and final development and integration activities	35
3.1	T7.1 Lattice QCD simulations and data management	35
3.1.1	openQxD	35
3.1.2	normflow	36
3.1.3	Functionalities developed since the last release	36
3.1.4	Integrations with other DTE components	36
3.1.5	Integrations with DT Applications	37
3.1.6	Pilots and testing activities	37
i.	Both components have been piloted on the VEGA EuroHPC GPU partition resources dedicated to the project.	37
3.2	T7.2 Noise simulation for radio astronomy	37
3.2.1	PulsarDT	37
3.2.2	PulsarDT++	38
3.2.3	PulsarRFI_Gen	39
3.2.4	PulsarRFI_NN	40
3.2.5	Functionalities developed since the last release	40
3.2.6	Integrations with other DTE components	41
3.2.7	Integrations with DT Applications	41
3.2.8	Pilots and testing activities	41
3.3	T7.3 GenNN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for gravitational waves	41
3.3.1	GlitchFlow	41
3.3.2	ANNALISA	42
3.3.3	Functionalities developed since the last release	43
3.3.4	Integrations with other DTE components	43
3.3.5	Integrations with DT Applications	44
3.3.6	Pilots and testing activities	44
3.4	T7.4 Climate analytics and data processing	44
3.4.1	ML TC detection	44
3.4.2	ML4Fires	45
3.4.3	eddiesML	46
3.4.4	xtclim	47
3.4.5	downscaleML	48
3.4.6	emergence.compound	49
3.4.7	Esgpull_rucio	50
3.4.8	Functionalities developed since the last release	51
3.4.9	Integrations with other DTE components	52
3.4.10	Integrations with DT Applications	53
3.4.11	Pilots and testing activities	53
3.5	T7.5 Earth Observation Modelling and Processing	54
3.5.1	openeo-processes-dask	54
3.5.2	openeo-pg-parser-networkx	54
3.5.3	raster-to-stac	55
3.5.4	dask-flood-mapper	56
3.5.5	Functionalities developed since the last release	57
3.5.6	Integrations with other DTE components	57
3.5.7	Integrations with DT Applications	57
3.5.8	Pilots and testing activities	58
3.6	T7.6 Hydrological model data processing	58
3.6.1	FloodAdapt	58
3.6.2	HydroMT-SFINCS	59
3.6.3	HydroMT-FIAT	60
3.6.4	SFINCS	61
3.6.5	Delft-FIAT	62
3.6.6	WFLOW.jl	63
3.6.7	HydroMT-WFLOW	65
3.6.8	RA2CE	66
3.6.9	Hython Wflow_SBM Hydrological Model	67
3.6.10	Functionalities developed since the last release	69
3.6.11	Integrations with other DTE components	69
3.6.12	Pilots and testing activities	70
3.7	T7.7 Fast particle detector simulation	70
3.7.1	3DGAN and CaloINN	70
3.7.2	Functionalities developed since the last release	71
3.7.3	Integrations with other DTE components	72
3.7.4	Integrations with DT Applications	72
3.7.5	Pilots and testing activities	72
4	Conclusions	73
5	References	75

[bookmark: _heading=h.8s5h8u6fqp2v]List of Figures
Figure 1 Graphical representation of the Normalising Flows method	13
Figure 2 Module Integration Diagram for the Lattice QCD use case	14
Figure 3 Schema depicting the flow of control when accessing the Lattice Datalake.	16
Figure 4 General outline of the DT structure.	19
Figure 5 Operation Diagram of the ML-PPA	20
Figure 6 High-level architecture of the DT	21
Figure 7 System Context diagram of the Virgo Interferometer DT	22
Figure 8 High-level architecture of the Alpine Drought Early Warning DT	25
Figure 9 High-level architecture of the flood risk DTs for post-flood analysis (top) and climate impact assessment (bottom)	28
Figure 10 System Context diagram of the Fast Detector Simulation DT	31

List of Tables
Table 1 Summary of supported Digital Twins	33

[bookmark: _Toc204700908]Executive summary
Work Package 7 (WP7) of the interTwin project is dedicated to the design, development, and integration of thematic modules that provide domain-specific functionalities to the Digital Twin Engine (DTE). These modules serve as reusable software components supporting the implementation of Digital Twin (DT) applications in both the environmental and physics domains, as defined in WP4.
This final report is a collective document written by the scientists who developed the thematic modules and consolidates the progress made in the development and integration of these modules throughout the project. It builds upon previous deliverables (D7.1 [R20], D7.2 [R2], D7.3 [R1], D7.4 [R3], D7.5 [R21], D7.6 [R4], D7.7 [R22] and D7.8 [R16]), offering a comprehensive overview of the final version of the modules, including newly added components developed to meet evolving requirements. The report captures the technical maturity of the modules, their alignment with scientific workflows, and their integration into the DTE platform in collaboration with WP5 (infrastructure) and WP6 (core services).
In the environmental domain, 20 thematic modules have been developed within the tasks Climate Analytics and Data Processing (T7.4), Earth Observation Modelling and Processing (T7.5), and Hydrological Model Data Processing (T7.6) to support the six environmental DT applications. These modules address the data ingestion, transformation, analysis, and model coupling and other needs of these applications. All modules are released as open-source software and are accompanied by documentation, metadata, and release notes to ensure transparency, usability, and reproducibility.
In the physics domain, nine thematic modules have been implemented within the tasks Lattice QCD simulations and data management (T7.1), Noise simulation for radio astronomy (T7.2), GenNN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for gravitational waves (T7.3) and Fast particle detector simulation (T7.7) to support the four DT applications from the physics domain. Each module’s functionality is aligned with the needs of its respective application, with a focus on efficient data handling, domain-specific processing, and scalability. The report includes technical summaries, licensing information, and details on software readiness.
The report also provides a summary of completed - and in a few cases only ongoing - integration efforts, highlighting interactions with the DTE core and infrastructure components.

1 [bookmark: _Toc204700909]Introduction
1.1 [bookmark: _Toc204700910]Scope
The deliverable provides the final report on the development and integration status of the thematic modules designed to support the Digital Twin applications within the interTwin project. It builds upon and consolidates all previous WP7 deliverables —particularly D7.1, D7.2, D7.3, D7.4, D7.5, D7.6, D7.7 and D7.8 — offering an updated, comprehensive view across both scientific domains covered by the interTwin DT applications, the Physics and the Environment domains.
A total of 29 thematic modules have been developed and integrated into the DTE framework, 20 of which are within the tasks supporting the environmental DT applications and 9 of which are within the tasks supporting the Physics ones. These modules address a broad range of functionalities required by Digital Twin (DT) applications and span several areas, including:
· High Energy Physics
· Radio Astronomy
· Gravitational waves
· Climate Research
· Environmental Monitoring
Since the previous releases, a number of modules have been further developed and two new modules have been added to meet the evolving needs of the DT applications. Specifically, the newly added modules are the ANNALISA module, by INFN, and the Dask Flood Mapper, by TU Wien. All thematic components have been developed in alignment with the overarching DTE architecture and the co-design process led by WP4.
The thematic modules in this deliverable are described with a focus on their development maturity, current features, integration status, licensing and documentation. It should be noted that a more elaborate description of the integration activities with the respective DT applications can be found in the final WP4 deliverables, D4.7[footnoteRef:1] and D4.8[footnoteRef:2] that will become publicly available at the end of August 2025. [1: D4.7: Final version of the DTs capabilities for climate change and impact decision support tools including validation reports] [2: D4.8: Final version of the DT capabilities for High Energy Physics, Radio astronomy and Gravitational-wave Astrophysics including validation reports]

1.2 [bookmark: _Toc204700911]Document Structure
The document is organised into three main sections:
· Section 2 provides an overview of the thematic modules, structured by task (T7.1–T7.7). Each subsection includes the related use case context, architectural components, and high-level workflows of the modules. This section also highlights the connection between the modules and their corresponding DT applications.

· Section 3 gives a detailed account of the final developments and integration activities for each thematic module, including the:

· functionalities developed since the last release
· integration with other DTE components and with DT applications
· pilot implementations and testing activities

· Finally, Section 4 presents the main conclusions and lessons learned across the domain-specific efforts in WP7, with a particular emphasis on integration outcomes and readiness for exploitation within DT applications.

2 [bookmark: _Overview_of_thematic][bookmark: _Toc204700912]Overview of thematic modules
2.1 [bookmark: _Toc204700913]T7.1 Lattice QCD simulations and data management
Lattice QCD involves the study of the properties of Quantum Chromodynamics in the low energy limit, where perturbation theory breaks down and numerical approaches are required. Within interTwin two parallel and complementary tracks have been implemented that address the practical and theoretical challenges of Lattice QCD simulations. These are the practical challenges of storing and moving the ever-increasing amounts of data associated with traditional large-scale HPC simulations, and the theoretical challenge of exploring, at the proof-of-concept level, the extent to which contemporary Machine-Learning techniques can make lattice simulations more efficient.
2.1.1 [bookmark: _Toc204700914]Machine Learning for Lattice Simulations with normflow[footnoteRef:3] [3: https://github.com/jkomijani/normflow_]

[bookmark: _heading=h.26in1rg]The efficiency of general-purpose Monte Carlo algorithms decreases dramatically when simulations take place near critical points due to critical slowing down. This is a general phenomenon in physics simulations related to phase transitions. This loss of efficiency also occurs in the high-resolution Lattice simulations needed for continuum extrapolations. Researchers want to be able to carry out simulations in regions of parameter space where topology freezing and long autocorrelations currently stymie progress.[image: Graphical representation of the Normalizing Flows method including a correcting accept/reject step to account for the fact that the model cannot be perfectly trained.][bookmark: _Toc204701007]Figure 1 Graphical representation of the Normalising Flows method including a correcting accept/reject step to account for the fact that the model cannot be perfectly trained.

Through the development of the pytorch-based python package normflow, we have shown that Machine Learning can be used for field configuration generation with scalar theories and certain gauge theories on small lattices of dimensionality up to and including four [R9]. Moreover, it is being developed to handle the more complicated family of SU(3) gauge theories, this being an important step towards a ML lattice simulation of QCD [R10]. Figure 2 outlines schematically the typical workflows of a developer and a user of normflow.
[image:][bookmark: _Ref204696179][bookmark: _Toc204701008]Figure 2 Module Integration Diagram for the Lattice QCD use case

Improvements to the normflow software development workflow have been made by the integration of the SQAaaS module developed by WP6.2, with the progress of this integration being tracked in the corresponding WP4/7 deliverables. Software quality assurance in this context means making sure software packages developed for scientific research, like normflow, adhere to research software best practices, such as being licensed with an Open Source Initiative-approved licence. Currently the public version of normflow is credited with the Silver SQAaaS badge and this is displayed prominently on normflow’s public repository webpage. Since the previous deliverable, we have implemented the first automated tests of normflow, using the pytest package and the bash testing framework. Automated testing was demoed by WP6.2 at the 2024 IBERGRID conference[footnoteRef:4]. We continue to add tests and are looking at an alternative, more flexible, way of automating the testing with SQAaaS. [4: https://www.ibergrid.eu/2024-ibergrid-porto/]

2.1.2 [bookmark: _Toc204700915] The Lattice Data Lake
Lattice QCD simulations are executed at scale on HPC systems that are controlled by a batch scheduler (such as SLURM[footnoteRef:5]). A typical workflow involves the generation of lattice field configurations, the measurement of an observable of interest over those configurations, and the statistical analysis of those measurements. All these steps, but especially the generation of configurations, can be highly computationally intensive and often require lots of disk space. [5: https://slurm.schedmd.com]

The openQxD simulation software is a highly optimised C code designed to simulate QCD and QCD+QED theories on a lattice. It is similar to many other traditional Markov Chain Monte Carlo (MCMC) lattice codes used across the field to conduct particle physics research. It is available on Gitlab[footnoteRef:6] and is described at length in the literature [5]. A concise description of the software is given in section 3.1 of D7.2 [R2] along with links to further technical documentation. It is under active development though this work is not being done as part of the interTwin project. [6: https://gitlab.com/rcstar/openQxD]

In previous deliverables we described some of the issues encountered by lattice researchers when trying to store and access their data [R3]. We argued that lattice configurations should be made more easily available to the members of a collaboration. It was realised early on that the use of federated identities and group-based access control would be crucial to achieving this goal of easier access in a controlled way. The Data Lake framework proposed and developed by WP5 followed naturally. In this framework, the members of a collaboration would have group-access enabled read permission for their data, while a subset of the collaboration, those in charge of generating configurations, would also have write permission. In D7.4 we described our efforts relating to testing and benchmarking the DataLake prototype with real and toy lattice data [R3]. After providing feedback to the DataLake developers it was decided that the Lattice group should get its own Lattice Data Lake in order to satisfy its particular read/write permission specifications.
It was also decided that a phased approach to the Lattice Data Lake rollout would be preferable. The first phase involved opening an FTS connection and transferring data between the DESY-Zeuthen storage endpoint and an endpoint at CESGA. The required FTS server has been updated and is now able to accept ILDG tokens. This is important as the Lattice Data Lake will use the ILDG as its identity and access manager. The ILDG can support multiple locations, recorded as URLs, for each piece of data. We outlined a possible schema for the Data Lake URLs that would be recorded in the ILDG in D7.6 [R4].

[image:]
[bookmark: _Ref204696391][bookmark: _Toc204701009]Figure 3 Schema depicting the flow of control when accessing the Lattice Datalake. In this example the institutional Identity Provider (IdP) is CSIC, but it could be any other IdP trusted by the ILDG.

Thanks to the efforts of WP5 and the ILDG, there is now a functional prototype of the “Lattice Datalake” with three storage endpoints (SEs); two at DESY and one at CESGA. Figure 3 illustrates the flow of control when accessing the datalake, and highlights how a user, once authenticated, could also access the ILDG’s File (FC) and Metadata (MDC) Catalogues.
Lattice Data Lake access works as follows [R17]:
· A client queries the ILDG for the location of some files it wishes to access.
· ILDG authorises the request, verifying the user is allowed to read the files.
· ILDG returns the location of the files along with the token(s) needed for their access.
· For each file the client contacts the storage to request access and supplies the corresponding token.
· The storage verifies the token and provides the requested file.
In D7.8 we described our progress towards our goal of extending the ILDG catalogue to support a Lattice Data Lake as a possible source of data [R16]. The phased rollout of the Data Lake continues and the focus now is on a new endpoint at CESGA which will replace the current endpoint. The WP5 group and the CESGA administrators are working on getting teapot[footnoteRef:7] access to CESGA’s HPC storage. This represents a major potential improvement on the current situation because this SE will be directly accessible from the compute nodes. This will enable direct integration with normflow and itwinai by opening up the possibility of immediately writing trained models and other data directly to the Lattice Data Lake once normflow finishes training. This activity is expected to be completed by the end of the project. [7: https://www.intertwin.eu/article/infrastructure-component-teapot]

2.2 [bookmark: _Toc204700916]T7.2 Noise simulation for radio astronomy
2.2.1 [bookmark: _Toc204700917]Use-case description
As outlined in the previous reports [R2, R4, R16], this task is designed to be instrumental in solving a big problem that is about to arise in modern observational astronomy in general and radio astronomy in particular, and to become one of the largest issues in the whole field: the problem of data overflow. Previous generations of telescopes typically produced no more than a few petabytes of data per year; thus, the raw data was generally kept either indefinitely or long enough for the science team to reduce and analyse it, and then approve the deletion, which meant several months or even years. With the arrival of the new so-called Square Kilometre Array[footnoteRef:8] "pathfinders", such as South African MeerKAT[footnoteRef:9] or Australian ASKAP[footnoteRef:10], the data acquisition rate increases enormously, these tools can easily produce several petabytes of raw data per week[footnoteRef:11]. No current astronomical institution can handle keeping such volumes of data even for a month or employ a team of experts large enough to quickly process it or sort through it manually. Thus, it is crucial to develop automated decision-making systems that can sort through the raw data in real or near-real time (since telescopes usually have downtime due to maintenance or source availability, the data can be pooled for short periods of order of days) and separate the data flow into the scientifically important data that must be kept while the rest that can be safely deleted. [8: SKAO: https://www.skao.int/en] [9: MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/] [10: ASKAP-radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope] [11: Predicted data rate for an SKA pathfinder like MeerKAT is of order 10 Gbytes/s or up to 1 Pbytes/day. The SKA itself is expected to produce up to 200 Pbytes/day, which is ~70 exabytes per year. To put it into perspective, the latter is about the same as the expected data rate of CERN’s LHC after the High-Luminosity upgrade (60 exabytes per year) and at about the same time (SKA’s first light is expected in 2027 and the High-Luminosity LHC should go online in 2029).]

Another reason to be able to automatically sort through the incoming data is that modern radio astronomy is increasingly interested in transient sources. Previously sources had to be observed for long periods of time to be able to achieve the necessary signal to noise ratio, thus it was possible to observe reliably or even discover at all only permanent or fast periodic[footnoteRef:12] sources like pulsars. Since the new telescopes are much more sensitive, they can systematically probe the transient radio sky, which currently is generally unknown. Such studies are very important, since it is believed that the transients[footnoteRef:13] result from very far and enormously energetic exotic events (like a collapsing supermassive star) that may provide essential clues for the areas of physics that cannot be studied experimentally in any other way, e.g., quantum gravity. An automated expert system can help with this: if something like a transient source (or unusual in general) signature is found in the data flow, it can immediately trigger the "target of opportunity" mode of observation for the detected anomaly, and alert the scientists on duty, who would decide the best course of further action. This will also allow us to easily organise concerted efforts of observing rare important sources by several instruments, covering a range of wavelengths, e.g., combining Earth-based radio observations with space-based optical and X-ray observations — it is already done today, but with typical response times very far from ideal[footnoteRef:14]. [12: Known pulsars have periods from a few milliseconds to 8 seconds, thus over a typical observational session of several hours one can observe many pulses, which makes pulsars relatively easy to detect and observe. However, if we imagine a transient phenomenon similar to a pulse of a pulsar, but either non-periodic or with periods of order of hours or days, discovering it is close to impossible except by sheer luck.] [13: Examples of such transients that attract a lot of attention in the radio astronomical community are “fast radio bursts” (FRBs), see e.g. R18 and references thereof.] [14: Even in the best case scenario when a special “target of opportunity” (ToO) event is expected, and a change of scheduling is proposed in advance for all the observatories involved, the actual triggering of such an event is a complicated and disruptive procedure involving many exchanges between various personnel of many institutions, thus the response time is rarely shorter than a day. Using an automated decision-making system with pre-approved criteria can change this to minutes, most of the time taken to actually reposition the telescopes.]

Pulsars are ideal test subjects for this task since they reliably produce periodic bursts of scientifically significant data with certain variability in signal strength and other parameters. However, because of their nature “silent” most of the time, a telescope observing a pulsar mostly records either an "empty" data stream, i.e., only the noise, or some sort of RFI due to artificial or natural electro-magnetic phenomena unrelated to space.
The third reason for this task is that current common radio astronomy software tools are inadequate, they are computationally slow and handle parallelization poorly. For the tasks at hand, we are building tools that can be efficiently run on modern HPC clusters, with scalability to at least hundreds of cores. It is connected to the main task of the ML data classification system in a way that, although the classification system itself will be run on ordinary observatory computers embedded in a telescope’s data acquisition system, the training of new models before each new type of observation, which is the most computationally intensive task, will have to be performed on supercomputers.
To be able to detect special and important events in the data, one must first understand well the regular and mundane features of the data stream that in radio astronomy translates into noise and radio-frequency interference (RFI).
2.2.2 [bookmark: _Toc204700918]Machine Learning-based Pipeline for Pulsar Analysis (ML-PPA)
As previously reported [R3, R16], motivated by these points we developed a framework for extracting pulsar signals from radio-astronomical observatory data streams, under the designation of ML-PPA (Machine Learning-based Pipeline for Pulsar Analysis): a ML-based data-labelling system that reads the data flow coming from a real telescope observing a pulsar. An important separate component is a DT of an astronomical source-telescope system, able to generate synthetic output signals identical to the data recorded by a real telescope. The resulting DT-generated data is to be used to train the ML data-classification tool. The DT is physics-based: a set of control parameters will allow adjustment of the output to different sources, detection instruments, and observing conditions.
Four modules are being developed under the umbrella designation of ML-PPA:
· PulsarDT
· PulsarDT++
· PulsarRFI_Gen
· PulsarRFI_NN
PulsarDT: physics-based DT, simulation of the propagation of pulsar signals from the source to antennas (Figure 4) and generation of synthetic data – written in Python, to test algorithmic strategies for physical models of pulsars, interstellar medium, telescopes, interference, and noise.
[image:]
[bookmark: _Ref204696660][bookmark: _Toc204701010][bookmark: _heading=h.1y810tw]Figure 4 General outline of the DT structure: modelling the astrophysical source (pulsar), transmission of the signal through the interstellar matter, receiving and processing by a radio telescope, adding sources of both natural and artificial interference and noise.
PulsarDT++: PulsarDT is implemented in C++ in order to improve its speed and allow for parallelization, easily deployable in a singularity container.
PulsarRFI_Gen: empirical DT, generating “timeframes”, 2D images (time-frequency) of all possible types of telescope output observing a pulsar: pulses (scientifically relevant data), two different types (“narrow” and “broad”) of RFI signals, and “empty” frames, containing only noise. It creates these timeframes by mimicking available real data (based on the geometry of images, noise characteristics etc.) rather than generating them from the physical first principles as PulsarDT does. By using this alternative method it provides comparison for PulsarDT/DT++ and substitutes training data for the ML classifier.
PulsarRFI_NN: the ML classifier. It is a CNN-based tool for the identification of various types of pulsar and RFI signals in the “timeframes”, 2D images (time-frequency).
The general diagram of the intended operation of the ML-PPA and its interaction with other interTwin components is shown in Figure 5.
ML-PPA has been tested with real data collected by observing various pulsars with two telescopes: the Effelsberg 100m radio telescope[footnoteRef:15] and the above-mentioned MeerKAT array. [15: Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg]

A more detailed overview of the state of the project and its full theoretical background can be found in [R19].
[image:]
[bookmark: _Ref204696715][bookmark: _Toc204701011][bookmark: _heading=h.3whwml4]Figure 5 Operation Diagram of the ML-PPA
2.3 [bookmark: _Toc204700919]T7.3 GenNN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for gravitational waves
2.3.1 [bookmark: _Toc204700920]Use-case description
The sensitivity of Gravitational Wave (GW) interferometers is limited by noise. We have been using Generative Neural Networks (GenNNs) to produce a Digital Twin (DT) of the Virgo interferometer to realistically simulate transient noise in the detector. We have used the GenNN-based DT to generate synthetic strain data (a channel that measures the deformation induced by the passage of a gravitational wave). Furthermore, the detector is equipped with sensors that monitor the status of the detector’s subsystems as well as the environmental conditions (wind, temperature, seismic motions) and whose output is saved in the so-called auxiliary channels. Therefore, in a second phase, also from the perspective of the Einstein Telescope, we will use the trained model to characterise the noise and optimise the use of auxiliary channels in vetoing and denoising the signal in low-latency searches, i.e., those data analysis pipelines that search for transient astrophysical signals in almost real time. This will allow the low-latency searches (not part of the DT) to send out more reliable triggers to observatories for multi-messenger astronomy.	
Figure 6 shows the high-level architecture of the DT. Data streams from auxiliary channels are used to find the transfer function of the system producing non-linear noise in the detector output. The output function compares the simulated and the real signals in order to issue a veto decision (to further process incoming data in low-latency searches) or to remove the noise contribution from the real signal (denoising).
[image: High-level architecture of the DT]
[bookmark: _Ref204696761][bookmark: _Toc204701012][bookmark: _heading=h.3as4poj]Figure 6 High-level architecture of the DT
2.3.2 [bookmark: _Toc204700921]High-level architecture of the DT implementation
Figure 7 shows the System Context diagram of the DT for the veto and denoising pipeline.
Two main subsystems characterise the DT architecture: the Training DT subsystem and the Inference DT subsystem. The Training DT subsystem is responsible for the periodical re-training of the DT model on a buffered subsample of the most recent Virgo data. The DT model needs to be updated to reflect the current status of the interferometer, so continuous retraining of the GenNN needs to be carried out. The Inference DT subsystem is responsible for the low latency vetoing and denoising of the detector’s data stream.
All modules within both subsystems are implemented as itwinai[footnoteRef:16] plugins. Itwinai offers several key features that are beneficial to the DT, including distributed training capabilities, a robust logging and model catalogue system, enhanced code reusability, and a user-friendly configuration interface for pipelines. [16: itwinai: https://www.intertwin.eu/article/core-dte-module-itwinai]

[image:]
[bookmark: _Ref204696814][bookmark: _Toc204701013][bookmark: _heading=h.49x2ik5]Figure 7 System Context diagram of the Virgo Interferometer DT
2.3.3 [bookmark: _Toc204700922]The Training DT subsystem
The Training Subsystem is activated by operators. Its workflow begins with an initial, one-time step: the selection of pertinent channels for network training. This preliminary action is carried out by the ANNALISA (Advanced Nonlinear transient-Noise Analyser of Laser Interferometer Sensor Array) module, which makes use of time-frequency domain representation of the data, namely the QTransform, to evaluate correlations among the main and auxiliary channels as a measure of temporally coincident spikes in the energetic content of the signals above a critical threshold.
Following this, the operators preprocess data retrieved from the Virgo Data Lake.
Data preprocessing steps, all available from the ANNALISA module, consist of data resampling, whitening, spectrogram generation, image cropping, and loading into a custom PyTorch dataloader.
The data loader subsequently feeds a GenNN during training. The final NN architecture chosen for the DT is a Convolutional U-net, featuring residual blocks and attention gates with enhanced skip connections. This design allows for a better capture of data complexity and interdependence. Both the model definition and training are handled by the GlitchFlow module.
As the model undergoes training, its learned weights and various performance metrics are systematically logged into a dedicated model registry on MLFlow[footnoteRef:17]. This ensures that the trained model is not only preserved but also readily accessible for use by the Inference Subsystem. Both the logging process and the offloading to computing infrastructure during training are facilitated by itwinai. [17: MLFlow: https://mlflow.org/]

2.3.4 [bookmark: _Toc204700923]The Inference DT subsystem
The Inference Subsystem is activated by users, preferably GW detector characterization or data analysis experts. They start by selecting the data for analysis, which then undergoes the same preprocessing steps as those applied during the training phase. Subsequently, a trained model is loaded from the model catalogue and utilized to perform inference on the chosen data. The output of this process comprises "clean" data, ideally free of glitches, and metadata containing veto flagging information, which identifies glitch instances. Both the cleaned data and metadata are logged, offering a complete record of the denoising and vetoing operations.
The logged details, including images of the real, generated, and cleaned data, are accessible on TensorBoard[footnoteRef:18]. Metadata containing veto flag information, organized by the GPS time of the analysed data, is also logged. Furthermore, metadata for any data that failed to be cleaned is recorded, including the area and Signal-to-Noise Ratio (SNR) of glitches still visible after cleaning. To access this information, users can launch TensorBoard and navigate through the logged events, which are categorized by run and timestamp, allowing for detailed visualization and analysis of the inference results. The entire pipeline, encompassing data selection, inference, and logging, is configurable via a YAML file, enabling users to specify modules to execute, preprocessing parameters, dataset specifics, network architecture, and paths for saving results. [18: TensorBoard: https://www.tensorflow.org/tensorboard?hl=it]

2.3.5 [bookmark: _Toc204700924]The Virgo Data Lake
The transient noise data is being stored in the interTwin Data Lake, which we are managing in synergy with the developers of task 5.1. The Data Lake is managed by the Rucio software, which ensures scalable and efficient data transfer and storage. Specifically, we registered two Rucio Storage Elements (RSEs): one at INFN, where the data is originally stored on tape, and one at the Vega EuroHPC[footnoteRef:19] . The RSEs are part of a private Virgo Virtual Organisation (virgo.intertwin.eu), created to restrict data access to only authorised people who are part of the Virgo community. The data is transferred from the former RSE to the latter via a Transfer File System mediated by Rucio. It is then possible to use the data to develop and deploy the different modules directly on Vega, making full use of the computational resources made available by the collaboration. [19: Vega: https://en-vegadocs.vega.izum.si/introduction/]

2.4 [bookmark: _Toc204700925]T7.4 Climate analytics and data processing
The goal of task 7.4 is to provide a set of thematic software modules for supporting climate/weather-related data processing and data-driven models for climate-based DTs.
2.4.1 Use cases
Thematic modules developed in T7.4 have been used to support multiple DT applications from WP4, in particular:
· Tropical Cyclones detection and tracking due to climate change (T4.5)
· Wildfires prediction due to climate change (T4.5)
· Eddies prediction (T4.5)
· Alpine Droughts Early Warning use-case (T4.6)
· Extreme rainfall, temperature and wind - weather extremes as a result of climate change (T4.7)

2.4.2 Workflows
Details about the workflows for the different DT applications will be reported in D4.7.

2.4.3 Thematic modules

The final set of thematic modules from T7.4 was described in D7.7 and includes the following:

1. ML TC detection: Python modules for tropical cyclones-related data analysis and events detection.
2. ML4Fires: Python modules for wildfires-related data analysis and events prediction.
3. eddiesML: Python modules for oceanic mesoscale eddies data analysis.
4. xtclim: Python module for generic detection and characterization of climate extreme changes and impacts in the future climate projections.
5. downscaleML: Python package for downscaling climate data.
6. emergence.compound: Library for detection of time or periods of emergence for compound events.
7. Esgpull_rucio: toolkit for gathering CMIP6 data from ESGF, through the esgpull tool, and uploading it to the RUCIO data lake.

Details about each module are presented in section 3.4.
2.5 [bookmark: _Toc204700926]T7.5 Earth Observation Modelling and Processing
2.5.1 Alpine Droughts Early Warning use-case description
The Alpine Drought Early Warning DT objective is to support users from local and regional water management agencies, civil protection and research institutes to run complex workflows and integrate heterogeneous data inputs to finally produce hydrological forecasts from seasonal climate forecasts. The forecasted variables are surface soil moisture and evapotranspiration.
Both DT developers and users interact with the DT functionalities through the openEO API, connecting openEO processes to generate a configurable process graph. Each openEO process wraps an application component of the workflow.
The DT developer can set up and run the physical-based hydrological model, using the HydroMT and Wflow_sbm thematic modules. The outputs are used to train the hydrological emulator leveraging the core module ItwinAI and the Hython_sbm thematic module, integrated in the hython-itwinai plugin. The emulator is then calibrated by using parameter learning, leveraging remote sensing surface soil moisture. The plugin also supports emulator model logging, hyper parameter optimization and uncertainty quantification. The final model is archived on the Mlflow server model registry and is accessible to the DT user.
The DT user can downscale the climate seasonal forecast using downscaleML thematic module. The trained hython_sbm model weights are uploaded from the Mlflow model registry, then the downscaled seasonal forecasts are used to force the Hython_sbm emulator and produce hydrological seasonal forecasts.

2.5.2 [bookmark: _Toc204700927]High-level Architecture of the DT Implementation
[image:]
[bookmark: _Toc204701014]Figure 8 High-level architecture of the Alpine Drought Early Warning DT

2.5.3 Workflow description
A digital twin developer interfaces with openEO through one of its clients (Python, R, Web Editor). HydroMT and Wflow serve as model-building components that have been containerized for use in OSCAR. Initially, HydroMT is executed on the input data to create a configuration file for the Wflow model builder. The outcomes are registered as STAC collections and stored in the interTwin data lake utilizing the raster2stac component. These files are subsequently employed as input for the Wflow step. The Wflow model builder generates a NetCDF file, which is again registered in STAC and uploaded to the object store. Ultimately, the Wflow output is specified as input in the Itwinai configuration file, along with additional configurable parameters for the training phase. The resulting model is then uploaded and registered in MLflow.

A digital twin user connects to openEO through one of its clients, similar to the digital twin developer. The user specifies a spatial and temporal extent during the downscaling phase. The preprocessing phase occurs in openEO, with the data saved to STAC, allowing it to be loaded by the ML model. During the post-processing phase, drought indices are calculated, and the output can be visualized.
2.5.4 [bookmark: _Toc204700928]Thematic Modules Integration
openeo-processes-dask:
This thematic module contains the Python implementation of the openEO processes, implemented using Xarray and Dask. The recent development allowed us to interact with the interTwin object storage, containing the dataset stored in different formats, like COG (Cloud Optimized Geotiff), netCDF and Zarr. Specifically, the entry point for the users will be the load_stac process, which will query the interTwin STAC API (SpatioTemporal Asset Catalog) to get the required data. Specific work has been carried out to allow precise merge of data from different sources (satellite, climate).

downscaleML :
The downscaleML thematic module enables automated machine learning–based downscaling of seasonal climate forecasts (temperature, precipitation and surface solar radiation downwards), with a focus on climate extremes. It integrates with openeo-processes-dask, raster2stac, and STAC to form an end-to-end, reproducible pipeline. Both DT developers and users can apply it to the domain and target variable of their choice. In the Alpine Drought Early Warning use case, it is used at the inference stage to generate downscaled forecasts that feed into the early warning system.

hython_sbm:
This thematic module consists of a deep learning LSTM surrogate, tailored to emulate any grid based hydrological or land surface physical-based model. The module also supports other deep learning architectures, such as Conv-LSTM and Transformer. Finally, the module provides functionality as well to run uncertainty estimation.

raster2stac:
This thematic module is crucial for mapping the data output operations of various thematic modules, as it facilitates the creation of valid STAC Collections from a wide array of file formats or in-memory data represented as Xarray objects. It adheres to STAC best practices to ensure optimal interoperability and is equipped to manage both geospatial and climate data. The outcome is a collection of JSON documents that include the necessary STAC documents for generating STAC Collections and STAC Items through HTTP requests at the intertwin STAC API. The resulting files are automatically saved to the interTwin object storage.

OSCAR:
OSCAR enables seamless serverless execution of containers in the cloud. It provides functionality to register user-defined containers and associated workflows, which can be triggered to initiate processing tasks. To facilitate integration between OSCAR and the openEO ecosystem, a dedicated openEO process called run_oscar has been defined. The implementation of the run_oscar process is currently in progress and is expected to be completed by the end of the project. The goal is to empower users to submit and execute their own containers directly through an openEO process graph. Thanks to openEO’s broad range of clients and libraries, this integration will support flexible and user-friendly interaction methods.	
2.6 [bookmark: _Toc204700929]T7.6 Hydrological model data processing
2.6.1 [bookmark: _Toc204700930]Use-case Description
Hydrological model data processing in T7.6 supports the implementation of two Digital Twins (DTs) for flood risk management: post-flood analysis and climate impact assessment. Both use cases aim to help decision-makers understand, mitigate, and adapt to flood risks under present and future climate conditions.

The post-flood analysis DT enables near-real-time evaluation of observed flood events, integrating Earth Observation (EO) data and fast flood modelling to identify inundated areas and quantify their impacts. The climate impact DT focuses on forward-looking scenario simulations to assess long-term changes in flood exposure and vulnerability driven by changing metocean and hydrological conditions.

To support these use cases, we developed a suite of hydrological, flood and impact modelling modules that can be flexibly configured and deployed. The system architecture integrates both data-driven and physics-based models into orchestrated, near-automated workflows, enabling high-resolution flood simulation, impact quantification, and infrastructure vulnerability analysis. The outputs are designed to inform flood resilience planning, infrastructure protection, and climate adaptation policies.

2.6.2 [bookmark: _Toc204700931]High-level Architecture of the DT Implementation
Figure 9 shows the high-level architecture of the DT workflows. It highlights the iterative nature of model building and scenario execution, where users configure flood models through Jupyter notebooks. Configuration files are provided for the execution of modular workflows, consisting of hydrological, inundation, and impact models. The system interfaces with the interTwin Data Lake (T5.2) and leverages container orchestration on HPC and Kubernetes environments through OSCAR (WP6) for scalable execution. Interactive visualisation is provided in the Jupyter Notebooks to explore simulated flood maps, damage assessments, and network disruptions.

[image:]

[image:]
[bookmark: _Ref204697122][bookmark: _Toc204701015]Figure 9 High-level architecture of the flood risk DTs for post-flood analysis (top) and climate impact assessment (bottom)
2.6.3 [bookmark: _Toc204700932]Modelbuilder Workflow
The Modelbuilder workflow is designed for DT developers to set up hydrological models for a specific region of interest. It is an iterative process where users configure and run models, calibrate results, and prepare baseline conditions. The workflow integrates the following key thematic modules:
· HydroMT: A Python-based model-building framework used to ingest and pre-process geospatial data for hydrological simulations.
· FloodAdapt: A scenario configuration and adaptation planning tool that prepares inputs for evaluating risk and resilience measures.
· WFLOW: A spatially distributed hydrological model used for simulating rainfall-runoff processes.
· SFINCS: A reduced-complexity, high-performance inundation model capable of modelling flood propagation across urban and rural landscapes.
· Delft-FIAT: A fast flood impact assessment tool that combines hazard, exposure, and vulnerability to estimate economic damage.
· RA2CE: A network risk assessment model for quantifying flood-induced disruptions to road infrastructure and accessibility.

This workflow is executed through Jupyter notebooks and relies on default configuration files, which can be customized per location or hazard type. Input and output data for model building is stored in the interTwin Data Lake.

2.6.4 [bookmark: _Toc204700933]Scenario Workflow
The Scenario Workflow Execution allows DT users to run “what-if” simulations using predefined or user-generated climate or hazard scenarios. The same modules from the modelbuilder phase are reused here, driven by scenario files that define variables such as rainfall intensity, sea level rise, land-use changes, and flood defence breach conditions.

Execution is automated and offloaded to interTwin computing infrastructure (T5.1). Output maps and statistics include:
· Flood extent and depth
· Building-level economic damages
· Network accessibility losses

Currently, these outputs are being linked to visualisation tools in the Jupyter Notebooks, allowing interactive exploration of simulated scenarios for resilience planning and climate adaptation.

2.6.5 [bookmark: _Toc204700934]Data Integration and Infrastructure
All input data are currently managed through the interTwin Data Lake (T5.2). The capability to similarly manage intermediate data is in progress, intending to test the ability to trigger OSCAR services directly from the Data Lake. Integration with the Data Lake is underway, with workflows already configured to store intermediary and final results in standard formats (e.g., NetCDF, GeoTIFF). EO-derived flood extent maps (e.g., from Sentinel-1) and climate model outputs (e.g., CMIP6) are preprocessed and used for model calibration and scenario generation.

The entire pipeline is deployable on interTwin’s federated computing infrastructure, supporting both containerized workloads and HPC-based processing. Workflow execution is managed using the OSCAR core service (WP6), ensuring consistency, reproducibility, and performance across deployments.

2.6.6 [bookmark: _Toc204700935]Summary
T7.6 delivers a framework for flood risk Digital Twins. Through modular open-source tools, and integration with the interTwin ecosystem, it enables both reactive (post-event) and proactive (climate adaptation) use cases. The combination of hydrological, inundation, and impact models allows for analysis of flood hazards, economic losses, and infrastructure vulnerabilities. The final developments are focused on enhancing integration with the Data Lake and finalising the visualisation components, further increasing the DTs’ accessibility and policy relevance.
2.7 [bookmark: _Toc204700936]T7.7 Fast particle detector simulation
2.7.1 [bookmark: _Toc204700937]Use-case description
Task 7.7's goal is to develop the thematic module for the fast detector simulation using generative deep learning models.
Simulations in particle physics are needed to compare theoretical model predictions with experimental data. As the amount of experimental data increases, more simulated data needs to be produced. In experiments like those at the Large Hadron Collider, where large amounts of data are collected, optimizing computational resources for simulations is important. The most computationally expensive step is modelling particle interactions with detector materials, especially in calorimeter detectors.
Machine learning, in particular deep generative models, has been explored as an alternative to traditional simulation methods. This thematic module provides two generative models: Generative Adversarial Networks (GANs) [R15] and Normalising flows networks [R13], for fast simulation of calorimeter response on a particle passage.

2.7.2 [bookmark: _Toc204700938]High-level Architecture of the DT Implementation
The DT consists of two main workflows, the training workflow, and the inference workflow, as illustrated in Figure 10. For the 3DGAN model, the whole pipeline is implemented as itwinai plugins. For CaloINN, the training workflow is integrated with itwinai, and the inference workflow implementation will be finalized before the end of the project. Below, the application functionalities and their specifications included in each workflow are described.
 [image:]
[bookmark: _Ref204697230][bookmark: _Toc204701016]Figure 10 System Context diagram of the Fast Detector Simulation DT

First, we use Monte Carlo based simulation framework, Geant4[footnoteRef:20] , to produce the training data. Two deep learning (3D Generative Adversarial Network - 3DGAN [R11] and Normalising flows network - CaloINN [R14]) components, developed for a specified particle detector set-up, are trained on Geant4 Monte Carlo simulations to generate detector response. [20: GEANT4: https://geant4.web.cern.ch]

More specifically, T7.7 developed capabilities for T4.2 defined DT application that enable the specific DT operator to:
· pre-process the data, that a Geant4 application produced and simulate particles passing through a specific detector setup
· train a 3DGAN or CaloINN model on the pre-processed simulated data, with specified model input conditions (e.g. particle’s entrance angle, initial energy, and type)
· use the trained model during the inference step to replicate the detector’s response (fast simulation).
The Geant4 simulation toolkit performs particle physics simulations based on Monte Carlo (MC) techniques. The training workflow design includes the following functionalities, which will run on HPC systems. Geant4 simulates particle interactions, outside of the DT, producing data based on a detector-specific configuration. The produced data consists of the energy measured by the detector sensors, the properties of the initial particle, such as its type, energy, and trajectory angle with respect to the detector volume, and other metadata. The produced data, in ROOT format, are stored at data centres provided by project partners, with CERN currently serving as the primary storage site.
The data produced from the traditional Geant4 simulation in ROOT format requires conversion into the HDF5 format for further preprocessing before being input into any of the implemented models. The conversion is performed using Python scripts. The converted data is then stored at the data centres. Following the ROOT to HDF5 format conversion, the HDF5 data is further pre-processed and transformed into numpy arrays, a process incorporated within the model training scripts.
A 3DGAN and CaloINN are trained on the pre-processed data, conditioned on specific input describing the properties of the particles. The data is retrieved from the storage space where they reside. Hyperparameter optimization (HPO) is also employed to improve model performance. During the validation step, the model-generated data and the Geant4 simulated data distributions are both visualised for simpler comparison.
At the end, the training workflow stores the optimised models, selected based on validation results. The model registry where the 3DGAN models are stored is managed by Task 6.5. At the time of writing this report, the model registry is not used for the CaloINN model, but this functionality will be implemented.
During the inference workflow process, simulations of the specified detector’s response are produced. For 3DGAN the detector response is represented as 3D images consisting of the secondary particles’ positions (x, y, z coordinates) in the detector and their corresponding energy measurements. CaloINN represents calorimeter response as energy deposits in detector volume segmented into layers aligned with the direction of the incoming particle, with each layer further divided into radial and angular bins in polar coordinates (voxels). A cluster of detector signals is characterised by the incident energy of the incoming particle and the energy depositions in each voxel.
The inference step includes data visualisation as well for validating the efficacy and accuracy of the AI generated data. The data distribution comparisons are drawn between the 3DGAN-generated or CaloINN-generated data and real data (either derived from a traditional Geant4 simulation or data derived from accelerator test beams).
Finally, based on the results visualised, two possible workflows are proposed for simulation tuning. The model can either be re-inferred with different model input parameter values, provided these parameter values have been accounted for during model training. Alternatively, if a different value range of the conditional parameters is needed, the training workflow must be re-run from the beginning. These two possible workflows allow for greater flexibility and adaptability in tuning the detector's responses to various particle interactions.
2.8 [bookmark: _Toc204700939]Summary of supported Digital Twins
[bookmark: _heading=h.1rvwp1q]The thematic modules described in the previous sections were developed to support several diverse Digital Twin applications from WP4. The following table provides an overview of these DT applications currently supported by the different thematic modules.
[bookmark: _Toc204701017]Table 1 Summary of supported Digital Twins
	Thematic modules classification
	Digital Twins applications

	T7.1 Lattice QCD simulations and data management
	Digital Twin for Lattice QCD simulation

	T7.2 Noise simulation for radio astronomy
	Digital Twin to simulate 'noise' in Radio Astronomy

	T7.3 GAN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for Gravitational Waves
	Digital Twin to simulate 'noise' in the Virgo Gravitational Wave interferometer

	T7.4 Climate analytics and data processing

	· Digital Twin for projecting wildfire danger due to climate change
· Digital Twin for projecting the occurrence of tropical cyclones due to climate change
· Eddies prediction on unstructured meshes
· Digital Twin for Drought Early Warning in the Alps
· Extreme rainfall, temperature and wind - weather extremes as a result of climate change

	T7.5 Earth observation modelling and processing	
	· Digital Twin for Drought Early Warning in the Alps
· Digital Twin for post-flood analysis in coastal regions

	T7.6 Hydrological model data processing
	· Digital Twin for Drought Early Warning in the Alps
· Digital Twin for post-flood analysis in coastal regions
· Deploying FloodAdapt, a digital twin for flood impact modelling, anywhere on Earth

	T7.7 Fast simulation with GAN
	Particle detector data-driven Digital Twin
for High-Energy Physics

3 [bookmark: _Thematic_modules_and][bookmark: _Toc204700940]Thematic modules and final development and integration activities
3.1 [bookmark: _Toc204700941]T7.1 Lattice QCD simulations and data management
3.1.1 [bookmark: _Toc204700942]openQxD

	Component name and logo
	[image:]
openQxD

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-openqxd

	Description
	Flexible code that implements advanced lattice simulation techniques on HPC systems.

	Value proposition
	The base software component necessary to simulate quantum field theories with C* boundary conditions.

	Users of the Component
	Expert users and Developers

	User Documentation
	https://gitlab.com/rcstar/openQxD/-/tree/master/doc

	Technical Documentation
	https://gitlab.com/rcstar/openQxD/-/tree/master/doc

	Responsible
	RC* Collaboration

	Licence
	GPLv2

	Source code
	https://gitlab.com/rcstar/openQxD

	Language
	C

3.1.2 [bookmark: _Toc204700943]normflow

	Component name and logo
	[image:]
normflow

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-normflow

	Description
	For applying the method of normalising flows as a generative model for lattice simulations.

	Value proposition
	This package contains utilities for the implementation of normalising flows as a generative model using Pytorch.

	Users of the Component
	Expert users and Developers

	User Documentation
	https://github.com/interTwin-eu/normflow-plugin

	Technical Documentation
	https://github.com/interTwin-eu/normflow-plugin

	Responsible
	ETHZ

	Licence
	MIT

	Source code
	https://github.com/interTwin-eu/normflow-plugin

	Language
	Python

[bookmark: _heading=h.g0ill5pe2fdz]
3.1.3 [bookmark: _Toc204700944]Functionalities developed since the last release
Building blocks have been added for gauge theories. It is now possible to assemble models appropriate for gauge theories and train them.

3.1.4 [bookmark: _Toc204700945]Integrations with other DTE components
The component is based on itwinai (WP6). The central Trainer of the package is a subclass of itwinai TorchTrainer, which allows the use of a more standard way of saving and loading the models. It also allows the distribution of ML training over multiple workers (GPUs) and has been tested for multi-node configuration. itwinai enables distributed training on HPC by giving the option to the use case developers to switch between different distributed strategies, depending on which one is more suitable for the problem. During the development of this use case, Horovod, DeepSpeed, and torch DistributedDataParallel strategies were benchmarked. The module also has been implemented as an itwinai plugin, allowing the use-case to continue their developments independently. Moreover, thanks to the profiling functionality provided by itwinai, we were able to identify a major bottleneck in the QR decomposition and reduce training time by 70% on GPUs.
3.1.5 [bookmark: _Toc204700946]Integrations with DT Applications
The components developed are part of the DT Application on LatticeQCD Simulation from T4.1
3.1.6 [bookmark: _Toc204700947]Pilots and testing activities
i. [bookmark: _Toc204700948]Both components have been piloted on the VEGA EuroHPC GPU partition resources dedicated to the project.
3.2 [bookmark: _Toc204700949]T7.2 Noise simulation for radio astronomy
3.2.1 [bookmark: _Toc204700950]PulsarDT

	Component name and logo
	[image:]
PulsarDT

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-pulsardt

	Description
	Physics-based DT, simulation of the propagation of pulsar signals from the source to antennas and generation of synthetic data – written in Python.

	Value proposition
	The physics-based DT, to be used to generate synthetic data to train the ML classifier. This particular component is written in Python as a model of how the different aspects of the physics-based DT can be implemented, while its counterpart, PulsarDT++ implements what has already been well-established in the C++ production version.

	Users of the Component
	Expert Users and Developers

	User Documentation
	https://gitlab.com/ml-ppa/pulsardt

	Technical Documentation
	https://gitlab.com/ml-ppa/pulsardt

	Responsible
	ML-PPA collaboration

	Licence
	GNU AGPLv3

	Source code
	https://gitlab.com/ml-ppa/pulsardt

	Language
	Python

3.2.2 [bookmark: _Toc204700951]PulsarDT++

Component name and logo		PulsarDT++
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-pulsardt-2
Description	Physics-based DT, simulation of the propagation of pulsar signals from the source to antennas and generation of synthetic data – written in C++.
Value proposition 	PulsarDT implemented in C++ in order to improve its speed and allow for parallelization, easily deployable in a singularity container.
Users of the Component 	Expert Users and Developers
User Documentation	https://gitlab.com/ml-ppa/pulsardtpp
Technical Documentation	https://gitlab.com/ml-ppa/pulsardtpp
Responsible 	ML-PPA collaboration
Licence	GNU AGPLv3
Source code	https://gitlab.com/ml-ppa/pulsardtpp
Language	C++, Python

3.2.3 [bookmark: _Toc204700952]PulsarRFI_Gen

Component name and logo		PulsarRFI_Gen
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-pulsardt-3
Description	Empirical DT, generating “timeframes”, 2D images (time-frequency) with various classes of pulsar and RFI signals. This DT creates various types of telescope signals by mimicking available real data rather than generating them from the physical first principles as PulsarDT does.
Value proposition 	By using an alternative and fundamentally different method of DT creation this tool provides comparison for PulsarDT/DT++ and substitute training data for the ML classifier.
Users of the Component 	Expert Users and Developers
User Documentation	https://gitlab.com/ml-ppa/pulsarrfi_gen
Technical Documentation	https://gitlab.com/ml-ppa/pulsarrfi_gen
Responsible 	ML-PPA collaboration
Licence	GNU AGPLv3
Source code	https://gitlab.com/ml-ppa/pulsarrfi_gen
Language	Python

3.2.4 [bookmark: _Toc204700953]PulsarRFI_NN

Component name and logo		PulsarRFI_NN
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-pulsarrfi_nn
Description	The ML classifier. It is a CNN-based tool for the identification of various types of pulsar and RFI signals in the “timeframes”, 2D images (time-frequency).
Value proposition 	The main tool of the framework, it plays a key role in the ML-PPA.
Users of the Component 	Expert Users and Developers
User Documentation	https://gitlab.com/ml-ppa/pulsarrfi_nn
Technical Documentation	https://gitlab.com/ml-ppa/pulsarrfi_nn
Responsible 	ML-PPA collaboration
Licence	GNU AGPLv3
Source code	https://gitlab.com/ml-ppa/pulsarrfi_nn
Language	Python

[bookmark: _heading=h.3fpkmnd600r]
3.2.5 [bookmark: _Toc204700954]Functionalities developed since the last release
· Spark Pattern Generator: A new module has been added to create custom spark patterns.
· Optimised Data Generation Pipeline: The data generation pipeline has been modularised and optimised using Ray, with added functionality to save outputs at various stages for enhanced data reproducibility.
· Advanced Visualisation Tool: An upgraded visualisation tool has been integrated to plot pulsar states using PyVista, providing more detailed and interactive representations.
· Automated Testing: Ensuring quality control for further iterations.
· Installable via pip: This tool can easily be installed through the package provided in the registry.
3.2.6 [bookmark: _Toc204700955]Integrations with other DTE components
ML training is implemented with itwinai from WP6, and the modules are integrated with Data Lake using Teapot, which is used to access input data from the repositories at DZA.
3.2.7 [bookmark: _Toc204700956]Integrations with DT Applications
The components developed are the main components of the DT Application on Radio Astronomy from T4.2
3.2.8 [bookmark: _Toc204700957]Pilots and testing activities
The integration with itwinai of the components has been tested in the resources offered by Julich Supercomputer.

3.3 [bookmark: _Toc204700958]T7.3 GenNN-based thematic modules to manage noise simulation, low-latency de-noising and veto generation for gravitational waves
3.3.1 [bookmark: _Toc204700959]GlitchFlow

	Component name and logo
	[image:]
GlitchFlow

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-glitchflow

	Description
	Provides a set of Python modules to set up a GenNN architecture, train it and use it to clean glitches in GW data

	Value proposition
	Main component of the Virgo DT. It performs vetoing and denoising on GW interferometer data leveraging GenNN, specifically a Convolutional U-net with residual blocks and attention gates enhanced skipped connections, to map carefully selected auxiliary channels (sensitive to the noise but not to GW signals) into the main channel of the interferometer. The generated output is then subtracted from the interferometer main channel data.

	 Users of the Component
	· GW detector characterization and data analysis experts
· Developers

	User Documentation
	https://github.com/interTwin-eu/DT-Virgo-dags/blob/main/Final_Release/README.md

	Technical Documentation
	https://github.com/interTwin-eu/DT-Virgo-dags/blob/main/Final_Release/README.md

	Responsible
	INFN

	Licence
	MIT

	Source code
	https://github.com/interTwin-eu/DT-Virgo-dags/tree/main/Final_Release/Glitchflow

	Language
	Python

3.3.2 [bookmark: _Toc204700960]ANNALISA

	Component name and logo
	[image:]
ANNALISA

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-annalisa/

	Description
	Provides a set of Python modules for supporting processing and Channel selection for GW data

	Value proposition
	ANNALISA’s channel selection algorithm makes use of time-frequency domain representation of the data, namely the QTransform, to evaluate correlations among the main and auxiliary channels as a measure of temporally coincident spikes in the energetic content of the signals above a critical threshold.
The data preprocessing consists of data resampling, whitening, spectrogram generation, image cropping, and loading into a custom PyTorch dataloader.

	Users of the Component
	· GW detector characterization and data analysis experts
· Developers

	User Documentation
	https://github.com/interTwin-eu/DT-Virgo-dags/blob/main/Final_Release/README.md

	Technical Documentation
	https://github.com/interTwin-eu/DT-Virgo-dags/blob/main/Final_Release/README.md

	Responsible
	INFN

	Licence
	MIT

	Source code
	https://github.com/interTwin-eu/DT-Virgo-dags/tree/main/Final_Release/Annalisa

	Language
	Python

[bookmark: _heading=h.op6bh45knsqp]
3.3.3 [bookmark: _Toc204700961]Functionalities developed since the last release
The entire GlitchFlow pipeline has been migrated from Airflow DAGs to itwinaI plugins.
Metric and accuracy logging during training, along with model uploads, have been implemented on MLFlow via itwinaI. The inference subsystem has been integrated, and the logging of denoised data, veto, and denoising metadata on Tensorboard has been added.
While the Annalisa module has transitioned from a pip-installable Python package to an itwinai plugin. The Qtransform algorithm has undergone updates to address minor border effects and now offers the capability to return uninterpolated Q-tiles, energy or amplitude Q-tiles, and phase Q-tiles. The final version of the model was trained using amplitude and phase Q-tiles together, as they provide more informative and neural-network-friendly data compared to the previously used energy Q-tiles. A new whitening algorithm has been developed. This algorithm aims to mitigate edge artifacts that arise when whitening short time series, and it also improves the overall signal-to-noise ratio of glitches in both main and auxiliary channels.
A new custom data class named TFrame has been developed. Built upon PyTorch's Tensor, TFrame allows for the inclusion of metadata and eliminates the dependency on gwpy's data structure. The entire pipeline is now built on PyTorch, incorporating newly added custom resampling and pass-band filters.

3.3.4 [bookmark: _Toc204700962]Integrations with other DTE components
The GlitchFlow module has been implemented as a itwinai plugin, which allows for offloading to computing infrastructure and distributed training, user friendly configuration of the pipeline and integration with metadata logging and weights uploading to model catalog on MLflow.
The user can set via .yaml configuration file:
· Steps and order (scan, preprocess, training, inference, visualization)
· Training parameters (loss function, learning rate, number of epochs, accuracy function, batch size, data normalization)
· NN architecture and weights form model registry
· Path for saving and loading weights, data, results

The Annalisa module has been also implemented as a itwinai plugin, which allows for user friendly full configuration of the pipeline via .yaml file, including:
· Preprocess parameters (sampling rate, bandpass filter parameters, whitening parameters, Qtransform parameters)
· Dataset path

3.3.5 [bookmark: _Toc204700963]Integrations with DT Applications
Both GlitchFlow and the Annalisa modules are the main components of the Virgo DT (T4.4). While the former is responsible for vetoing and denoising on GW interferometer data, the latter is used for channel selection and data preprocessing in the Virgo DT.
3.3.6 [bookmark: _Toc204700964]Pilots and testing activities
Both modules were developed and tested on the INFN-Turin computing infrastructure where the training of the GenNN was conducted on a Nvidia Grace Hopper GH200. The components have been also tested on the VEGA EuroHPC resources part of the project.

3.4 [bookmark: _Toc204700965]T7.4 Climate analytics and data processing
3.4.1 [bookmark: _Toc204700966]ML TC detection

	Component name and logo
	[image:]
Thematic modules for tropical cyclones (TCs)

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-ml-tc-detection

	Description
	Provides a set of Python modules for supporting processing and analysis of TC-related data and data-driven models

	Value proposition
	Address tropical cyclones analysis by providing the tools for gathering and pre-processing data, training different ML models, and post-processing the results. Furthermore, it provides functions for training ML models and running ensembles of multiple ML models. Different types of ML models are supported, in particular CNN, Transformers and GNN. Both deterministic and data-driven trackers are supported.

	Users of the Component
	· Developers of DTs
· Expert scientists

	User Documentation
	https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/blob/main/README.md

	Technical Documentation
	https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection/blob/main/README.md

	Responsible
	CMCC and UNITN

	Licence
	GPLv3

	Source code
	https://github.com/CMCC-Foundation/ml-tropical-cyclones-detection

	Language
	Python, PyTorch

3.4.2 [bookmark: _Toc204700967]ML4Fires

Component name and logo		ML4Fires
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-ml4fires
Description	Provides a set of Python modules for supporting the processing and analysis of wildfires-related data and data-driven models
Value proposition 	Address wildfires analysis and prediction (e.g., producing burned areas maps) providing tools that allow users to pre-process data, choose ML model architecture, train the model, post-process and visualize the results. Furthermore, it integrates functionalities to track ML model metrics and provenance during the training phase. The set of python modules also provides tools to use the CMIP6 data to predict and analyze the burned area utilizing data-driven techniques.
Users of the Component 	Developers of DTs	Expert scientists
User Documentation	https://github.com/CMCC-Foundation/ML4Fires/blob/main/README.md
Technical Documentation	https://github.com/CMCC-Foundation/ML4Fires/blob/main/README.md
Responsible 	CMCC
Licence	Apache v2.0
Source code	https://github.com/CMCC-Foundation/ML4Fires
Language	Python, PyTorch

	

3.4.3 [bookmark: _Toc204700968]eddiesML

Component name and logo		eddiesML
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-eddiesgnn
Description	Provides a set of Python modules for supporting processing and analysis of eddy-related data
Value proposition 	Address oceanic mesoscale eddies analysis by providing the tools for pre-processing of FESOM2 data and training CNN models. It can be considered an example of “exploitation” as it applies interTwin technologies to an extra (external) application, showing the potential of such integration.
Users of the Component 	Developers of DTs	Expert scientists
User Documentation	https://github.com/LegoCreation/CNN_eddy_detection/blob/unitn_work/readme.md
Technical Documentation	https://github.com/LegoCreation/CNN_eddy_detection/blob/unitn_work/readme.md
Responsible 	UNITN
Licence	GPLv3
Source code	https://github.com/LegoCreation/CNN_eddy_detection/tree/unitn_work
Language	Python, Tensorflow

[bookmark: _heading=h.hkccn848v39n]

3.4.4 [bookmark: _Toc204700969]xtclim
	Component name and logo
	[image: A logo of a planet with lightning and flames]
xtclim

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-xtclim

	Description
	xtclim is a Python package implementing an unsupervised Deep Learning method, a CVAE that can characterise generic climate extreme events

	Value proposition
	Base methods and functions to provide the extraction of generic characteristics of climate extremes, using an AI anomaly detection method. It enables users to explore the impacts of extreme events on specific users’ applications in the context of selected climate simulations.

	Users of the Component
	· Developers of DTs
· Expert scientists

	User Documentation
	https://github.com/interTwin-eu/xtclim/notebooks/presentation_notebook.ipynb
https://github.com/interTwin-eu/xtclim/README.md

	Technical Documentation
	https://github.com/interTwin-eu/xtclim/README.md

	Responsible
	CERFACS

	Licence
	Apache 2

	Source code
	https://github.com/interTwin-eu/xtclim

	Language
	Python, PyTorch

3.4.5 [bookmark: _Toc204700970]downscaleML

Component name and logo		downscaleML: Downscaling Climate Data
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-downscaleml
Description	downScaleML is an open-source Python package, designed to streamline the process of climate data downscaling using machine learning techniques. It offers an automated workflow tailored for downscaling ECMWF’s ERA5 and SEAS5 seasonal forecast climate variables, specifically temperature, precipitation and downward surface solar radiation, with a particular emphasis on addressing climate extremes.
Value proposition 	It eases forecast data preprocessing, statistical downscaling, through a selection of machine learning techniques, and result validation. It provides a flexible module for any modelling scheme requiring tailored climate inputs, and enables scalability and applicability to other domains, resolutions, and datasets.
Users of the Component 	Developers of DTs	Expert scientists
User Documentation	https://github.com/interTwin-eu/downScaleML#readme
Technical Documentation	https://github.com/interTwin-eu/downScaleML#readme
Responsible 	EURAC
Licence	GNU GPL v3
Source code	https://github.com/interTwin-eu/downScaleML
Language	Python, PyTorch

3.4.6 [bookmark: _Toc204700971]emergence.compound

Component name and logo		emergence.compound	
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-compevpoetoe
Description	Provides a set of R functions for determining if periods of emergence (PoE) and/or time of emergence (ToE) of compound events probabilities have emerged in data.	Publication where the module has been involved: https://doi.org/10.5194/egusphere-2025-461
Value proposition 	This module allows to statistically model if and how compound events have significantly evolved through time, based on reanalysis or simulated data. The definition of the compound (i.e., involved variables) is made by the user.
Users of the Component 	Expert scientists
User Documentation	https://github.com/josephine400/emergence.compound/blob/main/README.md
Technical Documentation	https://github.com/josephine400/emergence.compound/blob/main/README.md
Responsible 	CNRS
Licence	CeCill-C
Source code	https://github.com/josephine400/emergence.compound
Language	R

3.4.7 [bookmark: _Toc204700972]Esgpull_rucio
	Component name and logo
	[image:]
esgpull_rucio

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-esgpull_rucio

	Description
	A toolkit designed to interface with the esgpull (ESGF download tool) database to maintain an up-to-date Intake catalog and manage RUCIO datasets. It automatically detects completed file downloads from the database, registers each completed dataset, and uses the RUCIO Python API to create any missing data identifiers (DIDs). The tool also uploads the corresponding files and attaches them to the appropriate RUCIO datasets.

	Value proposition
	The tool seamlessly integrates with the ESGPull DB API, streamlining the workflow for downloading, cataloging, and appending ESGF and CMIP data to RUCIO

	Users of the Component
	· Developers of DTs

	User Documentation
	Github

	Technical Documentation
	Github

	Responsible
	CNRS

	Licence
	CeCill-C

	Source code
	https://github.com/AtefBN/esgpullUtilties

	Language
	Python/SQL

3.4.8 [bookmark: _Toc204700973]Functionalities developed since the last release
The ML TC Detection module has been extended since the previous release as follows:
· enhancing the TC tracking inference pipeline by refining the integration between detection outputs and the tracking algorithm, improving temporal continuity and trajectory reliability;
· additional validation metrics (e.g., track duration and spatial distribution) have been integrated into the module to provide a more robust evaluation of the results and related visualization tools have been extended to support comparative and exploratory analysis;
· dedicated data preprocessing functions have been implemented to facilitate the preparation of weather and climate data (i.e., CMIP6) inputs for the detection and tracking pipelines, ensuring compatibility and scalability across datasets.
The current version of the ML4Fires thematic module provides an updated and improved documentation to describe the different capabilities of the module. In terms of developments and extensions, this version includes:
· Logging of training and validation metric was enabled and allows for logging of metric from any python library, such as sci-kit or torchmetric, as well as from any python module locally defined.
· Extended the inference pipelines for supporting results processing and visualisation;
· Improved computation of metric during the training, validation and test phase of the ML model.
· Finalization of pipeline to read, collect and aggregate CMIP6 datasets to prepare them for inference. To this end, several tools have been provided for the CMIP6 inference notebook to process and visualize the inference and the CMIP6 dataset.
The eddiesML module has been finalized. In this version, the application from the Alfred Wegener Institut (AWI) has been finalized, tested and validated on VEGA, by using data from FESOM2 model simulations.
Future plans (beyond the project lifetime) in collaboration with AWI relates to evaluating the potential benefits in migrating from CNN to GNN considering the unstructured nature of the FESOM2 mesh. The eddiesML has represented a successful attempt to exploit interTwin technologies within external DTs, thus showing the benefits coming from interTwin capabilities developed during the project. As an example, provenance tracking has been integrated via yProv4ML API, by simply adding a few extra lines of code, to generate a complete provenance graph documenting the eddiesML training process.
The xtclim module has been further developed and validated during the last period. The current version of xtclim thematic module is publicly available as open-source code on github. Documentation has been improved: user documentation using a Jupyter notebook, and technical documentation in the form of a technical report. The updated version includes the following:
· Update: Complete refactoring of the code. Cleanup of repositories and removal of old versions in separate repositories.
· Update: Improve model output and behavior: removal of topography as an input parameter of the CVAE method.
· Update: Optimization of the hyper-parameters.
· Update: User documentation much improved through the use of a complete Jupyter Notebook. More end-user analysis products.
· Update: sample NetCDF (CMIP6) dataset provided as an example.
· New: technical documentation (technical report).
· New: Unit tests (github CI) and SQAAS Gold Medal.
The current version of the downscaleML module introduces several important advancements aimed at improving reproducibility, integration, and automation. Key developments include:
· Transitioned from a standalone setup to an integrated workflow using OpenEO Dask-based preprocessing with Dockerized deployment of the downscaleML model. The codebase was refactored to support this architecture.
· Developed a Jupyter Notebook pipeline to execute the full OpenEO processing chain and trigger the downscaleML inference via Docker, enabling seamless end-to-end execution.
· Improved support for STAC-formatted datasets across the training, validation, and testing phases, with tighter coupling to the ML pipeline.
· Unit tests implemented and updated for all preprocessing components using OpenEO Dask-based workflows, ensuring reliability and code robustness.
· Integrated with the raster2stac package to direct OpenEO process outputs to a STAC catalog and store results in the interTwin S3 bucket, facilitating standard-compliant data sharing and discoverability.

3.4.9 [bookmark: _Toc204700974]Integrations with other DTE components
The ML TC Detection and ML4Fires module both integrate the itwinai (WP6) tool for logging the ML model skills during training, the selected hyper-parameters of an experiment and the resulting model on MLflow. Through this integration also the provenance of the training process is tracked via yProv4ML (WP6). In order to provide seamless access to the data needed by the DT applications, both modules can interact with RUCIO (WP5) for discovering the needed data. Moreover, workflows based on Ophidia (WP6) are integrated for supporting pre-processing or post-processing pipelines on CMIP6 climate projection data (HighResMIP or ScenarioMIP).
In both cases, Docker images, based on the itwinai one, integrating the different components and tools (e.g., PyTorch, Ophidia) needed for running the different stages of the pipelines are available (from WP6). Such images can be converted into Singularity images and transparently deployed on the infrastructure using interLink (WP5).
CMIP6 data can be gathered from the ESGF nodes and uploaded on the RUCIO data lake (WP5) using the esgpull_rucio thematic tool.
The xtclim module is integrated as a plug-in in the itwinai (WP6). Like the ML TC Detection and ML4Fires modules, xtclim has been extended to interact with RUCIO (WP5) for discovering the needed data.
The downscaleML module integrates with the OpenEO Dask-based processes for preprocessing, utilizes raster-to-stac to publish STAC items to the interTwin STAC catalogue, and connects to interTwin storage for data storage and retrieval.
The latest version of the module eddiesML includes the successful integration of the provenance tracking via yProv4ML (WP6).

3.4.10 [bookmark: _Toc204700975]Integrations with DT Applications
The ML TC Detection module is used directly to support the DT application on detection and tracking of TCs, while the ML4Fires module is used in the DT application for the prediction of wildfires due to climate change.
The xtclim module is used as a DT application for the detection and characterization of climate extremes.
The downScaleML module supports the drought early warning Digital Twin by downscaling seasonal forecasts to high-resolution inputs for hydrological drought prediction in Alpine river basins.
The eddiesML module supports the eddies DT for the processing and analysis of eddy-related data.

3.4.11 [bookmark: _Toc204700976]Pilots and testing activities
The ML TC Detection, ML4Fires and eddiesML modules have been deployed and tested on the interTwin testbed running at Vega (WP5). The xtclim module has also been tested on the same testbed.
The emergence.compuond module has been tested for identification of times and periods of emergence of compounding “hot and dry” events over the European domain (Schmutz et al, in revision) [R23].

3.5 [bookmark: _Toc204700977]T7.5 Earth Observation Modelling and Processing
3.5.1 [bookmark: _Toc204700978]openeo-processes-dask
	Component name and logo
	[image:]
openeo-processes-dask

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-openeo-processes-dask

	Description
	Python implementation of openEO processes.

	Value proposition
	Base component necessary to run openEO process graphs. All the processes are implemented using Dask [R7], making them easily scalable and parallelizable.

	Users of the Component
	· Expert users
· Flood and drought modellers

	User Documentation
	https://open-eo.github.io/openeo-python-client/cookbook/localprocessing.html

	Technical Documentation
	https://github.com/Open-EO/openeo-processes-dask

	Responsible
	EODC and EURAC

	Licence
	Apache 2.0

	Source code
	https://github.com/Open-EO/openeo-processes-dask

	Language
	Python

3.5.2 [bookmark: _Toc204700979]openeo-pg-parser-networkx
Component name and logo		openeo-pg-parser-networkx
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-openeo-pg-parser-networkx/
Description	Parse openEO process graphs from JSON to traversable Python objects.
Value proposition 	Base component necessary to parse openEO process graphs, before calling openeo-processes-dask.
Users of the Component 	Expert users
User Documentation	https://github.com/Open-EO/openeo-pg-parser-networkx/blob/main/README.md
Technical Documentation	https://github.com/Open-EO/openeo-pg-parser-networkx/blob/main/README.md
Responsible 	EODC and EURAC
Licence	Apache 2.0
Source code	https://github.com/Open-EO/openeo-pg-parser-networkx
Language	Python

3.5.3 [bookmark: _Toc204700980]raster-to-stac
Component name and logo		raster-to-stac
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-raster-to-stac/
Description	Create STAC metadata for raster datasets.
Value proposition 	Makes a resulting dataset easily accessible, interoperable, and shareable.
Users of the Component 	Expert users
User Documentation	https://raster2stac.readthedocs.io/en/latest/
Technical Documentation	https://raster2stac.readthedocs.io/en/latest/
Responsible 	EURAC
Licence	MIT
Source code	https://gitlab.inf.unibz.it/earth_observation_public/raster-to-stac/
Language	Python

3.5.4 [bookmark: _Toc204700981]dask-flood-mapper
	Component name and logo
	[image:]
Dask Flood Mapper

	Description
	dask-flood-mapper is an open-source Python package that uses Sentinel-1 radar images to map floods, replicating the TU Wien Bayesian-based flood mapping algorithm. It employs dask for scalable processing and accesses data via STAC with odc-stac. The algorithm depends on three pre-processed input datasets—Sentinel-1 SIG0 Backscatter, harmonic parameters (HPAR), and Mean Projected Local Incidence Angle (PLIA)—stored and accessible via STAC at the Earth Observation Data Centre for Water Resources Monitoring (EODC).

The package provides functionality to dynamically calculate HPAR from SIG0 if the former is not available, enabling the use of different STAC catalogues in future implementations.

dask-flood-mapper allows remote processing of the data at the EODC with the aid of a Dask Gateway, avoiding large file transfers to the user’s workstation.

The output data consists of a Bayesian decision of flood presence or probability per pixel.

	Value proposition
	The STAC and Dask-based solution for flood mapping allows cloud computing close to the data thereby freeing the user of the burden of downloading Sentinel-1 radar images while using the scalable resources of the host for processing. In combination with the intuitive API, this solution is an independent and reusable module that can be easily integrated into existing workflows. Furthermore, the open-source Python package allows expert users to adapt the flood mapping workflow to their own insights and demands. This sets it apart from the current Global Flood Monitoring implementation, which provides only statically produced flood maps.

	Users of the Component
	Expert users, flood risk specialists

	User Documentation
	https://intertwin-eu.github.io/dask-flood-mapper/README.html

	Technical Documentation
	https://github.com/interTwin-eu/dask-flood-mapper/blob/main/CONTRIBUTING.md

	Responsible
	TU Wien

	Licence
	MIT

	Source code
	https://github.com/interTwin-eu/dask-flood-mapper

	Language
	Python

[bookmark: _heading=h.c02d31wlvmrx]
3.5.5 [bookmark: _Toc204700982]Functionalities developed since the last release
dask-flood-mapper is an evolution of the openeo-flood-mapper workflow, described in D7.5 [R21], which provides Dask compatibility and an interface that easily integrates into the Jupyter-Notebook-based workflows used in FloodAdapt (see Section 3.6.1). The software has been analysed for software standards by the Software Quality Assurance as a Service and has received the Gold Badge.
3.5.6 [bookmark: _Toc204700983]Integrations with other DTE components
The openeo-processes-dask and openeo-pg-parser-networkx components are integrated into the openEO framework from WP6 as additional components. The raster-to-stac component is integrated with storage resources compatible with S3 interfaces from WP5. While the dask-flood-mapper integrates the openEO framework and in particular the openeo-processes-dask component
3.5.7 [bookmark: _Toc204700984]Integrations with DT Applications
dask-flood-mapper has been integrated into the post-flood analysis and flood impact monitoring use cases, informing the process-based models developed in T4.7. The openeo-processes-dask, openeo-pg-parser-networkx and raster-to-stac components are being used in the DT Application from T4.6
3.5.8 [bookmark: _Toc204700985]Pilots and testing activities
dask-flood-mapper and its integration into DT Applications were tested in a pilot use-case analyzing flood impacts of the storm surge of Storm Babet (October 2023) on the Darss Peninsula in Germany.
The openeo-processes-dask has been deployed in the GRNET testing openEO cluster.

3.6 [bookmark: _Toc204700986]T7.6 Hydrological model data processing
3.6.1 [bookmark: _FloodAdapt][bookmark: _Toc204700987]FloodAdapt
	Component name and logo
	[image:]
FloodAdapt

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-floodadapt/

	Description
	A thematic module which can be used to assess the benefits and costs of Flood Resilience measures in a community. It uses SFINCS, WFLOW, FIAT-Objects, and RA2CE in the background.

	Value proposition
	FloodAdapt is a decision-support tool and API that seeks to advance and accelerate flooding-related adaptation planning. It brings rapid, physics-based compound flood modelling and detailed impact modelling into an easy-to-use system, allowing non-expert end-users to evaluate a wide variety of compound events, future conditions, and adaptation options in minutes. FloodAdapt serves as a connector between scientific advances and practitioner needs, improving and increasing the uptake and impact of adaptation research and development.

	Users of the Component
	· Non-expert end-users
· Decision makers
· Planners

	User Documentation
	https://www.deltares.nl/en/software-and-data/products/floodadapt

	Technical Documentation
	https://github.com/Deltares/FloodAdapt#readme

	Responsible
	Deltares

	Licence
	MIT

	Source code
	https://github.com/Deltares/FloodAdapt

	Language
	Python

3.6.2 [bookmark: _Toc204700988]HydroMT-SFINCS
Component name and logo		HydroMT-SFINCS
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-hydromt-sfincs/
Description	HydroMT (Hydro Model Tools) is an open-source Python package that facilitates the process of building and analysing spatial geoscientific models with a focus on water system models. It does so by automating the workflow to go from raw data to a complete model instance which is ready to run and to analyse model results once the simulation has finished. This plugin provides an implementation of the model API for the SFINCS model.
Value proposition 	Easily build and update the SFINCS model with a single line of code.
Users of the Component 	Expert users	Flood modellers
User Documentation	https://deltares.github.io/hydromt_sfincs/latest/index.html
Technical Documentation	https://deltares.github.io/hydromt_sfincs/latest/getting_started/intro
Responsible 	Deltares
Licence	GNU GPL v3
Source code	https://github.com/Deltares/hydromt_sfincs
Language	Python

3.6.3 [bookmark: _Toc204700989]HydroMT-FIAT
Component name and logo		HydroMT-FIAT
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-hydromt-fiat/
Description	HydroMT is an open-source Python package, developed by Deltares, to build and analyze hydro models. It provides a generic model API with attributes to access the model schematization, (dynamic) forcing data, results, and states. This plugin provides an implementation for the Delft-FIAT model.
Value proposition 	With the HydroMT-FIAT plugin, users can easily benefit from the rich set of tools of the HydroMT package to build and update Delft-FIAT models from available global and local data.		This plugin assists the FIAT modeller in:	quickly setting up a Delft-FIAT model based on existing hazard maps, global and user-input exposure layers, and a global database of vulnerability curves;	adjusting and updating components of a FIAT model and their associated parameters in a consistent way, e.g., to test measures that affect the exposure or vulnerability of a FIAT model or to improve an existing FIAT model with better quality data;	building FIAT models in a reproducible and consistent way.
Users of the Component 	Expert users	Flood risk specialists
User Documentation	https://deltares.github.io/hydromt_fiat/latest/index.html
Technical Documentation	https://deltares.github.io/hydromt_fiat/latest/index.html
Responsible 	Deltares
Licence	GNU GPL v3
Source code	https://github.com/Deltares/hydromt_fiat/tree/main
Language	Python

3.6.4 [bookmark: _Toc204700990]SFINCS
Component name and logo		SFINCS
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-sfincs/
Description	SFINCS is a new fast numerical model to simulate 2D compound flooding dynamically for large scale coastal systems, within a fraction of the time required by the Delft3D-1D2D models.
Value proposition 	Compound flooding during extreme events can result in tremendous amounts of property damage and loss of life. Early warning systems and multi-hazard risk analysis can reduce these impacts. However, traditional approaches either do not involve relevant physics or are too computationally expensive to do so for large stretches of coastline. The SFINCS model (Super-Fast INundation of CoastS) is a new reduced-complexity engine recently developed by Deltares, that is capable of simulating compound flooding including a high computational efficiency balanced with good accuracy.
Users of the Component 	Expert users	Flood modellers
User Documentation	https://www.deltares.nl/en/software-and-data/products/SFINCS
Technical Documentation	https://sfincs.readthedocs.io/en/latest/
Responsible 	Deltares
Licence	GNU GPL v3
Source code	https://github.com/Deltares/SFINCS
Language	Fortran

3.6.5 [bookmark: _Toc204700991]Delft-FIAT
Component name and logo		Delft-FIAT
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-delft-fiat/
Description	Delft-FIAT is a fast, free, Python-based tool developed and continuously improved by Deltares to rapidly assess direct economic impacts on buildings, utilities, and roads for user-input flood maps.
Value proposition 	Fast impact modelling removes traditional bottlenecks in climate adaptation planning, making it possible to (1) understand the effectiveness of adaptation options and (2) quantify changes in damage and risk as climate and socio-economic conditions change.		Fast and automated	Delft-FIAT is fast and can be automated. This makes it possible to evaluate future risks caused by changing drivers like growing populations and economies. It also makes it possible to evaluate the effectiveness of interventions by assessing flood damages - now and under changing conditions (and combinations of) interventions, like home elevations, buy-outs, or floodproofing.		Flexible	Delft-FIAT has a flexible architecture and is data-agnostic. Exposure data can easily be modified, and hazard data - the flood maps - can come from any source.	For example, a user may want to try out different depth-damage functions or include a different class of damage than the traditional structure and content damages.		Furthermore, any damage type that can be described with a depth-damage function can be analysed in Delft-FIAT. 		Customisable	Delft-FIAT is also customisable. It can be connected to a tailored user-interface to make a custom damage modelling tool for less-technical users.
Users of the Component 	Expert users	Flood risk specialists
User Documentation	https://www.deltares.nl/en/software-and-data/products/delft-fiat-flood-impact-assessment-tool
Technical Documentation	https://github.com/Deltares/Delft-FIAT#readme
Responsible 	Deltares
Licence	GNU GPL v3
Source code	https://github.com/Deltares/Delft-FIAT
Language	Python

3.6.6 [bookmark: _Toc204700992]WFLOW.jl

Component name and logo		WFLOW
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-wflow
Description	WFLOW is a free, open-source, hydrological modelling tool developed by Deltares to simulate the complete terrestrial water cycle. It allows users to model key processes such as precipitation, interception, snow accumulation and melt, evapotranspiration, soil moisture, surface runoff, groundwater recharge, and water demand and allocation. Based on gridded topography, land use, soil, and climate data, WFLOW calculates all hydrological fluxes at each model grid cell over time.	WFLOW is successfully applied worldwide for assessing flood hazards, droughts, climate change impacts, and land-use changes. Its framework-based design supports multiple model concepts and promotes flexibility and scalability, making it suitable for a wide range of hydrological applications, particularly in data-scarce environments.	
Value proposition 	WFLOW is a fast, flexible, and open-source hydrological modelling tool that empowers users to simulate the full water cycle—now and under future climate and land use scenarios. Designed for integration and scalability, it supports water availability assessments, flood and drought analysis, and climate adaptation planning in any data environment.		Built in Julia for performance, WFLOW is highly customisable, easy to couple with other models, and fully transparent. Its open architecture encourages collaboration and continuous development. Originally Python-based, WFLOW has evolved to meet the demands of modern, distributed hydrological modelling.	
Users of the Component 	Expert users	Hydrologists
User Documentation	https://deltares.github.io/Wflow.jl/stable/
Technical Documentation	https://deltares.github.io/Wflow.jl/stable/
Responsible 	Deltares
Licence	MIT
Source code	https://github.com/Deltares/Wflow.jl
Language	Julia

3.6.7 [bookmark: _Toc204700993]HydroMT-WFLOW

Component name and logo	HydroMT-WFLOW
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-hydromt-wflow
Description	HydroMT (Hydro Model Tools) is an open-source Python package that facilitates the process of building and analyzing spatial geoscientific models with a focus on water system models. It does so by automating the workflow to go from raw data to a complete model instance which is ready to run and to analyze model results once the simulation has finished. This plugin provides an implementation of the model API for the Wflow model.
Value proposition 	Setting up distributed hydrological models typically requires many (manual) steps to process input data and might therefore be time consuming and hard to reproduce. Especially improving models based on global-local geospatial datasets, which are rapidly becoming available at increasingly high resolutions, might be challenging. HydroMT-Wflow aims to make the Wflow model building and updating processes fast, modular and reproducible and to facilitate the analysis of the model results.	The HydroMT-Wflow plugin can be used as a command line application, which provides commands to build, update and clip a Wflow model with a single line, or from Python to exploit its rich interface. You can learn more about how to use HydroMT-Wflow in its online documentation. For a smooth installation experience, we recommend installing HydroMT-Wflow and its dependencies from conda-forge in a clean environment, see the installation guide.
Users of the Component 	Expert users	Hydrologists
User Documentation	https://deltares.github.io/hydromt_wflow/latest/
Technical Documentation	https://deltares.github.io/hydromt_wflow/latest/
Responsible 	Deltares
Licence	GNU GPL v3
Source code	https://github.com/Deltares/hydromt_wflow
Language	Python

3.6.8 [bookmark: _Toc204700994]RA2CE

Component name and logo		RA2CE
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-ra2ce
Description	RA2CE helps to quantify the resilience of critical infrastructure networks, prioritize interventions and adaptation measures and select the most appropriate action perspective to increase resilience considering future conditions.
Value proposition 	The RA2CE - Resilience Assessment and Action perspective for Critical infrastructurE – model has been developed to support infrastructure owners and operators in resilience assessment and adaptation decision-making and has been applied in several settings such as the Netherlands, Philippines, Myanmar, Dominican Republic and Albania.	The current capabilities focus on mapping the exposure, criticality, and vulnerability as well as the forthcoming prioritisation of locations to take actions based on cost benefit assessment. For further assessment of indirect impacts, inclusiveness and equity principles can be applied. In adaptation and planning studies the platform enables to perform cost-benefit assessments including an uncertain future
Users of the Component 	Expert users	Climate resilience specialists
User Documentation	https://deltares.github.io/ra2ce/index.html
Technical Documentation	https://deltares.github.io/ra2ce/index.html
Responsible 	Deltares
Licence	GNU GPL v3
Source code	https://github.com/Deltares/ra2ce
Language	Python

3.6.9 [bookmark: _Toc204700995]Hython Wflow_SBM Hydrological Model

Component name and logo		Hython_sbm
Page on interTwin website	https://www.intertwin.eu/article/thematic-module-hython-wflow_sbm-hydrological-model/
Description	The Hython package enables the development of deep learning based surrogates of grid-based semi-distributed and distributed hydrological models, and it enables the calibration of the model’s parameters exploiting satellite-based products. In particular, Hython_sbm is customized to emulate Wflow_sbm’s vertical fluxes and states (soil moisture, evapotranspiration, snow water equivalent, etc.), and to calibrate the parameters by leveraging satellite-based products.
Value proposition 	Traditional distributed hydrological models are complicated to set up, computationally expensive, and challenging to calibrate. One of the negative consequences is that they often lack an estimation of the output uncertainty. Hython_sbm, as a faster and reliable surrogate model, enables the pixel-by-pixel calibration of the hydrological model parameters, by leveraging satellite products. In addition, thanks to its increased performance and flexibility, it provides an estimation of the output uncertainty. 	The publication of the Hython_sbm module as an application package and openEO process, exposes its functionalities to the openEO user interface, where it can be consequently integrated in custom data and modelling workflows. This reduces dramatically the costs for setting up, training, evaluating the model’s outputs and facilitating the experimentation with different data inputs and model parameters.	The module can be useful to researchers investigating drought prediction and forecasting, and to public authorities in the field of agriculture and river basin management to identify areas potentially affected by hydrological or agricultural drought.
Users of the Component 	Researchers,	local/Regional public authorities in the field of agriculture,	hydrology and river basin management authorities,	journalist for environmental topics with little expertise about technical data.
User Documentation	https://github.com/interTwin-eu/hython/blob/main/README.md
Technical Documentation	https://github.com/interTwin-eu/hython/blob/main/README.md
Responsible 	EURAC
Licence	CC-BY-4.0 Licence
Source code	https://github.com/interTwin-eu/hython
Language	Python, PyTorch

[bookmark: _heading=h.h2xbvhfjerlf]
3.6.10 [bookmark: _Toc204700996]Functionalities developed since the last release
Since the previous release (D7.5), the flood-related thematic modules under Task 7.6 have expanded in scope and maturity of the Digital Twin workflows. Two major new modules have been added to the interTwin ecosystem: WFLOW, a distributed hydrological model for rainfall-runoff simulation, and RA2CE, a road accessibility model that quantifies network disruptions caused by flooding. These modules are now integrated into the climate impact assessment DT. The SFINCS module has been further consolidated, including integration with the EO-based flood mapper to support first-order validation of simulated inundation. A Docker container has been published for Delft-FIAT, enhancing its portability and ease of deployment. In parallel, FloodAdapt has undergone structural improvements to its API and scenario configuration workflow. The Jupyter notebooks, which serve as the interface to the DTs, have been expanded to support new scenario definitions, output visualisation, and simulation orchestration.

3.6.11 [bookmark: _Toc204700997]Integrations with other DTE components
Workflow execution is coordinated through OSCAR, the DTE’s orchestration service, which enables containerized Common Workflow Language (CWL) pipelines to be automatically triggered based on scenario files and configuration inputs. This integration allows seamless offloading of computationally intensive tasks—such as SFINCS and WFLOW simulations—to Kubernetes or HPC resources, ensuring scalability and reproducibility. Parallel to this, work is ongoing to connect the DT modules to the interTwin Rucio-based Data Lake. This integration will enable structured storage and access to input datasets (e.g., EO-derived flood maps, terrain models, climate forcings) and simulation outputs (e.g., NetCDF, GeoTIFF, CSV). The goal is to ensure that all DT workflows can interface directly with the federated data infrastructure, allowing users to trace, share, and re-use results efficiently across different scenarios and deployments. Currently, all required input data for the demonstrators is managed on the Data Lake and integrated into the demonstrator workflows. Similar management of intermediate data is work in progress, particularly the capability to trigger OSCAR services directly from the Data Lake will be completed by the end of the project.
3.6.12 [bookmark: _Toc204700998]Pilots and testing activities
The flood Digital Twin modules developed have been tested and demonstrated in two key pilot regions: Northern Germany and the Humber Estuary (UK). These pilots have validated the end-to-end workflows implemented using Jupyter Notebooks, which serve as the primary user interface for both model developers and DT users. In the Northern Germany pilot, the workflow was used to simulate a dike breach scenario during Storm Babet (October 2023), comparing inundation outputs from SFINCS against EO-derived flood maps from Sentinel-1. This helped validate the combined use of EO data and hydrodynamic modelling for post-event analysis. In the Humber Estuary, testing focused on the application of the climate impact assessment DT, integrating WFLOW, SFINCS, Delft-FIAT, and RA2CE to explore long-term changes in flood hazard and infrastructure vulnerability under different land use and climate scenarios. The Jupyter Notebooks allow users to define areas of interest, configure model parameters, and run “what-if” simulations with visual outputs that support decision-making.
3.7 [bookmark: _Toc204700999]T7.7 Fast particle detector simulation
3.7.1 [bookmark: _Toc204701000]3DGAN and CaloINN
	Component name and logo
	[image:]
3DGAN
(Deep Learning models for generation of calorimeter energy depositions)

	Page on interTwin website
	https://www.intertwin.eu/article/thematic-module-3dgan

	Description
	Two generative models: 3DGAN - a generative adversarial network, and CaloINN - a normalising flow model, use different approaches to simulate High Energy Physics (HEP) calorimeter output. Calorimeters are special HEP detectors that record particles through the measurement of the energies deposited by them [R11].

	Value proposition
	Detector simulations allow scientists to design detectors and perform physics analyses. The simulation toolkit that has been developed and performs particle physics simulations based on Monte Carlo (MC) methods is Geant4.

The detailed particle MC simulations are inherently slow, especially in simulating a particle passage through a calorimeter. Simulations have a crucial role in HEP experiments, and at the same time are very resource-intensive from the computing perspective. Therefore, HEP community is highly motivated to explore fast alternatives, with deep learning based fast simulation being the most promising.

Generative models are a fast alternative to MC, with remarkable results in terms of speed up. 3DGAN was the first effort where the detector output was generated employing three dimensional convolutions, an approach for retaining correlations in all three spatial dimensions [R11]. CaloINN [R14] is a more modern model implementing a sequence of invertible layers to learn a transformation from a simple known distribution to a complex distribution of calorimeter output.

	Users of the Component
	Expert Users and Developers

	User Documentation
	https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main

	Technical Documentation
	https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main

	Responsible
	CERN & CNRS

	Licence
	MIT

	Source code
	https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main

	Language
	Python

[bookmark: _heading=h.vyelcxto0i4z]
3.7.2 [bookmark: _Toc204701001]Functionalities developed since the last release
CaloINN pipeline has been implemented in itwinai (excluding the inference step whose migration to itwinai is being finalised). The logging on the loss function values and metrics have been connected with the MLFlow tool within itwinaI.
Study on CaloINN performance improvement is being finalised, targeting the issue of distribution tails mismodelling, common for generative models.

3.7.3 [bookmark: _Toc204701002]Integrations with other DTE components
Both models are integrated with itwinai component (T6.5). This provides simplified access to distributed computing, experiment tracking tools and pipeline setting via configuration files. The configuration files can be used to set the modules execution order, network architectures and their training parameters. 3DGAN uses OSCAR for workflow execution (T6.1), InterLink for federated computing (T5.1) and SQAaaS for code quality assessment (T62). Both 3DGAN and CaloINN are using model catalogues on MLflow.

3.7.4 [bookmark: _Toc204701003]Integrations with DT Applications
The components developed are part of the DT Application on Detector Simulation from T4.2.

3.7.5 [bookmark: _Toc204701004]Pilots and testing activities
3DGAN was tested on a custom dataset produced with Geant4 for a CLIC[footnoteRef:21] detector. CaloINN implementation in itwinai was tested on CaloChallenge dataset 1 [R12] containing sets for two different particle types passing through ATLAS[footnoteRef:22] detector. [21: CLIC detector: https://clicdp.web.cern.ch/] [22: ATLAS detector: https://atlas.cern/Discover/Detector]

4 [bookmark: _Conclusions][bookmark: _Toc204701005]Conclusions
As the interTwin project approaches its conclusion, Work Package 7 has successfully delivered a rich and diverse suite of 29 thematic modules. This deliverable provides the final report on the development and integration status of these modules designed to support the DT applications within the interTwin project. They cover both the environmental and physics domains and form a crucial layer of the interTwin ecosystem by offering domain-specific functionalities that address real scientific and operational challenges. Their development has been guided by a continuous co-design with user communities and by alignment with the technical vision and architecture defined in the project, ensuring they meet scientific needs while fully integrating into the broader DTE infrastructure.
To support the environmental DT applications, a total of 20 thematic modules have been fully developed, with the Dask Flood Mapper module being newly added, providing advanced functionalities for data processing, modelling, and machine learning that are essential for building Digital Twins addressing climate change, extreme events, and hydrological hazards. In addition, to support the physics DT applications, WP7 has delivered 9 fully developed thematic modules, with the ANNALISA module being newly added, offering significant capabilities for simulation, data analysis, and anomaly detection in high-energy physics, gravitational wave astronomy, and radio astronomy. Together, these modules offer the scientific community state-of-the-art tools to build digital twins that can accelerate discovery and improve simulation fidelity.
An important aspect of the development of these modules has been to ensure that they do not stand alone but are integrated into the Digital Twin Engine. This has been realised through the adoption of open standards, containerisation, and consistent APIs, which allow the modules to interact seamlessly with the core modules and infrastructure services developed in Work Packages 5 and 6. More specifically, openQxD, normflow, GlitchFlow and ANNALISA are implemented as itwinai plugins, enabling distributed training, streamlined experiment tracking and flexible configuration. Glitchflow, 3DGAN and CaloINN also use MLflow for model cataloguing, while 3DGAN and CaloINN benefit from InterLink for federated computing and SQAaaS for software quality. ML TC Detection and ML4Fires combine itwinai, MLflow, and yProv4ML for provenance tracking and logging, and connect to RUCIO and Ophidia for managing climate data pipelines, deploying via InterLink. xtclim also integrates with itwinai and RUCIO for streamlined data access. eddiesML focuses on transparent provenance with yProv4ML, while downscaleML uses OpenEO for distributed data processing and publishes outputs to the interTwin STAC catalogue. SFINCS, WFLOW, Delft-FIAT and RA2CE orchestrate containerised workflows with OSCAR and store data in RUCIO. All thematic modules are delivered as open-source software with thorough documentation and are easily reusable and extensible by the wider scientific community.
In summary, the work carried out in WP7 has delivered a prototype set of domain-specific modules that substantially enrich the functionality of the DTE. These modules enable users to build sophisticated, data-driven DTs that respond to complex scientific and societal challenges in environmental monitoring, climate adaptation, and fundamental physics. Through close integration with the DTE’s infrastructure and core components, they demonstrate the feasibility and value of an open and extensible DT platform. These results represent a significant step forward in operationalising the digital twin paradigm for science and will remain a durable asset for the community, supporting continued innovation and collaboration beyond the lifetime of the interTwin project.

5 [bookmark: _References][bookmark: _Toc204701006]References
	Reference

	No
	Description / Link

	R1
	interTwin D7.3 First version of the thematic modules for the environment domain (Version 1 Approved by the EC). Fiore, S. et al., (2023).
DOI: 10.5281/zenodo.14974970

	R2
	interTwin D7.2 Report on requirements and thematic modules definition for the physics domain (Version Final). Tsolaki K. et al., (2023).
DOI: 10.5281/zenodo.8036996

	R3
	interTwin D7.4 First version of the thematic modules for the physics domain (Version 1 Approved by the EC). Sinha Ray G. et al., (2023).
DOI: 10.5281/zenodo.14975005

	R4
	interTwin D7.6 Update report on requirements and thematic modules functionalities for the physics domain (Version 1 Approved by the EC). Vallero S. et al., (2024).
DOI: 10.5281/zenodo.14975072

	R5
	openQ*D code: a versatile tool for QCD+QED simulations. I. Campos,
P. Fritzsch, M. Hansen, M. K. Marinkovic, A. Patella, A. Ramos & N. Tantalo
The European Physical Journal C , 80, Article number: 195 (2020)
DOI: 10.1140/epjc/s10052-020-7617-3

	R6
	Flow-based generative models for Markov chain Monte Carlo in lattice field theory. M. S. Albergo, G. Kanwar, and P. E. ShanahanPhys. Rev. D 100, 034515 (2019)
DOI: 10.1103/PhysRevD.100.034515

	R7
	Normalizing Flows: An Introduction and Review of Current Methods.
Ivan Kobyzev; Simon J.D. Prince; Marcus A. Brubaker. IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 43, Issue: 11, 01
November 2021)
DOI: 10.1103/PhysRevD.100.034515

	R8
	Efficient modeling of trivializing maps for lattice
Φ4 theory using normalizing flows: A first look at scalability.
Luigi Del Debbio, Joe Marsh Rossney, and Michael Wilson
Phys. Rev. D 104, 094507 – Published 15 November 2021
DOI: 10.1103/PhysRevD.104.094507

	R9
	Generative models for scalar field theories: how to deal with poor scaling? Javad Komijani and Marina K. Marinkovic; The 39th International Symposium on Lattice Field Theory, 2022, Bonn, Germany;
DOI: 10.48550/arXiv.2301.01504

	R10
	Normalizing flows for SU(N) gauge theories employing singular value decomposition; Javad Komijani and Marina K. Marinkovic; The 41th International Symposium on Lattice Field Theory, 2024, Liverpool, UK;
DOI: 10.48550/arXiv.2501.18288

	R11
	Fast simulation of a high granularity calorimeter by generative
adversarial networks. Khattak, G.R., Vallecora, S., Carminati, F. et al. Eur.
Phys. J. C 82, 386 (2022).
DOI: 10.1140/epjc/s10052-022-10258-4

	R12
	CaloChallenge 2022: A Community Challenge for Fast Calorimeter
Simulation; C. Krause et al. (2024)
DOI: 10.48550/arXiv.2410.21611

	R13
	Normalizing Flows: An Introduction and Review of Current Methods;
I. Kobyzev, S. J.D. Prince, and M. A. Brubaker (2020)
DOI: 10.48550/arXiv.1908.09257

	R14
	Normalizing Flows for High-Dimensional Detector Simulations;
F. Ernst et al. (2025)
DOI: 10.48550/arXiv.2312.09290

	R15
	Generative Adversarial Networks. Ian J. Goodfellow et al. (2014)
DOI: 10.48550/arXiv.1406.2661

	R16
	interTwin D7.8 Final version of the thematic module for the physics domain (V1 Under EC review). Sinha Ray G. et al., (2025).
DOI: 10.5281/zenodo.14931995

	R17
	interTwin D4.6 Final Architecture design of the DTs capabilities for High Energy Physics, Radio astronomy and Gravitational-wave Astrophysics (V1 Under EC review). Tsolaki, K. et al., (2025).
DOI: 10.5281/zenodo.15120027

	R18
	Fast radio bursts at the dawn of the 2020s. Petroff, E., Hessels, J. W. T., Lorimer, D. R. (2021)
DOI: 10.48550/arXiv.2107.10113

	R19
	ML-based Pipeline for Pulsar Analysis (ML–PPA); Kazantsev, A., Oelkers, T., Pidopryhora, Y., Saha, T., Trattner, H., and Heßling, H.;
https://gitlab.com/ml-ppa/gitlab-profile/-/blob/main/PUNCH_interTwin_project.pdf

	R20
	interTwin D7.1 Report on requirements and thematic modules definition for the environment domain (Version Final). Claus M. et al., (2023).
DOI: 10.5281/zenodo.10417158

	R21
	interTwin 7.5 Updated report on requirements and thematic modules functionalities for the environment domain (Version Approved by the EC). Schramm, M. et al., (2024).
DOI: 10.5281/zenodo.14975021

	R22
	interTwin D7.7 Final version of the thematic module for the environment domain (Version 1 Under EC Review). Elia, D. et al., (2025).
DOI: 10.5281/zenodo.14918025

	R23
	Spatial structures of emerging hot & dry compound events over Europe from 1950 to 2023, Schmutz, J., Vrac, M., François, B., and Bulut, B. EGUsphere (2025) [preprint], https://doi.org/10.5194/egusphere-2025-461.

Disclaimer: Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them[image: A picture containing chart

Description automatically generated]

2
interTwin – 101058386	 [image: Logo interTwin Icon Black]
image2.png

image25.png
Oé%

xtclim

image26.png
1D

downscaleML

image27.png
GR®

emergence
.compound

image28.png
esgpull_
rucio

image29.png
©

>

openeo-processes
-dask

image30.png
openeo-pg-parser
networkx

image31.png
@

C
ta
S
to-

r—

te

S

d

r

image32.png
)

A
NANS

Dask Flood
Mapper

image33.png
FloodAdapt

image3.png
TRAIN

GENERATE

switch
)
EJECT on/off

image34.png
&

HydroMT-SFINCS

image35.png
&

HydroMT-FIAT

image4.png
Neural

O [

o PTNHYCDI e 150 e < s> | L /\/
2

DTUser ® normflow.Model Results.
e Measurement
et Program
Store Lattices
wea
Machine Learning n Lattice
Fild Theory uoc
] | _tcentityProvige (Omuth2)
WPSFederatedData | e tiemttyprosierioant) | ILDG 20
Managoment 1 g,
R .
WPS Alworkflow/ Software: Feteh Trained Model
Qualiy Lot DataLako
pot R 3 A
WP7 Code & Data
Management
Store ML Models
MLLogger aa

O

(=1
[e, o=
Feature o-
Request o

DT Developer

Evaluate Model

Resource and Code

Make Changes to Normflow

image36.png
)

SFINCS

image37.png
&

Delft-FIAT

image38.png
wflow

image5.png
Oauth2

Lattice Datalake

image39.png
O_o

RA2CE

image40.png
i

Hyton Wflow_sbm
Hydrological Model

image41.png
ﬁ

3DGAN
CaloINN

image6.png
rotation axis|

Light house model

~outer
acceleration
9ap

Homogeneous ISM modulati

+ 4

+

Other Interstellar radio % %

r : i
source Terresterial Atmosphenc
radio sources modulation

inner
acceleration
9ap

open
field lines

Closed
field lines

Freqg-time graph

image7.png
1 A}
0 1
\ DY '
© 1
L d:
Pulsar ' coen

1 . WPS5: DTE Infrastucture
Target Source (Pulsar)) y '

"Lighthouse” Model)) 3_0 ol)) ;2;;@ : O WP6: DTE Core Modules

PUIsar ulsar : . WP7: DTE Thematic Modules

1

1 External Components

O Control : O
Interface ISM / Atmosphere Various ' —> Conwel
Q (Jupyter Distortion Model Radio- ' > smubsdnms
Notebook) Frequency ' —> relom
Operator Interference Vo o> Ostalabes
. . RFI) Models

Radio Telescope Electronics (RF) :
Noise Model :
External .
Data Repository S

PR

PulsarRFI

External
Decision-
Making

ML Training d]

Block ML Classifier

System

itwinai

image8.png
Transfer function
Auxiliary channels (GAN based model)

P -) LOW LATENCY
= ‘ ‘ -—> OUtPUtfunCtmn o o

Simulated strain data
(only noise).

Strain channel

Real strain data (noise
and possibly signal).

image9.png
P
o ULt Legend: interTwin
[Technical Work Packages
Developer
WP5: DTE
[}
Infrastructure
(Data ¥ —l—
| Lake uco ML Model) WPG:DTE Core
v Registry Modules
miflow
WP7:DTE
<@ @ Thematic
| oy Modules
Inference
Q Preprocess
o B

pats Visualization
User

image10.png
Quantification

o Provenance Logging & Tracking

Q
pr—
[o
Emeet) oroogt

Indices)

Scientist /DT
Teer

image11.png
Work Packages

Setup Models
&getSifioodmap
0O HydroMT Q WesOTE masrucure
sFINCS - [re——
o~ FloodAdapt
WP?:DTE Thematic Modules.

Iterative
Process

DT Developer
EODC Compute (T5.1)
Sentinel-1
flood map
! lterative
Define | Process
<conarios and
runmodels
O HydroMT M Lo
Q SFINCS iy
Jopyter Scenario
Scientist | File Visualization
T o~ FloodAdapt

Offload to Compute Infrastructure (T5.1)

image12.png
©)
[\

DT Developer

©)
[\

Scientist |
DT User

Setup Models:

Jupyter

Define
scenarios and
‘runmodels

Jupyter

Iterative

Modelbuilder Workflow Execution (T6.1)
Process

HydroMT

B

Configuration

FloodAdapt

—

]

=] pataLake

E=] (152
Iterative Scenario Workflow
Process Execution (T6.1)

HydroMT

=

Scenario
File

FloodAdapt

SFINCS

. WFLOW .

Delft-FIAT

SFINCS

. WFLOW .

Delft-FIAT

I

Offload to Compute Infrastructure (T5.)

interTwin Technical
Work Packages

WPS:DTE Intrastructure

WPG:DTE Core Modules

. WEOTE ThamaticModlos

image13.png
DT Developer

©)
[

Scientist / DT
User

Offload to Compute Infrastructure

Setup Model

Select Models, Data,
Temporal Extend

Configuration

File

Load Training Data

4 -
So)

Calorimeter
simulation from

GEANT4

Pre-Process

Data

Data
Converter

Inspect
Provenance

Load & Run
generative ML

Model

Log ML Training
Metrics

Train ML Model

Log Provenance

Load Pre-Trained Model

Post-Process

o

-

\\'I/
< ~

- ~
S

Visualization

-

Legend: interTwin Technical
Work Packages

@
@
@

o,

-

'WP5: DTE Infrastructure

WP6: DTE Core Modules

WP7: DTE Thematic Modules

ToBe Completed

image14.png
openQ@QxD

image15.png
N

normflow

image16.png
M)

PulsarDT

image17.png
Mg

PulsarDT++

image18.png
M-

PulsarRFl _Gen

image19.png
M@

PulsarRFl NN

image20.png
DA

GlitchFlow

image21.png
ANNALISA

image22.png
ML TC Detection

image1.png
Q

interwin

image23.png
ML4Fires

image24.png
A

eddiesML

image42.png

image43.png
Funded by the
European Union

