
Disclaimer: Views and opinions expressed are however those of the author(s) only and 
do not necessarily reflect those of the European Union. Neither the European Union nor 

the granting authority can be held responsible for them. 

 

 

D7.8 Final version of the 

thematic modules for the 

physics domain 
Status: UNDER EC REVIEW 

Dissemination Level: public   



D7.8 Final version of the thematic module for the physics domain 

2 
interTwin – 101058386                          

 

 

   

Abstract 
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interTwin co-designs and implements the prototype of an interdisciplinary Digital Twin 

Engine (DTE). The DTE will be an open-source platform that includes software 

components for modelling and simulation to integrate application-specific Digital 

Twins (DTs). InterTwin’s WP7 will provide the aforementioned sets of software 

components, called thematic modules, for the use cases defined in WP4. This report 

describes the status of the development of the final version of thematic modules in the 

physics domain. 
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Executive summary 
This report describes the status of development for the final version of the thematic 

modules that have been identified within the interTwin project for the Digital Twin (DT) 

applications in the physics domain. It is a collective document written by the scientists 

developing these modules. The use cases served by these modules cover high energy 

physics (Tasks 7.1 and 7.7), radio astronomy (Task 7.2), and gravitational wave astronomy 

(Task 7.3). Each module's functionality is described and contextualised by reference to 

the relevant DT and its use cases. Also included is a technical summary of each software 

module providing basic information such as its software licence and release notes. The 

report concludes with a short summary of the integration status of the different thematic 

components with the other interTwin work packages and future work. 

It is important to mention that, although this document aims to overview the final version 

of all the thematic components from the physics domain, more developments and 

extensions are planned for most of the thematic modules in the remainder of the project. 

To (i) further improve the modules and (ii) adapt the solutions as the integration with the 

Digital Twins and other components of the interTwin DTE progresses. 
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1 Introduction 

1.1 Scope 

The document is an updated version of the previous report D7.4 First version of the 

thematic modules for the physics domain [R2]. Other previous reports have also 

identified the technical requirements that are important for the development of the 

thematic modules in WP7 [R1, R3]. This deliverable summarises the status of 

development of the final versions of the physics thematic modules, which are needed to 

implement the physics domain DTs and realise the use cases of WP4. In WP7 the physics 

domain covers: 

● T7.1 Lattice QCD simulations and data management 

● T7.2 Noise simulation for radio astronomy 

● T7.3 GAN-based thematic modules for gravitational waves 

● T7.7 Fast particle detector simulation with GAN. 

1.2  Document Structure 

Section 2 provides an overview of the thematic modules developed as well as the links 

with the DT applications in the context of their corresponding use case. Section 3 

summarises the specifications for each thematic module / software component, including 

their functionalities, licence, documentation, release notes and a short description of the 

corresponding future development plans. Section 4 provides a summary of the 

integration of the thematic modules with the other Work Packages in interTwin, as well 

as the main conclusions. 
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2 Overview of Thematic Modules for the 

Physics Domain 

2.1 T7.1 Lattice QCD simulations  

Lattice QCD involves the study of the properties of Quantum Chromodynamics in the low 

energy/strong coupling limit, where perturbation theory breaks down and numerical 

approaches are required. Within interTwin two parallel and complementary tracks are 

being explored that address the practical and theoretical challenges of Lattice QCD 

simulations. These are the practical challenge of storing and moving the ever-increasing 

amounts of data associated with traditional large scale HPC simulations and the 

theoretical challenge of exploring, at the proof-of-concept level, the extent to which 

contemporary Machine-Learning techniques can make lattice simulations more efficient. 

2.1.1  Advanced Data management for Lattice QCD 

Lattice QCD simulations are executed at a large scale on HPC systems that are controlled 

by a batch system (such as SLURM1). A typical workflow involves the generation of lattice 

field configurations, the measurement of an observable of interest over those 

configurations, and the statistical analysis of those measurements. All of these steps, but 

especially the generation of configurations, can be highly computationally intensive.  

The openQxD simulation software is a C code designed to simulate QCD and QCD+QED 

theories on a lattice. It is available on Gitlab2 and is described at length in the literature 

[R4]. A concise description of the software is given in section 3.1 of D7.2 [R1] along with 

links to further technical documentation. It is under active development though this work 

is not being done as part of the interTwin project. 

In previous deliverables we described some of the issues encountered by lattice 

researchers when trying to store and access their data [R2]. We argued that lattice 

configurations should be made more easily available to the members of a collaboration. 

It was realised early on that the use of federated identities and group-based access 

control would be crucial to achieving this goal of easier access in a controlled way. The 

DataLake framework proposed and developed by WP5 followed naturally. In this 

framework the members of a collaboration would have group-access enabled read 

permission for their data while a subset of the collaboration, those in charge of 

generating configurations, would also have write permission. In D7.4 we described our 

efforts relating to testing and benchmarking the DataLake prototype with real and toy 

lattice data [R2]. After providing feedback to the DataLake developers it was decided that 

the Lattice group should get its own Lattice Data Lake in order to satisfy its particular 

read/write permission specifications. 

 

1 https://slurm.schedmd.com  

2 https://gitlab.com/rcstar/openQxD 

https://slurm.schedmd.com/
https://gitlab.com/rcstar/openQxD
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Since the last update there have been continued discussions between ourselves, WP5, 

the ILDG3, and the administrators of the CESGA HPC facility4. Our goal is to extend the 

ILDG catalogue to support a Lattice Data Lake as a possible source of data. It was decided 

that a phased approach to the Lattice Data Lake rollout would be preferable. The first 

phase involved opening an FTS connection and transferring data between the DESY-

Zeuthen storage endpoint and a new endpoint at CESGA. The required FTS server has 

been updated and is now able to accept ILDG tokens. This is important as the Lattice Data 

Lake will use the ILDG as its identity and access manager. Once we are satisfied this FTS 

connection is robust WP5 will introduce and configure the Rucio service which will act as 

an intermediary between the users and the Lattice Data Lake. The ILDG can support 

multiple locations, recorded as URLs, for each piece of data. We outlined a possible 

schema for the Data Lake URLs that would be recorded in the ILDG in D7.6 [R3]. 

As simply as possible data access will look like this: 

● A client queries the ILDG for the location of some files it wishes to access. 

● ILDG authorises the request, verifying the user is allowed to read the files. 

● ILDG returns the location of the files along with the token(s) needed for their 

access. 

● For each file the client contacts the storage to request access and supplies the 

corresponding token. 

● The storage verifies the token and provides the requested file. 

 

2.1.2 Generative models using Machine Learning 

The efficiency of general purpose Monte Carlo algorithms decreases dramatically when 

the simulations need to take place near critical points due to critical slowing down. This 

is a general phenomenon in simulations in Physics related to phase transitions, which 

happens as well in Lattice QCD, for example with simulations at very fine distances that 

are needed for extrapolation to the continuum limit. Simulations need to take place in 

areas of the parameter space where topology freezing (among other factors) induces very 

large autocorrelations. 

There is a developing literature that argues Normalising Flows (a class of deep generative 

models) may help to improve this situation (a review is available for instance at [R6] and 

a block diagram illustrating the method is shown in Figure 1). The underlying idea is to 

use Machine Learning techniques to map the theory of interest to a “simpler” theory, 

easier to simulate. Several papers, such as [R5], have demonstrated the proof of concept 

for simple models. However, further studies indicate that the training cost in CPU time 

can be, in general, prohibitively high for large lattices, and the acceptance rates in the 

accept/reject step (Figure 2) drop fast as the lattice size increases unless better 

architectures and methods are achieved (see for example [R7]). The question under 

 
3 https://hpc.desy.de/ildg/ 
4 https://www.cesga.es/en/home-2/ 

https://hpc.desy.de/ildg/
https://www.cesga.es/en/home-2/
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investigation is therefore how expensive it is to train a model compared with making a 

classical Monte Carlo simulation. 

 

 
Figure 1 - Graphical representation of the classical generation of configurations using Monte Carlo algorithms 

 

 
Figure 2 - Graphical representation of the Normalising Flows method including a correcting accept/reject step to 

account for the fact that the model cannot be perfectly trained 

The purpose of this work is to design better architectures for Machine Learning models 

so that the acceptance rates become reasonable (~50%) as the volume of the lattice 

increases. 

Through the development of normflow5 we have shown that Machine Learning can be 

used for field configuration generation with scalar theories on low dimensional lattices  

[R8]. Moreover, it is being developed to handle the more complicated family of SU(3) 

gauge theories, this being an important step towards a ML lattice simulation of QCD [R9]. 

Figure 3 outlines schematically the typical workflows of a developer and a user of 

normflow. 

Improvements to the normflow software development workflow have been made by the 

integration of the SQAaaS module developed by WP6.2, with the progress of this 

integration being tracked in the corresponding WP4/7 deliverables. Software quality 

assurance in this context means making sure software packages developed for scientific 

research, like normflow, adhere to research software best practices, such as being 

licensed with an Open Source Initiative approved licence. Currently the public version of 

normflow is credited with the Silver SQAaaS badge and this is displayed prominently on 

 
5 https://github.com/jkomijani/normflow_ 

https://github.com/jkomijani/normflow_


D7.8 Final version of the thematic module for the physics domain 

12 
interTwin – 101058386                          

normflow’s public repository webpage. Since the previous deliverable we have 

implemented the first automated tests of normflow, using the pytest package and the 

bash testing framework. Automated testing was demoed by WP6.2 at the 2024 IBERGRID 

conference. We continue to add tests and are looking at an alternative, more flexible, way 

of automating the testing with SQAaaS. The main remaining criteria required to obtain 

the Gold SQAaaS badge are the code style checks. We are in discussions with WP6.2 as to 

how best to satisfy these criteria.  

 

Figure 3 - Module Integration Diagram for the Lattice QCD use case 

 

2.2 T7.2 Noise simulation for radio astronomy 

2.2.1  Use-case description 

As outlined in the previous reports [R1, R3], this task is designed to be instrumental in 

solving a big problem that is about to arise in modern observational astronomy in general 

and radio astronomy in particular, and to become one of the largest issues in the whole 

field: the problem of data overflow. Previous generations of telescopes typically produced 

no more than a few petabytes of data per year, thus the raw data was generally kept 

either indefinitely or long enough for the science team to reduce and analyse it, and then 

approve the deletion, which meant several months or even years. With the arrival of the 
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new so-called Square Kilometre Array6 "pathfinders", such as South African MeerKAT7 or 

Australian ASKAP8, the data acquisition rate increases enormously, these tools can easily 

produce several petabytes of raw data per week9. No current astronomical institution can 

handle keeping such volumes of data even for a month or employ a team of experts large 

enough to quickly process it or sort through it manually. Thus, it is crucial to develop 

automated decision-making systems that can sort through the raw data in real or near-

real time (since telescopes usually have downtime due to maintenance or source 

availability, the data can be pooled for short periods of time of order of days) and 

separate the data flow into the scientifically important data that must be kept while the 

rest that can be safely deleted. 

Another reason to be able to automatically sort through the incoming data is that modern 

radio astronomy is increasingly interested in transient sources. Previously sources had to 

be observed for long periods of time to be able to achieve the necessary signal to noise 

ratio, thus it was possible to observe reliably or even discover at all only permanent or 

fast periodic10 sources like pulsars. Since the new telescopes are much more sensitive, 

they can systematically probe the transient radio sky, which currently is generally 

unknown. Such studies are very important, since it is believed that the transients11 result 

from very far and enormously energetic exotic events (like a collapsing supermassive 

star) that may provide essential clues for the areas of physics that cannot be studied 

experimentally in any other way, e.g., quantum gravity. An automated expert system can 

help with this: if something like a transient source (or unusual in general) signature is 

found in the data flow, it can immediately trigger the "target of opportunity" mode of 

observation for the detected anomaly, and alert the scientists on duty, who would decide 

the best course of further action. This will also allow us to easily organise concerted 

efforts of observing rare important sources by a number of instruments, covering a range 

of wavelengths, e.g., combining Earth-based radio observations with space-based optical 

and X-ray observations — it is already done today, but with typical response times very 

far from ideal12. 

 

6 SKAO: https://www.skao.int/en 

7 MeerKAT Radio Telescope: https://www.sarao.ac.za/gallery/meerkat/ 

8 ASKAP-radio telescope: https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope 

9 Predicted data rate for an SKA pathfinder like MeerKAT is of order 10 Gbytes/s or up to 1 Pbytes/day. The SKA 

itself is expected to produce up to 200 Pbytes/day, which is ~70 exabytes per year. To put it into perspective, 
the latter is about the same as the expected data rate of CERN’s LHC after the High-Luminosity upgrade (60 
exabytes per year) and at about the same time (SKA’s first light is expected in 2027 and the High-Luminosity LHC 
should go online in 2029).  

10 Known pulsars have periods from a few milliseconds to 8 seconds, thus over a typical observational session 

of several hours one can observe many pulses, which makes pulsars relatively easy to detect and observe. 
However, if we imagine a transient phenomenon similar to a pulse of a pulsar, but either non-periodic or with 
periods of order of hours or days, discovering it is close to impossible except by sheer luck.  

11 Examples of such transients that attract a lot of attention in the radio astronomical community are “fast radio 

bursts” (FRBs), see e.g., arXiv: 2107.10113 and references thereof. 

12 Even in the best case scenario when a special “target of opportunity” (ToO) event is expected, and a change 

of scheduling is proposed in advance for all the observatories involved, the actual triggering of such an event is 

https://www.skao.int/en
https://www.sarao.ac.za/gallery/meerkat/
https://www.csiro.au/en/about/facilities-collections/atnf/askap-radio-telescope
https://arxiv.org/abs/2107.10113
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Pulsars are ideal test subjects for this task since they reliably produce periodic bursts of 

scientifically significant data with certain variability in signal strength and other 

parameters. However, because of their nature “silent” most of the time, a telescope 

observing a pulsar mostly records either an "empty" data stream, i.e., only the noise, or 

some sort of RFI due to artificial or natural electro-magnetic phenomena unrelated to 

space. 

The third reason for this task is that current common radio astronomy software tools are 

inadequate, they are computationally slow and handle parallelization poorly. For the 

tasks at hand, we are building tools that can be efficiently run on modern HPC clusters, 

with scalability to at least hundreds of cores. It is connected to the main task of the ML 

data classification system in a way that, although the classification system itself will be 

run on ordinary observatory computers embedded in a telescope’s data acquisition 

system, the training of new models before each new type of observation, which is the 

most computationally intensive task, will have to be performed on supercomputers.  

To be able to detect special and important events in the data, one has first to well 

understand the regular and mundane features of the data stream that in radio 

astronomy translates into noise and radio-frequency interference (RFI). 

2.2.2 Machine Learning-based Pipeline for Pulsar Analysis (ML-PPA) 

As previously reported [R2], motivated by these points we are developing a framework 

for extracting pulsar signals from radio-astronomical observatory data streams, under 

the designation of ML-PPA (Machine Learning-based Pipeline for Pulsar Analysis): a ML-

based data-labelling system that reads the data flow coming from a real telescope 

observing a pulsar. An important separate component is a DT of an astronomical source-

telescope system, able to generate synthetic output signals identical to the data recorded 

by a real telescope. The resulting DT-generated data is to be used to train the ML data-

classification tool. The DT is physics-based: a set ofcontrol parameters will allow 

adjustment of the output to different sources, detection instruments, and observing 

conditions.  

Four modules are being developed under the umbrella designation of ML-PPA: 

● PulsarDT 

● PulsarDT++ 

● PulsarRFI_Gen 

● PulsarRFI_NN 

PulsarDT: physics-based DT, simulation of the propagation of pulsar signals from the 

source to antennas (Figure 4) and generation of synthetic data – written in Python, to 

test algorithmic strategies for physical models of pulsars, interstellar medium, telescopes, 

interference, and noise. 

 
a complicated and disruptive procedure involving many exchanges between various personnel of many 
institutions, thus the response time is rarely shorter than a day. Using an automated decision making system 
with pre-approved criteria can change this to minutes, most of the time taken to actually reposition the 
telescopes. 

https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_nn
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Figure 4 - General outline of the DT structure: modelling the astrophysical source (pulsar), transmission of the 

signal through the interstellar matter, receiving and processing by a radio telescope, adding sources of both 

natural and artificial interference and noise. 

PulsarDT++: PulsarDT is implemented in C++ in order to improve its speed and allow for 

parallelization, easily deployable in a singularity container.  

PulsarRFI_Gen: empirical DT, generating “timeframes”, 2D images (time-frequency) of all 

possible types of telescope output observing a pulsar: pulses (scientifically relevant data), 

two different types (“narrow” and “broad”) of RFI signals, and “empty” frames, containing 

only noise. It creates these timeframes by mimicking available real data (based on the 

geometry of images, noise characteristics etc.) rather than generating them from the 

physical first principles as PulsarDT does. By using this alternative method it provides 

comparison for PulsarDT/DT++ and substitute training data for the ML classifier. 

PulsarRFI_NN: the ML classifier. It is a CNN-based tool for the identification of various 

types of pulsar and RFI signals in the “timeframes”, 2D images (time-frequency). 

The general diagram of the intended operation of the ML-PPA is shown in Figure 5. The 

final version of the pipeline is intended for use with the real data flow of the MeerKAT 

telescope, and, later, possibly with other telescopes as well. However, these goals are 

already beyond the scope of the current project. 

ML-PPA is currently being tested with real data collected by observing various pulsars 

with two telescopes: the Effelsberg 100m radio telescope13 and the above-mentioned 

MeerKAT array.  

A more detailed overview of the current state of the project and its full theoretical 

background can be found in [R10]. 

 

13 Radio Telescope Effelsberg: https://www.mpifr-bonn.mpg.de/en/effelsberg 

https://www.mpifr-bonn.mpg.de/en/effelsberg
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Figure 5 - Diagram of the ML-PPA (in the C4 model) 

 

2.3 T7.3 GAN-based thematic modules to manage 

noise simulation, low-latency de-noising, and veto 

generation for gravitational waves 

2.3.1 Use-case description 

The sensitivity of Gravitational Wave (GW) interferometers is limited by noise. We have 

been using Generative Neural Networks (GNNs) to produce a Digital Twin (DT) of the Virgo 

interferometer to realistically simulate transient noise in the detector. We have used the 

GNN-based DT to generate synthetic strain data (a channel that measures the 

deformation induced by the passage of a gravitational wave). Furthermore, the detector 

is equipped with sensors that monitor the status of the detector’s subsystems as well as 

the environmental conditions (wind, temperature, seismic motions) and whose output is 

saved in the so-called auxiliary channels. Therefore, in a second phase, also from the 
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perspective of the Einstein Telescope, we will use the trained model to characterise the 

noise and optimise the use of auxiliary channels in vetoing and denoising the signal in 

low-latency searches, i.e., those data analysis pipelines that search for transient 

astrophysical signals in almost real time. This will allow the low-latency searches (not part 

of the DT) to send out more reliable triggers to observatories for multi-messenger 

astronomy.  

Figure 6 shows the high-level architecture of the DT. Data streams from auxiliary 

channels are used to find the transfer function of the system producing non-linear noise 

in the detector output. The output function compares the simulated and the real signals 

in order to issue a veto decision (to further process incoming data in low-latency 

searches) or to remove the noise contribution from the real signal (denoising). 

 
Figure 6 - High-level architecture of the DT 

2.3.2 High-level architecture of the DT implementation 

Figure 7 shows the System Context diagram (in the C4 model) of the DT for the veto 

pipeline. In the rest of the document, we will focus on the veto pipeline only, but similar 

diagrams also apply to the denoising pipeline. 

Two main subsystems characterise the DT architecture: the Training DT subsystem and the 

Inference DT subsystem. The Training DT subsystem is responsible for the periodical re-

training of the DT model on a buffered subsample of the most recent Virgo data. The DT 

model needs to be updated to reflect the current status of the interferometer, so 

continuous retraining of the GAN needs to be carried out. 
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Figure 7 - System Context diagram (in the C4 model) of the DT for the veto pipeline. 

 

2.3.3 The Training DT subsystem 

The main component of the Training DT subsystem is the Data Store. The Data Store is 

used to store data in the form of time-series originating from the Virgo strain channel and 

relevant auxiliary channels. The length of the buffer is currently under study, but we 

foresee using about a one-month equivalent of data. The normal operating conditions of 

the Data Store is to act as a FIFO buffer, receiving an incoming stream of data from the 

interferometer. The DT Operator triggers the training of the GAN using data from the 

Data Store periodically or under certain conditions.   

The monitoring and coordination of the sub-systems are achieved by implementing the 

modules as Kubernetes Pods orchestrated by Airflow14. This is accomplished via several 

interconnected services designed for managing and processing data, as shown in  Figure 

8. 

 
14 https://airflow.apache.org 

https://airflow.apache.org/
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Figure 8 - Services layout 

 

● The Data Buffer, implemented in Go15 using the Gin framework16, stores GW data 

and state information, for example the number of files on disk and their total size, 

utilising Go's concurrency for thread-safe operations. Kubernetes storage 

functionalities are used to store collected data in the local cluster. Several service’s 

endpoints are dedicated to the retrieval of state information. 

● The Datastore Logic service, built with Python's Flask17 and running on 

Gunicorn18, handles datastore functionalities including freezing the system when 

a size limit is reached. The Flask-based Datastore Logic service communicates with 

the Go-based Data Buffer service via HTTP requests, where Flask handles high-

level datastore management and forwards data and status queries to the Go 

service for storage and state handling. Another service function is the 

identification of the DT operator. Moreover it offers a webpage to monitor the 

subsystem. 

● The GlitchFlowApi, developed with FastAPI and hosted on Unicorn, provides an 

async API layer for external interactions and relies on Datastore Logic for request 

handling. Data sent to the system are validated with the Pydantic framework 

integrated with FastAPI.  

 
15 Go: https://go.dev 
16 Gin:  https://gin-gonic.com 
17 Flask: https://flask.palletsprojects.com/en/3.0.x/ 
18 Gunicorn:  https://gunicorn.org 

https://go.dev/
https://gin-gonic.com/
https://flask.palletsprojects.com/en/3.0.x/
https://gunicorn.org/
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The entire system operates within a Kubernetes setup, with the Data Buffer as a stateful 

set, due to its dependance on storage, and other services as deployments which permit 

pod replication. Other fine-tuning configurations have been made at the web server level.  

Apache Airflow orchestrates these components, managing the workflow through tasks 

like  monitoring buffer status and freezing the datastore, utilising various Airflow 

operators to enforce flow control and handle conditions. The Airflow DAG implementing 

the workflow can be seen in  Figure 9.  

 

Figure 9 - Airflow DAG for training sub-system, as shown in the Airflow Dashboard 

The branches in the DAG represent a different handling of the datastore state. An 

operator leveraging Kubernetes API is used to launch a pod processing data on runtime. 

The subsystem has been tested with data taken from public GW catalogues using the 

GWpy framework. During tests it has been observed that the time necessary for Apache 

Airflow to deploy the processing pod is independent of the size of the processed data. 

A similar Airflow DAG for the inference sub-system is under development. 
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2.3.4 The Inference DT subsystem 

Figure 10 shows the Container diagram (in the C4 model) of the Inference sub-system.  

The Inference sub-system is still under development. 

The main components of the sub-system are:  

● Preprocessing_API, common to the Training sub-system 

● Generative_API, the module which employs the pre-trained GNN-model 

to map the transient noise in the auxiliary channels to the one observed in 

the strain channel (under development). 

● Veto_API, based on Python and proprietary IGWN libraries, is an interface 

to the Virgo Low Latency framework (under development) . 

The flow of detector data at various processing steps (grey arrows) is also shown in the 

figure, as well as the flow of DT artefacts (blue arrows). In this subsystem, the DT artefacts 

are the trained model from the Training subsystem, the simulated strain data, a veto 

decision in a data representation internal to the DT system and a veto decision in a data 

representation compatible with the Virgo Low Latency framework. 
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Figure 10 - Container diagram (in the C4 model) of the Inference subsystem. 

 

2.3.5 The Virgo Data Lake 

The transient noise data is being stored in the InterTwin Data Lake, which we are 

managing in synergy with the developers of task 5.1. The Data Lake is managed by the 

Rucio software, which ensures scalable and efficient data transfer and storage. 

Specifically, we registered two Rucio Storage Elements (RSEs): one at INFN, where the data 

is originally stored on tape, and one at the Vega EuroHPC19 . The RSEs are part of a private 

Virgo Virtual Organisation (virgo.intertwin.eu), created to restrict data access to only 

authorised people who are part of the Virgo community. The data is transferred from the 

former RSE to the latter via a Transfer File System mediated by Rucio. It is then possible 

to use the data to develop and deploy the different modules directly on Vega, making full 

use of the computational resources made available by the collaboration. 

 
19 Vega: https://en-vegadocs.vega.izum.si/introduction/ 

https://en-vegadocs.vega.izum.si/introduction/
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2.4 T7.7 Fast particle detector simulation with GAN 

Task 7.7's goal is to develop the thematic module for the fast detector simulation using 

Generative Adversarial Networks (GANs) [R12]. This thematic module consists of two 

components. The simulation component that incorporates the Monte Carlo based 

simulation framework, Geant420 , is utilized to produce the training data. The deep 

learning (3D Generative Adversarial Network - 3DGAN [R11]) component, which is the 

deep learning model developed for a specified particle detector set-up.  

The two components are linked together to support the DT development in the context 

of WP4. More specifically, T7.7 is developing capabilities for T4.2 defined DT application 

that will enable the specific DT operator to: 

● pre-process the data, that a Geant4 application produced and simulate particles 

passing through a specific detector setup 

● train a GAN model on the pre-processed simulated data, with specified model 

input conditions (e.g. particle’s entrance angle, initial energy, and type) 

● use the trained GAN model during the inference step to replicate the detector’s 

response (fast/ GAN-based simulation). 

A methodology that accelerates particle detector simulations, leveraging generative deep 

learning methods, has already been described and is available in deliverable 7.2 (D7.2) 

[R1]. Our methodology uses Geant4, a software toolkit for the simulation of the passage 

of particles through matter, and GAN, a class of machine learning frameworks for 

approaching generative AI. The technical requirements have been identified, defined, and 

reported in detail in D7.2. Moreover, the underlying challenges of detector simulation for 

CERN and the High Energy Physics (HEP) community, as well as the importance of 

developing a DT digital twin system that integrates simulation methods with machine 

learning, were analysed and described. 

This section provides a brief overview of CERN’s digital twin application of a detector 

simulation, as it has already been described in detail in deliverables 7.2 and 4.2 (D4.2 

[R13]). It describes the key steps, from particle simulations to event generation, and 

subsequent data comparison with real data. The process is explained, highlighting the 

functionalities at each stage. Furthermore, it illustrates the flexibility in tuning the system 

to accurately represent various detectors’ responses. This explanation is designed to give 

readers an understanding of the entire workflow architecture, shedding light on current 

practices and potential areas of future improvement. It also opens the way for a deeper 

discussion on the challenges faced, decisions made, and future strategies in the ongoing 

development of this simulation application. 

This application consists of two components, the component that incorporates the 

Geant4-based simulation framework and the deep learning component, which uses a 

 
20 GEANT4: https://geant4.web.cern.ch 

https://geant4.web.cern.ch/
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deep generative model developed for a specified particle detector setup. The two 

components are encapsulated into two main workflows, the training workflow, and the 

inference workflow, as illustrated in Figure 11. Below, the application functionalities and 

their specifications included in each workflow are described. 

The Geant4 simulation toolkit performs particle physics simulations based on Monte 

Carlo (MC) techniques. The training workflow design includes the following 

functionalities, which will run on HPC systems. Geant4 simulates particle interactions, 

producing data based on a detector-specific configuration. The produced data consists of 

the energy measured by the detector sensors, the properties of the initial particle, such 

as its type, energy, and trajectory angle with respect to the detector volume, and other 

metadata. The produced data, in ROOT format, are stored at data centres provided by 

project partners, with CERN currently serving as the primary storage site. 

The data produced from the traditional Geant4 simulation in ROOT format requires 

conversion into the HDF5 format for further preprocessing before being input into the 

GAN model. This conversion is currently performed using a Python script. The converted 

data will then be stored at the data centres. Following the ROOT to HDF5 format 

conversion, the HDF5 data is further pre-processed and transformed into numpy arrays, 

a process  incorporated within the model training scripts. 

A GAN is trained [R11] on the pre-processed data, conditioned on specific input 

describing the properties of the particles. The data is retrieved from the storage space 

where they reside. Hyperparameter optimization (HPO) is also employed to improve 

model performance. During validation and HPO, the model-generated data and the 

Geant4 simulated data distributions will both be visualised. Additional validation 

techniques are exploited. 

At the end, the training workflow stores the optimised models, selected based on 

validation results. The model registry where the GAN models are stored is managed by 

Task 6.5. 

During the inference workflow process, 3D images replicating the specified detector’s 

response are produced. Those images consist of the secondary particles’ positions (x, y, 

z coordinates) in the detector and their corresponding energy measurements. 

Data distribution comparisons are drawn between the GAN-generated data and real data 

(either derived from a traditional Geant4 simulation or data derived from accelerator test 

beams). These comparisons are essential for validating the efficacy and accuracy of the 

GAN-generated data. 

Finally, based on the results visualised, two possible workflows are proposed for 

simulation tuning. The model can either be re-inferred with different model input 

parameter values, provided these parameter values have been accounted for during 

model training. Alternatively, if a different value range of the conditional parameters is 

needed, the training workflow must be re-run from the beginning. These two possible 
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workflows allow for greater flexibility and adaptability in tuning the detector's responses 

to various particle interactions. 

 

In addition to the 3DGAN, a new component for fast calorimeter simulation is being 

introduced. As demonstrated in the CaloChallenge [R14] — a Fast Calorimeter Simulation 

Challenge aimed at promoting the development and benchmarking of fast, high-fidelity 

calorimeter shower generation using deep learning methods — Normalizing Flows (NF) 

models [R15] tend to simulate calorimeter showers more accurately than GAN-based 

models while maintaining competitive simulation speeds. However, this improved 

expressivity comes at the cost of slightly slower generation times. Notably, the CaloINN 

model [R16], an invertible NF neural network, strikes a strong balance between 

simulation quality and speed. The CaloINN model is planned to be integrated as an itwinai 

component. 

CaloINN uses an input structure similar to 3DGAN. The detector volume is segmented 

into layers aligned with the direction of the incoming particle, with each layer further 

divided into radial and angular bins in polar coordinates. The shower is characterized by 

the incident energy of the incoming particle and the energy depositions in each voxel. In 

CaloINN, coupling layer-based normalizing flows are used to create bijective mappings 

between a latent space and the physical phase space. After learning this invertible 

Figure 11 - Graph representation of the training and inference workflows composition (as described above) of the fast particle detector 

simulation DT utilising 3DGAN approach 
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mapping by training the network, a physical phase space distribution can be sampled 

from the known latent space. 

3 Thematic Modules / Components  

In this section basic information on the software components for each thematic module 

is summarised, and release notes and future plans are provided. 

3.1 T7.1 openQxD 

Table 1 - openQxD 

Component name and logo 

 
openQxD 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-openqxd 

Description Flexible code that implements advanced 

lattice simulation techniques on HPC 

systems. 

Value proposition  The base software component necessary 

to simulate quantum field theories with C* 

boundary conditions. 

Users of the Component  Expert users and Developers 

User Documentation https://gitlab.com/rcstar/openQxD/-

/tree/master/doc  

Technical Documentation https://gitlab.com/rcstar/openQxD/-

/tree/master/doc?ref_type=heads  

Responsible  RC* Collaboration 

Licence GPLv2  

Source code https://gitlab.com/rcstar/openQxD  

https://www.intertwin.eu/article/thematic-module-openqxd
https://www.intertwin.eu/article/thematic-module-openqxd
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD/-/tree/master/doc?ref_type=heads
https://gitlab.com/rcstar/openQxD
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3.1.1 Release notes 

Notes are available in the repository21.  

3.1.2 Future plans 

The code will be evolved in the direction of embedding a proper CI/CD workflow for the 

software development process, and a FAIR data evaluation automated procedure in 

cooperation with WP6.  

3.2 T7.1 normflow 

Table 2 - normflow 

Component name and logo 

 
normflow 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-normflow 

Description For applying the method of normalising 

flows as a generative model for lattice 

simulations. 

Value proposition  This package contains utilities for the 

implementation of normalising flows as a 

generative model using Pytorch.  

Users of the Component  Expert users and Developers 

User Documentation https://github.com/jkomijani/normflow_ 

Technical Documentation https://github.com/jkomijani/normflow_ 

Responsible  Javad Komijani 

Licence MIT 

Source code https://github.com/jkomijani/normflow_ 

 
21 https://gitlab.com/rcstar/openQxD/-/blob/master/CHANGELOG   

https://www.intertwin.eu/article/thematic-module-normflow
https://www.intertwin.eu/article/thematic-module-normflow
https://github.com/jkomijani/normflow_
https://github.com/jkomijani/normflow_
mailto:jkomijani@gmail.com
https://github.com/jkomijani/normflow_
https://gitlab.com/rcstar/openQxD/-/blob/master/CHANGELOG
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3.2.1 Release notes 

Normflow contains utilities for the implementation of the method of normalising flows 

as a generative model for lattice field theory. It currently supports scalar theories in any 

number of dimensions [R8].  

3.2.2 Future plans  

We are studying how the singular value decomposition can be used to construct gauge-

invariant quantities which can serve as the building blocks for designing gauge-

equivariant transformations of SU(N) gauge links [R9]. 

3.3  T7.2 PulsarDT 

Table 3 - PulsarDT 

Component name and logo 

 
PulsarDT 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-pulsardt 

Description Physics-based DT, simulation of the 

propagation of pulsar signals from the 

source to antennas and generation of 

synthetic data – written in Python. 

Value proposition  The physics-based DT, to be used to 

generate synthetic data to train the ML 

classifier. This particular component is 

written in Python as a model of how the 

different aspects of the physics-based DT 

can be implemented, while its 

counterpart, PulsarDT++ implements 

what has already been well-established in 

the C++ production version.   

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsardt 

Technical Documentation https://gitlab.com/ml-ppa/pulsardt 

https://www.intertwin.eu/article/thematic-module-pulsardt
https://www.intertwin.eu/article/thematic-module-pulsardt
https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsardt
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Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsardt 

3.3.1 Release notes  

The second internal version (v. 0.2) has been released. Assorted related materials, 

including Jupyter notebooks with use examples, are available at GitLab. For a wider 

context and theory behind the whole ML-PPA (including detailed explanations with regard 

to the status of each component) one should refer to [R10].  A brief description of the 

current functionality is as follows: users can specify a number of model parameters, like 

pulsar geometry, distance to Earth, noise characteristics etc. The program produces an 

image, including the time-frequency domain image as if seen by a telescope plus a mask, 

selecting only what corresponds to the pulsar data and excluding the noise. 

3.3.2 Future plans  

The plans are to constantly build upon the current model, both during this final year of 

the project and later. Ultimately the goal of this component is to supply its counterpart, 

PusarDT++, with algorithms and implementation strategies, so it is used as a testing 

ground and is constantly modified. The interstellar matter (ISM), telescope and 

electronics noise models are to be constantly updated. There will also be more 

sophisticated sources available e. g. more complex beam structures, pulsars in double 

systems etc. 

3.4 T7.2 PulsarDT++ 

Table 4 - PulsarDT++ 

Component name and logo 

 
PulsarDT++ 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-pulsardt-2 

Description Physics-based DT, simulation of the 

propagation of pulsar signals from the 

source to antennas and generation of 

synthetic data – written in C++. 

mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsardt
https://gitlab.com/ml-ppa/pulsardt
https://www.intertwin.eu/article/thematic-module-pulsardt-2
https://www.intertwin.eu/article/thematic-module-pulsardt-2
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Value proposition  PulsarDT implemented in C++ in order to 

improve its speed and allow for 

parallelization, easily deployable in a 

singularity container. 

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsardtpp 

Technical Documentation https://gitlab.com/ml-ppa/pulsardtpp 

Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsardtpp 

3.4.1 Release notes 

The second internal version (v. 0.2) has been released. Assorted related materials, 

including Jupyter notebooks with use examples, are available at GitLab. For a wider 

context and theory behind the whole ML-PPA (including detailed explanations with regard 

to the status of each component) one should refer to [R10]. This component is an efficient 

parallel-computing capable implementation of PulsarDT, a layered architecture with a 

Python-based user interface on the top of various modules containerized using 

Singularity. 

3.4.2 Future plans  

Ultimately the main goal is to combine the whole ML-PPA package, both the physics-

based DT (PulsarDT) and the ML-classifier (PulsarRFI_NN), in a single easily-deployable 

package, efficiently implemented and scalable, plus supply them with a convenient user 

interface. Another goal is to work on the efficient use of parallel computing. 

3.5 T7.2 PulsarRFI_Gen 

Table 5 - PulsarRFI_Gen 

Component name and logo 

 
PulsarRFI_Gen 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-pulsardt-3 

https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/pulsardtpp
mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsardtpp
https://gitlab.com/ml-ppa/pulsardtpp
https://www.intertwin.eu/article/thematic-module-pulsardt-3
https://www.intertwin.eu/article/thematic-module-pulsardt-3
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Description Empirical DT, generating “timeframes”, 2D 

images (time-frequency) with various 

classes of pulsar and RFI signals. This DT 

creates various types of telescope signals 

by mimicking available real data rather 

than generating them from the physical 

first principles as PulsarDT does.  

Value proposition  By using an alternative and 

fundamentally different method of DT 

creation this tool provides comparison for 

PulsarDT/DT++ and substitute training 

data for the ML classifier. 

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsarrfi_gen 

Technical Documentation https://gitlab.com/ml-ppa/pulsarrfi_gen 

Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsarrfi_gen 

3.5.1 Release notes 

The first internal version (v. 0.1) has been released. Assorted related materials, including 

Jupyter notebooks with use examples, are available at GitLab. For a wider context and 

theory behind the whole ML-PPA (including detailed explanations with regard to the 

status of each component) one should refer to [R10]. The tool is well developed and 

already includes most of the functionalities that it should have. It can simulate a wide 

range of various 2D time-frequency “timeframes” very close to those that are produced 

based on real observations. 4 basic types of timeframes are generated: pulse, two kinds 

of radio-frequency interference and just noise, plus two basic types that can be combined 

to create “hybrid” types. Each type can be finely tuned to produce output with different 

signal-to-noise ratios, noise characteristics, signal parameters etc. Timeframes, 

generated by this component, have already been successfully used to train the ML-

classifier, which then can classify the real data with high efficiency. So essentially this is a 

fully functional DT. 

https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_gen
mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsarrfi_gen
https://gitlab.com/ml-ppa/pulsarrfi_gen
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3.5.2 Future plans  

The tool is already working as expected, with little space for improvement and additional 

functionality. It may still be updated in the future, but we do not expect any drastic 

changes. 

3.6  T7.2 PulsarRFI_NN 

Table 6 - PulsarRFI_NN 

Component name and logo 

 
PulsarRFI_NN 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-pulsarrfi_nn 

Description The ML classifier. It is a CNN-based tool for 

the identification of various types of pulsar 

and RFI signals in the “timeframes”, 2D 

images (time-frequency). 

Value proposition  The main tool of the framework, it plays a 

key role in the ML-PPA, see Figure 5. 

Users of the Component  Expert Users and Developers 

User Documentation https://gitlab.com/ml-ppa/pulsarrfi_nn 

Technical Documentation https://gitlab.com/ml-ppa/pulsarrfi_nn 

Responsible  ML-PPA collaboration 

Contact: Yurii Pidopryhora yurii@mpifr-

bonn.mpg.de 

Licence GNU AGPLv3 

Source code https://gitlab.com/ml-ppa/pulsarrfi_nn 

3.6.1 Release notes 

The first internal version (v. 0.1) has been released. Assorted related materials, including 

Jupyter notebooks with use examples, are available at GitLab. For a wider context and 

theory behind the whole ML-PPA (including detailed explanations with regard to the 

status of each component) one should refer to [R10]. The main functionality of this 

component is assigning labels to 2D time-frequency “timeframes”. Each timeframe can 

https://www.intertwin.eu/article/thematic-module-pulsarrfi_nn
https://www.intertwin.eu/article/thematic-module-pulsarrfi_nn
https://gitlab.com/ml-ppa/pulsarrfi_nn
https://gitlab.com/ml-ppa/pulsarrfi_nn
mailto:yurii@mpifr-bonn.mpg.de
mailto:yurii@mpifr-bonn.mpg.de
https://gitlab.com/ml-ppa/pulsarrfi_nn
https://gitlab.com/ml-ppa/pulsarrfi_gen
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be classified into one of the 4 main categories: pulse, two kinds of RFI, or empty, i.e. just 

noise. To do this the tool must be first trained using either real data or that generated by 

either physics-based DT (PulsarDT) or empirical DT (PulsarRFI_Gen). 

3.6.2 Future plans 

This release is stable and can be considered final. However, the main weakness of this 

component is dealing with data with a low signal-to-noise ratio, there is always room for 

improvement in this regard, and that is going to be the focus of the development efforts 

in the future, both in the last year of the project and beyond it. There is also work to be 

done with regard to better implementing distributed training. In a more distant future 

the plans are for the ML classifier to be able to distinguish much more than just 4 basic 

categories of data, ideally to detect physical properties of the signal and RFI components. 

3.7  T7.3 Virgo DT Datastore Services 

Table 7 - Virgo DT Datastore Services 

Component name and logo Virgo DT Datastore Services 

including 

 
GlitchFlow 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-glitchflow 

Description DAGS for the Virgo DT. 

Value proposition  Main component of Training subsystem 

Users of the Component  Expert users and developers 

User Documentation https://github.com/interTwin-eu/DT-

Virgo-

dags/blob/main/Release/README.md  

Technical Documentation https://github.com/interTwin-eu/DT-

Virgo-

dags/blob/main/Release/README.md  

https://www.intertwin.eu/article/thematic-module-glitchflow
https://www.intertwin.eu/article/thematic-module-glitchflow
https://gwpy.github.io/docs
https://gwpy.github.io/docs
https://gwpy.github.io/docs
https://gwpy.github.io/docs
https://gwpy.github.io/docs
https://gwpy.github.io/docs
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Responsible  INFN 

Contacts: Sara Vallero 

(svallero@to.infn.it), Francesco 

Sarandrea 

(francesco.sarandrea@to.infn.it), 

Lorenzo Asprea 

(lorenzo.asprea@to.infn.it) 

Licence MIT 

Source code https://github.com/interTwin-eu/DT-

Virgo-dags/tree/main/Release  

3.7.1 Release notes 

The Virgo DT Datastore services contain the source code of the services responsible for 

storing gravitational waves data. Additional software tools for infrastructure testing are 

included. The services have been designed to be executed inside a cluster running 

Kubernetes. Their Docker images can be found under the repository22. 

The Virgo DT Datastore services comprise of: 

● Data Buffer: a storage service written in Go. It stores gw data as JSON files and 

collects metadata about the infrastructure. 

● Datastore Logic: a web application written with Flask. It performs the datastore 

operations using the functionalities of the Data Buffer service. The service runs 

inside a gunicorn server. 

● GlitchflowAPI: API layer of the infrastructure. Currently Developed using the 

FastAPI Python framework. 

● GWclient: a simple python script for sending data from gw public catalogues to 

the datastore. During platform tests it has been executed from a shell interacting 

with a pod. It relies on the gwpy framework. 

● Client: A collection of shell scripts for sending requests to the datastore. They can 

be used like the gwclient script. 

3.7.2 Future plans  

The next step is to implement an analogous structure for the Inference subsystem, 

achieve full integration with the DTE and update the training API modules with more 

sophisticated deep learning models. 

3.8 T7.7 3DGAN 

In this deliverable the machine learning (ML) model, 3DGAN, is reported. In preparation 

for the integration of the 3DGAN model with the first version of the AI workflow toolkit, 

we have developed a 3DGAN version based on the PyTorch Lightning ML framework. 

 
22 https://hub.docker.com/repositories/romanoa77   

mailto:svallero@to.infn.it
mailto:francesco.sarandrea@to.infn.it
https://github.com/interTwin-eu/DT-Virgo-dags/tree/main/Release
https://github.com/interTwin-eu/DT-Virgo-dags/tree/main/Release
https://hub.docker.com/repositories/romanoa77
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Older previous versions also exist, which are based on the Tensorflow v1 and v2 

framework. The model-AI workflow tool integration can be found under the repository23. 

 
Table 8 - 3DGAN 

Component name and logo 

 

3DGAN  

(Deep Learning model for generation of 

images of calorimeter energy depositions) 

Page on interTwin website https://www.intertwin.eu/article/them

atic-module-3dgan 

Description 3DGAN is a generative adversarial 

network approach that generates High 

Energy Physics (HEP) calorimeter output. 

Calorimeters are special HEP detectors 

that record particles through the 

measurement of the energies deposited 

by them [R11]. 

Value proposition  Detector simulations allow scientists to 

design detectors and perform physics 

analyses. The simulation toolkit that has 

been developed and performs particle 

physics simulations based on Monte 

Carlo (MC) methods is Geant4. 

 

The detailed particle MC simulations are 

inherently slow. Simulations have a 

crucial role in HEP experiments, and at 

the same time are very resource-intensive 

from the computing perspective. 

Therefore, HEP community is highly 

motivated to explore fast alternatives, 

with deep learning based fast simulation 

being the most promising. 

 

3DGAN consists of a fast alternative to 

MC, with remarkable results in terms of 

 
23 https://github.com/interTwin-eu/itwinai/tree/3dgan_analysis/use-cases/3dgan   

https://www.intertwin.eu/article/thematic-module-3dgan
https://www.intertwin.eu/article/thematic-module-3dgan
https://github.com/interTwin-eu/itwinai/tree/3dgan_analysis/use-cases/3dgan
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speed up. 3DGAN was the first effort 

where the detector output was generated 

employing three dimensional 

convolutions, an approach for retaining 

correlations in all three spatial 

dimensions [R11]. 

Users of the Component  Expert Users and Developers 

User Documentation https://github.com/interTwin-

eu/DetectorSim-3DGAN/tree/main  

Technical Documentation https://github.com/interTwin-

eu/DetectorSim-3DGAN/tree/main  

Responsible  CERN & CNRS  

Contacts: Vera Maiboroda 

(vera.maiboroda@cern.ch), Matteo 

Bunino (matteo.bunino@cern.ch ), 

Kalliopi Tsolaki 

(kalliopi.tsolaki@cern.ch), Sofia 

Vallecorsa (sofia.vallecorsa@cern.ch), 

David Rousseau 

(rousseau@ijclab.in2p3.fr)  

Licence MIT 

Source code https://github.com/interTwin-

eu/DetectorSim-3DGAN/tree/main  

3.8.1 Release notes 

The fast particle detector simulation with GAN thematic module consists of two 

inseparable components as we have already discussed in section 2.4, as well as in D7.2. 

These two components are the machine learning framework and the particle simulation 

framework. An implementation of the 3DGAN approach has been developed and a more 

detailed description follows. The code is available on GitHub and it has been tested and 

run on a single Linux node using GPU infrastructure. 

3DGAN is being trained to produce images similar to the ones that are produced by 

Monte Carlo simulations. As the calorimeter detectors consist of layers of cells, those cells 

are modelled as monochromatic pixelated images with the cell energy depositions being 

the pixel intensities. 3DGAN consists of 2 networks, a generator and a discriminator, the 

two networks compete with each other trying to optimise a loss function until the 

convergence point, where the discriminator won’t be able to distinguish the images 

generated by the generator from the real images. Each network is being trained using 3-

dimensional convolution layers to represent the 3 spatial dimensions of the calorimeter 

images. 

https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
mailto:vera.maiboroda@cern.ch
mailto:matteo.bunino@cern.ch
mailto:sofia.vallecorsa@cern.ch
mailto:rousseau@ijclab.in2p3.fr
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
https://github.com/interTwin-eu/DetectorSim-3DGAN/tree/main
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The generator network implements stochasticity through a latent vector drawn from a 

Gaussian distribution. The generator input includes the primary particle’s initial energy 

and the angle at which it entered the detector, concatenated to the latent vector. The 

generator network then maps the input to a layer of linear neurons followed by 3D 

convolutional layers. The discriminator input is an image while the network has only 3D 

convolutional layers. Batch normalisation is performed between the layers and the 

LeakyRelu24 activation function is used for the discriminator layers while the Relu13 

activation function is used for the generator layers. The model’s loss function is the 

weighted sum of individual losses concerning the discriminator outputs and domain-

related constraints, which are essential to achieve high-level agreement over the very 

large dynamic range of the image pixel intensity distribution in a HEP task. The training 

of this model was inspired by the concept of transfer learning. This means  that the 

3DGAN was trained first for images in a limited energy range and after the GAN 

converged, the same trained model was further trained with the data from the whole 

available energy range. 

Currently, the 3DGAN training workflow consists of several other processes, the data pre-

processing process, the model definition, and the training process. The validation and 

hyperparameter optimization processes are under research.  

The dataset used for studying and developing the 3DGAN model [R11] (public dataset) 

consists of calorimeter 3D images/arrays of energy depositions with shape 51x51x25, 

which represent the particle showers. These images were created from simulations 

performed with Geant4 software. The output of the Geant4 simulation is ROOT25 files, 

which need to be converted into a ML-friendly format HDF5 in order to train the model. 

The preprocessing is responsible for preparing (cleaning, scaling, etc.) and converting into 

a suitable format (HDF5 format) the simulated data created by Geant4 (ROOT format). It 

also encodes the input information such as the calorimeter’s geometry identifier, the 

energy of the primary particle initiating the shower, the angle at which the particle enters 

the detector, and also its type and/or initial position. The pre-processed data are then 

passed to the GAN model (currently developed using Tensorflow v1 and v226 , as well as 

in PyTorch Lightning27) for training. The validation process will verify the performance 

through a set of physics-motivated steps, both at the single image quality level and at the 

sample level. 

During pre-processing, simulation inputs are defined and encoded, i.e. the detector 

geometry, the energy and angle of the incoming particle. The performance of the model 

is evaluated during validation processes through the creation of histograms describing 

particle shower observables. Shower observables are among others, total energy 

distribution (sum of all cell energy deposits), cell energy deposits distribution, longitudinal 

profile which represents the energy deposited by a shower as a function of the depth of 

 
24 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)  
25 ROOT: https://root.cern/  
26 Tensorflow: https://www.tensorflow.org/  
27 PyTorch Lightning: https://lightning.ai/  

https://zenodo.org/record/3603086#.ZDhB8c5Byqi
https://root.cern/
https://www.hdfgroup.org/solutions/hdf5/
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://root.cern/
https://www.tensorflow.org/
https://lightning.ai/


D7.8 Final version of the thematic module for the physics domain 

38 
interTwin – 101058386                          

the calorimeter and lateral profile which represents the energy density distribution as a 

function of the radius of the calorimeter. Moreover, the physics-based validation process 

will include accuracy verification of those key distributions' first moments and precise 

evaluation of the tails of distributions that usually require larger amounts of samples. The 

original data coming from Geant4 and the 3DGAN data distributions will be compared 

during this evaluation process. 

Concerning the particle simulation framework, there have been testbeds developed at 

CERN that incorporate different ML models than the 3DGAN. Our current focus doesn’t 

include integrating the 3DGAN model in the simulation framework that uses the Geant4 

environment. An example of the use of ML techniques for the fast detector simulation 

and how to incorporate inference libraries into Geant4 is the Par04 example developed 

by the Geant4 community and can be found on CERN Gitlab28. The ML model used in this 

example is a Variational Autoencoder (VAE), trained externally in Python on full Geant4 

detector simulation response data.  

The training of 3DGAN implemented in PyTorch Lightning and itwinai29, was conducted 

on JSC computing resources, utilizing restricted energy range (100-200 GeV) data for 130 

epochs and full energy range (2-500 GeV) data for 30 epochs per half of the dataset due 

to memory constraints. The model conditioning includes theta angles (60°-120°) and 

primary energy levels (2-500 GeV), ensuring uniform distribution across the dataset. The 

trained weights are available for inference. The dataset consists of electron showers in a 

51×51×25 voxel grid.  

The initial prototype was implemented in TensorFlow/Keras, and its parameterization 

was precisely replicated during the transition to PyTorch Lightning. While the PyTorch 

version does not perform as well as the Keras prototype, it still captures most underlying 

event generation patterns effectively. 

Before inference, the training loss was closely monitored, with the best PyTorch weights 

selected based on validation loss. Both TensorFlow and PyTorch-trained weights can be 

used for inference, providing flexibility. The model’s performance was evaluated using 

physics analysis plots, including 2D projections, which compare GAN-generated events to 

Geant4 (G4) simulated data. The results, available for both frameworks, highlight the 

model’s capability to reproduce complex shower patterns (see Figure 12 and Figure 

13). 

 
28 https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04  
29 https://github.com/interTwin-eu/itwinai  

https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
https://github.com/interTwin-eu/itwinai
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Figure 12 - 2D Projections of Electromagnetic Showers Generated Using PyTorch-Trained 3DGAN Weights. The 

projections are shown for the XY, XZ, and YZ planes at Ep = 150.34 GeV and θ = 90.02°, comparing Geant4 

simulated data (top row) with GAN-generated events (bottom row). The color scale represents the normalized 

energy deposition intensity. 

 

 

Figure 13 - 2D Projections of Electromagnetic Showers Generated Using TensorFlow-Trained 3DGAN Weights. The 

projections are shown for the XY, XZ, and YZ planes at Ep = 150.34 GeV and θ = 90.02°, comparing Geant4 

simulated data (top row) with GAN-generated events (bottom row). The color scale represents the normalized 

energy deposition intensity. 

 

The TensorFlow model exhibits a tighter, more concentrated core in the projections, 

closely matching the G4 simulation, particularly in the XZ and YZ planes. The energy 

deposition is more symmetric with smoother gradients around the core. The PyTorch 

model shows increased dispersion, with the core appearing broader and less uniform, 

especially in the YZ projection. This suggests the PyTorch model current state captures 

the overall shower pattern but struggles with fine-grained details. Though, both models 

capture the high-intensity core (red regions). 
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While the PyTorch model effectively replicates the general shower structure, the 

TensorFlow model demonstrates superior performance in terms of spatial accuracy, 

angular precision, and smoother energy deposition profiles. This aligns with the 

observation that the PyTorch version, despite capturing the main patterns, currently 

underperforms compared to the Keras prototype, especially in the angular 

reconstruction and shower shape fidelity. Further tuning of the PyTorch model — 

adjusting learning rates, loss functions, or regularization techniques — could help bridge 

this performance gap. 

 

3.8.2 Future plans  

The developments of the thematic module are almost completed from the aspect of the 

3DGAN component. Studies might be conducted on existing solutions for parallel training 

and hyperparameter optimization, but are not essential. The implementation of the 

CaloINN component is in progress. Simultaneously, the validation of the CaloINN 

algorithm on different detector simulations is also underway. In collaboration with the 

HEP community, different validation techniques are studied with the goal of identifying 

the technique most aligned with the needs of the fast detector simulation use case.  

4 Conclusions 

This report provides an overview of the final version of the thematic modules for the 

physics domain. It presents the status of the developments for each thematic module in 

T7.1 Lattice QCD simulations, T7.2 Noise simulation for radio astronomy, T7.3 GAN-based 

thematic modules to manage noise simulation, low-latency de-noising, and veto 

generation for gravitational waves, and T7.7 Fast particle detector simulation with GAN. 

The development of all thematic modules has significantly advanced, and in some cases 

can be considered completed in the sense that the released software is stable and the 

main development goals as related to the corresponding use cases have been achieved 

(but there still may be small improvements and updates made in this last year of the 

project). 

Basic information about the 8 thematic modules in the physics domain has been 

presented in this report through a common template, along with release notes and future 

plans. It is important to mention that, even though this document presents the final 

version of the thematic modules, additional developments are expected in the remainder 

of the project, driven among other things by the integration with the DTs applications and 

the rest of the DTE. The final developments will be presented in the integration report 

D7.10. 

In terms of integration current activities, the physics thematic modules are already using 

some infrastructure (WP5) and core (WP6) components from the project and stronger 

integration is planned for the remainder of the project. 
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The normflow package of T7.1 has been integrated with the SQAaaS module (T6.2) and 

has a Silver SQAaaS badge at present. In T7.7 workflow execution by OSCAR (T6.1) was 

integrated to showcase the inference process execution. Several thematic modules of 

WP7’s physics domain are integrating the itwinai framework (T6.5) capabilities. In 

particular, in T7.1 integration is focused on the distributed training and logging features 

provided by itwinai, with the lattice use case now available in the itwinai repository. See 

Figure 3 for an overview of the structure of WP7.1 and its integration with the other WPs. 

In T7.2 there is progress towards using itwinai distributed training with PulsarRFI_NN. In 

T7.7 the training and inference processes of the model have been integrated with the 

itwinai framework, and can be found under the following repository. The integration of 

DTE modules enabled Particle Detector DT development by offering tailored services and 

platforms designed to optimize data and AI workflow management. The AI workflows 

framework, facilitated by itwinai, supports efficient model training and testing on FZ 

Juelich resources. Along with 3DGAN, another detector simulation generative model with 

a different architecture, CaloINN, is currently being integrated to the itwinai framework. 

At the infrastructure level (WP5), evaluation of the components on the project testbeds 

(e.g. DESY and Vega HPC centers) started. Interactions with WP5 are also ongoing as part 

of the data needed by the DTs has been made available from the project data lake (T5.2). 

For T7.1, a small test data set was given to DESY for data lake testing. Now file transfer 

over an FTS connection between DESY and CESGA is being tested as a precursor to the 

establishment of a Lattice Data Lake. In T7.2 the data lake / Rucio was tested by providing 

a small test dataset to DESY and Vega HPC centers. Also, for both of them the deployment 

of the ML-PPA components was successfully tested. In T7.3, some preliminary integration 

was performed with the DTE core modules by moving a subset of the proprietary data, 

the auxiliary channels of the Virgo interferometer, on the Vega HPC, which is part of the 

data lake. This was achieved by creating a dedicated Virtual Organisation (VO) in Rucio, 

which allows the transfer of the data and makes it visible exclusively to the people 

affiliated with the Virgo experiment. In T7.7, project-related data is added to and made 

accessible via the project’s data lake, to ensure streamlined data availability, while 

federated computing capabilities were enabled through InterLink (T5.1), further 

enhancing inference tasks. 

To conclude, the key activities foreseen as next steps will focus on: 

● improvement and, where necessary, finalization of the thematic modules 

capabilities required to fully support the physics use cases and DT applications 

from WP4; 

● strengthening and completing integration with the interTwin DTE core (WP6) and 

infrastructural (WP5) components. 

 

  

https://github.com/interTwin-eu/itwinai/tree/lattice-qcd/use-cases/lattice-qcd
https://github.com/interTwin-eu/itwinai/tree/main/use-cases/3dgan
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