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Abstract 

Key words AI Computing Platform, Model Hub, Job Offloading, Provenance, AI in 
Environmental Sciences, AI in Life Sciences, Data Exploitation Platform 

The Data Exploitation Platform (DEP) enables Research Infrastructures (RIs) to scale their AI 

applications across large-scale computing infrastructure, such as on cloud and High Performance 

Computing (HPC) systems, and enables scientists to train and/or run AI models at scale with RI 

scientific data. Work Package (WP) 3 plays a central role in enabling these capabilities by providing 

the technical solutions needed to integrate AI functionalities in the DEP.  

This deliverable outlines the technical specifications of the AI solutions proposed in WP3 for the 

DEP, detailing their main features, planned developments and integrations. The document also 

presents user stories that illustrate scenarios of accessing the DEP for different kinds of users. 

These stories highlight the DEP access mechanisms and the role of the software solutions in the 

DEP. The AI applications and their compute and data requirements are also defined in this 

document. These requirements and the user stories guide the modular architecture of WP3, which 

enables flexible and customizable definition of workflows for DEP users. Finally, the document 

proposes the creation of testbeds, which form the methodological basis for realizing the technical 

implementations in the DEP. 
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WP Work Package 
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Executive Summary 
The Data Exploitation Platform (DEP) enables Research Infrastructures (RIs) to scale their AI-based 

and data-driven applications on large-scale computing infrastructure and enables training and/or 

inference of AI models at scale with RI scientific data. Work Package (WP) 3 delivers the essential 

tools and solutions within the DEP for the AI functionalities. This deliverable provides the technical 

specifications of the software solutions that have been identified in the initial phase of the project. 

The specifications include a summary of the primary functionalities, the gaps in the technologies and 

the integrations that are planned among these components.  

The DEP is formed by multiple containers developed by the technical WPs and use case providers in 

RI-SCALE. In this document, the modular architecture of the components in WP3 is presented and 

their interaction with the other containers in the DEP is elaborated. The WP3 architecture is based on 

a modular and flexible framework, which allows users to define their custom workflows. The 

computing framework in this architecture allows access to cloud and High Performance Computing 

(HPC) resources. The design of the architecture is complemented by user stories that describe 

scenarios for different kinds of DEP users and how they will access the DEP for their AI-centric data 

analysis workflows.   

Besides, this document also presents the AI applications themselves and their compute and data 

requirements. These are used to formulate the specifications of the technical solutions that are 

proposed in WP3. Furthermore, to implement these AI solutions and the integrations, the document 

also highlights the methodology adopted in the form of testbeds. These testbeds or pilots provide 

the basis for development efforts and guide the roadmap to achieve the required technological 

solutions. 

This document provides the foundation for the development and implementation of the AI-based 

services in the DEP, ensuring that the technical solutions meet the requirements of the RIs. Also, the 

document provides the DEP release timeline when each requirement shall be delivered, thereby 

supporting a coordinated implementation of the technical solutions. 
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1.​ Introduction 

Artificial Intelligence (AI) technologies provide one of the core functionalities to the DEP in the 

RI-SCALE project. They provide RIs with scalable platforms for data exploration and utilization, 

enabling discovery and continuous learning. In this deliverable, details are provided on the AI 

technological solutions that will be developed and/or extended during RI-SCALE. The AI solutions 

will be developed by different associated partners in the project, with many of the developments 

based on outcomes of previous European and national projects.  

The solutions will provide the necessary tools and technology for enabling AI-based functionalities in 

the DEP. This document also provides the functional and non-functional WP3 requirements in the 

Annexure (based on identified requirements in D5.1 - Data Exploitation Platform Requirements and 

Design Considerations [R1]), specifying the DEP release timeline when each requirement will be 

delivered. These technologies serve as the backbone for the “AI Lifecycle Management” container in 

the DEP (shown in Section 2). The primary functionalities provided by this container are: 

●​ AI Computing Framework; 

●​ Support for distributed training and inference; 

●​ AI Model Hub; 

●​ AI training/inference offloading; 

●​ Hyperparameter optimization (HPO); 

●​ Profiling and Performance Benchmarking; 

●​ Provenance tracking; 

●​ AI metrics logging; 

●​ User Interfaces: Chatbot, Jupyter-like solutions. 

The deliverable also discusses the AI applications involved in WP3 in Tasks 3.3 and 3.4. These tasks 

contribute to the scientific and technical use cases in WP5, which form the validation backbone for 

the DEP. WP3 focuses on developing AI applications in the environmental, health and life sciences 

domains, encompassing model development, training, inference, and deployment across the full 

MLOps lifecycle. In WP3, the AI software solutions developed in Tasks 3.1 and 3.2 work together with 

the applications to support all the steps to enable the Machine Learning (ML) workflows. The 

deliverable also discusses the data and compute requirements from the use-case perspective. These 

requirements guide the technical capabilities that the software solutions need to provide in order to 

drive the use case development. This is hence critical to the realization of the scientific and technical 

use cases in WP5.  
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To meet the RI-SCALE requirements, integrations among the AI solutions have to be developed 

during the project. The deliverable provides a summary of already achieved and planned integrations. 

Furthermore, testbeds will be used to implement and validate these integrations. These testbeds will 

support integrations not only among the technical solutions, but also across all the AI applications, 

ensuring interoperability and directly contributing to the realization of the Scientific Use Cases 

(SUCs).  

Finally, the deliverable also discusses the overall architecture of the “AI Lifecycle Management” 

container within the DEP landscape. The components within this container are discussed in detail 

and their internal interactions are provided. Also, the workflows involving DEP developments from 

WP2 and WP4 are explored in this architecture. In practice, this will drive the entire pipeline of the 

DEP. 

1.1.​ Scope of the Deliverable 
This deliverable provides the specifications of the AI technical solutions, architecture and 

applications in WP3. The presented architecture illustrates the workflow between WP3 components 

and also the interactions with the other components in the DEP, which are developed in WP2 and 

WP4. Overall, the identified architecture serves as a blueprint for designing and implementing the 

AI-based workflows in the DEP. For the software solutions, the document describes their current 

status, the technological gaps and the planned integrations with the AI applications, which 

contribute to the SUCs. The deliverable provides a roadmap to realize these integrations. A 

conceptual DEP workflow (involving WP2 and WP4) is discussed; however, low-level details will 

become clearer in the later phases of the project.  

1.2.​Document Structure 
The document is structured as follows: The WP3 architecture is presented in Section 2, showing the 

workflow within WP3 and also to other containers in the DEP. User stories are provided to show DEP 

access scenarios. In Section 3, details on the technology solutions developed in WP3 for delivering 

the AI capabilities in the DEP are provided. The AI applications are elaborated in Section 4 along with 

their compute and data challenges. The proposed testbeds that will guide the WP3 methodology are 

presented in Section 5. Finally, the main summary of the document and future steps of WP3 are 

provided in Section 6. 
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2.​WP3 Architecture in DEP Landscape 
In this section, the WP3 architecture is presented, along with its contribution to the overall DEP 

landscape. In Section 2.1, the functionalities offered by the DEP platform are elaborated in terms of 

the user interactions, by introducing different kinds of users and their goals of accessing the DEP. 

Based on these users, multiple user stories are presented in the form of scenarios. These describe in 

detail the steps and software components that are required to enable these scenarios. Then, in 

Section 2.2, the overall WP3 architecture is shown, which takes into account the presented user 

stories. 

2.1.​Data Exploitation Platform and User Stories  
DEPs enable RI data holdings to expand their services with ‘online data analysis’, by partnering with 

external compute facilities where data is replicated and served for user analysis.   

The challenges and limitations RIs face that DEP is designed to address are: 

1.​ Lack of on-site compute: Limited compute and storage provisioning at RI data holding sites 

hinders data quality control, data product improvement (incl. FAIR-ification) and the 

widespread uptake of data by the broader user community for analysis; 

2.​ Large data downloads and data management: Large datasets are cumbersome and 

time-consuming to download for an individual researcher; moreover, separate storage and 

compute systems may use different access control mechanisms; 

3.​ Complex software: Installing and configuring software stacks for running environments for 

data science (e.g., with AI, Digital Twins (DTs), Trusted Research Environments (TREs) or 

Secure Processing Environments (SPEs)) presents a major barrier to users. 

A DEP fundamentally acts as an extension of an RI, a new service that is connected to the RI data 

holding and offers online data analytical services for data processing. In the RI-SCALE project, DEPs 

are specifically designed to support AI-based analysis.  

The main connections and main users of a DEP are: 

1.​ The end user of a DEP is the main beneficiary. They want to explore and browse the relevant 

datasets from an RI to perform data analysis, replicate this data from the holding to the 

compute facility that operates the DEP environment, and choose a pre-configured, 

pre-trained AI model to analyse the data with inference runs. Typically, end users have direct 

access to the DEP, and they are authorised RI users who run the models on data and share 

the outputs with other authorised users; 

RI-SCALE 101188168​ ​ ​ ​ ​ ​ ​ ​          www.riscale.eu 
12 

http://www.riscale.eu


D3.1 – AI Systems and Models Specification and Roadmap 

2.​ Model developers create and deploy new AI models within the DEP. They either use 

off-the-shelf 3rd party models, or develop their own models, then train the models with RI 

data, and share the validated models via the DEP with the end users; 

3.​ DEP operator deploys, configures and operates the DEP environment within a compute 

centre, and ensures its proper connections to external systems. These connections include 

links to the data holding(s), to AI-model stores and to identity management systems that are 

supported by the specific DEP installation. 

Based on the project objectives, the main goals of the DEP are:  

●​ Replicate and manage copies of big scientific data from RI repositories and Data Spaces to 

and on high-performance and cloud compute resources; 

●​ Facilitate the use of AI applications for scalable data analysis; 

●​ Support real SUCs with big scientific data and AI applications; 

●​ Enable seamless access to users to resources and services across the entire value chain; 

●​ Track and report resource and service consumption during the entire usage workflow; 

●​ Increase the AI-based data exploitation and data mining capacity and resources of RIs. 

Requirements defined in project deliverable D5.1 [R1] set numerous principles for the DEP, which are 

linked with these goals. These requirements also describe high-level activities which aided in the 

identification of the three user groups described above, and what they are expected to do with the 

DEP.  

The activities for the end user are: 

●​ Explore and flag  relevant datasets from a research infrastructure or data space; 

●​ Explore and choose a pre-configured and pre-trained AI model to analyse the data; 

●​ Perform data analysis on the RI data; 

●​ Export/share/use the results of data analysis. 

Activities for model developers are of two types. Firstly, there are activities which are linked with 

new AI model development, and secondly, there are activities with existing models.  

The activities with new models are to: 

●​ Create a new AI model; 

●​ Deploy the new AI model for training; 

●​ Train a new AI model with RI data; 

●​ Validate new model accuracy; 

●​ Share the new validated model in one or multiple DEP(s). 

RI-SCALE 101188168​ ​ ​ ​ ​ ​ ​ ​          www.riscale.eu 
13 

http://www.riscale.eu


D3.1 – AI Systems and Models Specification and Roadmap 

The activities with existing models are to: 

●​ Select an existing model for retraining; 

●​ Associate the existing model and the training data; 

●​ Train an existing or 3rd party AI model with the data; 

●​ Validate an existing model's accuracy; 

●​ Share the old validated model in one or multiple DEP(s). 

The third identified user of the DEPs is the DEP operator. This role is responsible for the following 

activities: 

●​ Deploy, configure and operate the DEP environment within the compute centre; 

●​ Ensure DEP environment connection to external systems (AAI, AI model stores, data 

holdings, etc.); 

●​ Ensure DEP's infrastructure availability and continuity; 

●​ Manage DEPs’ infrastructure incidents and service requests; 

●​ Ensure infrastructure capacity for DEPs; 

●​ Report DEP's resource usage. 

For the various kinds of users identified above, the following sections elaborate on user stories 

focused on AI model development, operation or use for data analytics and other applications. These 

stories or scenarios build up the functionalities that need to be provided by the DEP. Here, 

specifically, the AI technologies that are developed in WP3 to provide solutions to the users are 

specified. It is important to mention that the examples are non-exhaustive and they are intended to 

provide instances where these functionalities are exploited through the DEP. The DEP responses are 

guided by the WP3 architecture described in Section 2.2. Further, the WP3 software solutions 

(itwinai, interLink, yProv4ML, AI Model Hub) that are referenced in the scenarios below are described 

in Section 3. These scenarios also involve DEP components from WP2 and WP4, which are 

elaborated in D2.1 and D4.1. 

Scenario 1 (End user): I want to use existing AI model(s) to analyze/benchmark my selected dataset 

from the RI. 

Steps DEP response 

Login to DEP with AAI-monitored 
credentials 

Authenticates user via AAI (from WP4) and provides 
role-based access 

Pull, search and filter, and flag one or 
more datasets for analysis  

WP2 components (RUCIO and other developments) make 
the required data available from the cached source or 
newly replicated from RI to the compute center 
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Browse the catalogue of available AI 
model(s) in Model Hub and select 
the required model 

AI Model Hub provides an interface to browse models 
released by developers and sends the required model(s) to 
the runtime environment provided by itwinai and interLink 

Configure model inference 
parameters and execute the model 
run 

itwinai provides an inference pipeline definition interface. 
This is provided to interLink, which launches the job in the 
compute facility, if user credit is available (given by AAI) 

Analyze/benchmark, visualize and 
export results 

Visualize and benchmark model performance, show 
training metrics and provenance information through 
itwinai/Mlflow/yProv4ML through various interfaces. 
Export options include storage solutions provided by WP2 

Scenario 2 (End user): Reuse or reanalyze previously analyzed model and data  

Steps DEP response 

Login to DEP with AAI-monitored 
credentials 

Authenticates user via AAI and provides role-based 
access 

Reload some dataset and model RUCIO makes the required data and model available from 
cache or short-term storage 

Modify model inference parameters itwinai provides model definition functionalities in the 
form of configuration files, where inference parameters 
can be edited 

Run the defined pipeline and 
visualize the results 

The defined pipeline is launched on the chosen 
infrastructure by interLink 

Scenario 3 (Model Developer): Develop and deploy a new AI model, and perform HyperParameter 

Optimization (HPO) 

Steps DEP response 

Login as a DEP user in the 
development model 

AAI grants access to the development environment 

Load required modules, tools and 
access training data 

itwinai provides a development interface (e.g. Jupyter-like 
interfaces, CLI, etc.) in containerized or Python virtual 
environment; RUCIO provides access to the required 
training data for preprocessing and training 

Build and train a new AI model, select 
a distributed training strategy, 
perform HPO and validate the model 

itwinai provides training/validation definition to interLink, 
which launches the training/HPO job on the selected 
compute center, when credit is available (provided by 
AAI) 

Package and register the final model Registers the model in AI Model Hub 
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Share the model with users AI Model Hub publishes a model with access control and 
versioning 

 
Scenario 4 (DEP Operator): Check provenance information, track resource usage, and compile 

performance statistics 

Steps DEP response 

Collect provenance logs and usage 
metrics 

yProv4ML/itwinai provides provenance information, 
profiling, energy and performance metrics  

Link usage to a specific project or 
users 

Subject to privacy considerations, AAI provides 
job-specific user information 

Generate performance and usage 
reports 

Generates reports (e.g. profiling provided by itwinai) for 
administrative purposes and dissemination to 
stakeholders 

Highlight bottlenecks or 
under-utilized resources 

Administrators use information to advise developers to 
improve the performance of identified bottlenecks  

These scenarios and the requirements gathered in deliverable D5.1 [R1] provide the basis for the 

development of the software solutions in WP3.  

2.2.​WP3 Architecture and its Purpose within DEP 
Here, the WP3 architecture is discussed in detail in a C41 model-based diagram. Figure 1 shows the 

overall DEP architecture in the RI-SCALE project. As can be seen, the DEP consists of components 

provided by WP2, WP3 and WP4, which are: 

●​ Replicated Data (WP2): The data that is replicated from the data holdings at the RIs is 

accessible through this container or repository; 

●​ Data Lifecycle Management (WP2): This is the primary data orchestration and integration 

service, which allows other containers to access the replicated RI data; 

●​ Credit Management (WP4): The user resource consumption on the compute and data 

centers is managed by this container; 

●​ Access Control (WP4): This container provides the authentication mechanism for accessing 

the computing infrastructure; 

●​ AI Lifecycle Management (WP3): This container provides the AI tools that will be used by 

the use-cases to run their ML workflows. This container is further discussed in detail below; 

1 C4 model: https://c4model.com/, accessed on 15.08.2025 
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●​ Technological Validations and HPC: The technological validations are carried out in the 

compute and data centers associated with the project. Besides, provisioning of EuroHPC 

resources is also expected to run some use cases. 

 

 

Figure 1: DEP Architecture including all Components in RI-SCALE, with the “AI Lifecycle Management” 

Container highlighted with the Red Rectangular Box 

The detailed component view of the “AI Lifecycle Management” container is shown in Figure 2. In the 

course of the project, necessary changes to this architecture might be adopted. The main 

components, their features and interdependencies that are envisioned are elaborated below: 

●​ AI Framework (itwinai): This component is provided by itwinai (elaborated in Section 3.1), 

with features such as distributed training, HPO, etc. It provides model data to the 

“Provenance” component, logs metrics to “Metrics Logger” and creates model checkpoints in 

the “AI Model Hub”. 

●​ Job offloading and abstraction (interLink): This component abstracts the offloading and 

triggering of ML training and inference workflows in WP3 to “Compute”, such as cloud and 

HPC infrastructure. Further details are provided in the definition of interLink in Section 3.2. 

This component needs to be authorised by the “Access Control” container. Components 

such as “AI Model Hub”, “AI Framework”, and “Inference API” provide definitions for the jobs 

to be launched. For example, these definitions could also include storage of data through the 

“Data Lifecycle Management” container. 

●​ AI Model Hub (BioEngine, Hypha): This component is provided by BioEngine and Hypha 

(defined in Section 3.3), which provides the model serving platform and deployment. It 

provides the required models to the “Inference API” component and stores models on the 

“Compute” container. 
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●​ Provenance (yProv4ML): This component (described in Section 3.5) provides provenance 

information on the ML models. It receives data from the “AI Framework” component and 

“Data Lifecycle Management” container. 

●​ Metrics Logger (itwinai, Mlflow, yProv4ML): This component is provided by a collection of 

different technological solutions, which enables a user to choose a logger of their choice. It 

logs various ML metrics, not only from the model perspective, but also looking at energy 

consumption, GPU utilization, etc. 

●​ Inference API (itwinai, BioEngine): This component provides the necessary interfaces to 

launch inference pipelines. It loads models from the “AI Model Hub” and the inference 

definition from the “Training/Inference Pipeline Definition”. 

●​ Training/Inference Pipeline Definition (itwinai): This component provides the configuration 

to launch training and inference of ML models. It provides a centralised solution to define 

hyperparameters, workflow steps and other job definitions. 

 

Figure 2: WP3 Architecture elaborating the Components in WP3 and their Dependencies 

In the context of the users, the “Model developer” directly interacts with the pipeline definition 

component to define their ML workflows. The “DEP End User” interacts with the DEP as a whole 

through an interface, which will be defined over the course of the project. 
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This architecture will evolve depending on the project requirements. In particular, to address the 

needs and developments from WP2 and WP4, the interactions will be further refined after 

discussions. Given the overall modular structure of the workflow and the components themselves, 

the needs of RIs can be incorporated for each component in WP3.  
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3.​Technology Solutions in WP3 
WP3 brings together a set of complementary technology components designed to provide a 

coherent foundation for deploying, executing, and managing AI-driven scientific workflows within 

the DEP. These components span the full lifecycle of AI applications, from workflow orchestration 

and scalable computation (itwinai, interLink) to model hosting, discovery, and execution (AI Model 

Hub, BioEngine), and from interactive, user-facing interfaces (BioImage.IO Chatbot) to provenance 

capture and reproducibility (yProv4ML). While each component addresses distinct technical 

challenges, they are designed to interoperate through standardised APIs, shared metadata models, 

and common deployment patterns, enabling them to be combined into end-to-end workflows. 

Together, they form a flexible and modular toolkit capable of supporting diverse scientific domains, 

while remaining adaptable to the evolving requirements of RI-SCALE use cases and the DEP 

architecture. 

This section provides an overview of the identified technology solutions in WP3. Each component is 

briefly introduced with links to the source code and documentation, and component features. The 

identified gaps in the technology and developments planned within RI-SCALE are also provided. 

Finally, the planned integrations with other components in WP3 are presented.  

3.1.​itwinai 
itwinai2 is an open-source Python-based toolkit that provides a wide range of functionalities 

intended to accelerate AI and ML workflows. Although developed as the core module of a Digital 

Twin Engine (DTE) in the interTwin project3 to deploy DTs for various scientific applications, itwinai is 

versatile and can support any generic ML application. However, as the library is developed to assist 

scientists in minimizing their AI development effort and tested across a multitude of scientific 

applications, it is suitable in the context of the RI-SCALE project. Itwinai also includes detailed 

documentation and allows easy adoption for new users, ensuring ease of deployment on diverse 

computing environments.  

Itwinai has already been ported to and tested on various Tier 0/1 HPC and EuroHPC systems across 

Europe. This includes, besides others:  

●​ LUMI supercomputer4,  

●​ JUWELS Booster system5,  

●​ Vega supercomputer6, and  

6  Vega https://izum.si/en/vega-en/ 

5  JUWELS Booster https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html 

4  LUMI https://www.lumi-supercomputer.eu/ 

3  interTwin https://www.intertwin.eu/ 

2  itwinai https://itwinai.readthedocs.io/latest/ 
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●​ JUPITER Booster7, the first exascale supercomputer in Europe.  

Furthermore, it has also been tested on cloud infrastructure, such as the JSC Cloud8, allowing users 

to choose among their preferred infrastructure. 

3.1.1.​  Component Status Overview 

The library is already at an advanced stage in its development process and is suitable for both 

advanced and new AI practitioners.  

The main functionalities provided by itwinai are: 

●​ Distributed training and inference: itwinai supports various distributed training frameworks 

such as PyTorch DDP9, Horovod10, DeepSpeed11, and TensorFlow 

MultiWorkerMirroredStrategy. Each of these frameworks can perform differently depending 

on the dataset, model, and infrastructure. The intention behind providing the user with this 

choice is to allow benchmarking of their use cases with different frameworks. A user can 

simply specify the required strategy in the input configuration file to deploy their model. 

●​ Logging: itwinai provides built-in support for MLflow12, Weights & Biases13, and 

TensorBoard14. Similarly as is the case for the strategy above, the user can choose their 

preferred logger(s) in the input configuration file. 

●​ Modular workflows: Users can easily plug and play components in their ML workflow 

definition in itwinai. For instance, users can replace and/or customize one or more steps in 

the ML pipeline definition, while still exploiting the features provided by the library. 

●​ Profiling AI training and inference: In large-scale AI training and inference, tracking 

performance is essential in order to improve efficiency and to enable better utilization of 

compute resources. itwinai provides built-in support to profile ML runs and easily track lines 

in the code which lead to major bottlenecks. This was especially useful in the context of a 

use case in interTwin, where an ML training run achieved a speed-up of about 70% with the 

help of the profiler provided by itwinai. 

●​ HPO: itwinai provides built-in support to perform HPO, which is enabled with the Ray15 

framework. Computationally, large-scale HPO is only possible on HPC resources by 

performing individual HPO trials on different workers. In itwinai, users can parallelize 

individual trials using data-parallel distributed training for individual trials. 

15 Ray Tune https://docs.ray.io/en/latest/tune/index.html 

14 TensorBoard https://www.tensorflow.org/tensorboard 

13 Weights & Biases https://wandb.ai/site/ 

12 Mlflow https://mlflow.org/ 

11 DeepSpeed https://github.com/deepspeedai/DeepSpeed 

10 Horovod https://github.com/horovod/horovod 

9  PyTorch DDP https://docs.pytorch.org/tutorials/intermediate/ddp_tutorial.html 

8  JSC Cloud https://apps.fz-juelich.de/jsc/hps/jsccloud/index.html 

7  JUPITER Booster https://www.fz-juelich.de/en/ias/jsc/jupiter/tech 
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●​ Plugins: itwinai also allows users to develop their use cases in plugins, which allow 

independent development of use cases. In the interTwin project, this has been widely used 

across a multitude of use cases. A list of the currently available plugins can be found on the 

documentation page16. 

●​ Support for containerized execution: The itwinai packages are available in the form of 

Docker container images, allowing users to run it in Docker environments, both for 

production and deployment. This has already been useful in the context of many use cases, 

especially for the work with interLink (more details in the next section). 

User Documentation: https://itwinai.readthedocs.io/latest/ 

Source code: https://github.com/interTwin-eu/itwinai/tree/main 

Licence is Apache 2.0 

3.1.2.​  Identified Gaps and Developments planned in RI-SCALE 

In RI-SCALE, the itwinai package will be extended to include functionalities to allow the use cases to 

deploy their scientific applications. Based on the requirements gathered in deliverable D5.1 [R1], the 

gaps in technological solutions that need to be further provided by itwinai are identified. Based on 

these gaps and also the long-term vision for the itwinai package, the following developments are 

planned during the RI-SCALE project. This is non-exhaustive, and further features will be added 

depending on the scientific and technological requirements.  

●​ Support for model parallelism: At present, itwinai primarily supports data-parallelism. With 

the DeepSpeed framework, certain model parallelism is possible, but this is somewhat 

limited. Since large-scale models such as for training foundational models could potentially 

require distribution among workers, development of model parallelism features is also 

planned in itwinai. 

●​ Support for training and fine-tuning foundational models: The SUCs in RI-SCALE are also 

working on training and fine-tuning foundational models. Support to enable these 

developments will be extended in the itwinai package such that tailored modules for such 

model training and inference are available. 

●​ Development of User Interface: In line with DEP architectural requirements, the user 

interface for itwinai will further be tailored to project needs. Based on further discussions 

within the technical work packages, this feature will be developed. 

●​ Integration with RI-SCALE compute and data providers and other EuroHPC sites: itwinai 

will be integrated with the sites at TUBITAK and TU Wien to allow the development of use 

cases. Furthermore, depending on access (for example, with DestinE provided resources), 

other EuroHPC sites will also be integrated. 

16 itwinai plugins https://itwinai.readthedocs.io/latest/getting-started/plugins-list.html 
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●​ Logging integration in DEP user management: Additional features in the logging tool will be 

integrated, such as providing user-specific access control to logs. 

●​ Inclusion of additional HPO features and automation: Depending on use-case requirements, 

additional features in the HPO module of itwinai will be developed, in particular with respect 

to automation of the trial runs.  

●​ Advanced post-processing routines and advanced visualization tools: Further 

post-processing and visualization tools will be supported during the course of the project.  

●​ Testing of GROQ cards: In order to support GROQ cards, itwinai will provide the necessary 

software layers to enable their deployment. 

●​ Compliance with data management and access solutions: This feature development will be 

in collaboration with WP2 and WP4 to ensure proper functioning of the DEP.  

3.1.3.​Planned integration with other components in WP3 

The main integrations of itwinai with other technical solutions identified in WP3 are: 

●​ interLink: During the interTwin project, itwinai and interLink have already been integrated, 

where scientific applications in the project were tested on HPC systems, such as at the Vega 

supercomputer. In RI-SCALE, these integration test pilots will be utilized for deploying the 

use-cases on the computing infrastructures in the project through interLink. 

●​ AI Model Hub: The integration of itwinai with the AI Model Hub, along with the BioEngine, 

will allow workflows defined in the itwinai configuration files to pull models and launch them 

on the selected infrastructure through the Inference API that will be developed during the 

project. Furthermore, the trained models will also have access to the Model Hub to create 

checkpoints and provide model releases. 

●​ BioImage.IO Chatbot: The BioImage.IO Chatbot provides a state-of-the-art user experience 

for running inference on ML models, which has already been demonstrated in the use cases 

on life sciences. For itwinai, integrations will be planned to potentially allow exposing the 

itwinai frontend to the Chatbot. The details will be clearer over the course of the project. 

●​ yProv4ML: Early demonstrators on integration of yProv4ML with itwinai have already taken 

place during the interTwin project. This will be further enhanced in the RI-SCALE project. 

Other than that, the integrations with the AI applications (defined by Tasks 3.3 and 3.4) are 

envisioned by the development of test pilots (see Section 5).  
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3.2.​  interLink 
interLink is an open-source service to enable transparent access to heterogeneous computing 

providers. It provides an abstraction for the execution of a Kubernetes pod on any remote resource 

capable of managing a Container’s execution lifecycle. 

The aim is to provide an open-source solution capable of extending the container orchestration de 

facto standard (Kubernetes) to support offloading to any type of resource provider 

(Cloud/HTC/HPC) transparently, where little to no knowledge is required by the end user. The key 

objective of interLink is to enable a Kubernetes cluster to send containers/pods to a “virtual” node. 

This node seamlessly manages the entire lifecycle of the user's applications, whether on a remote 

server or, preferably, within an HPC batch queue. 

From a technical perspective, the interLink component extends the Kubernetes Virtual Kubelet 

solution with a generic API layer for delegating pod execution on ANY remote backend.  Kubernetes 

Pod requests are digested through the API layer (e.g. deployed on an HPC edge) into batch job 

execution of a container. 

The architecture is plugin-based, with a dedicated plugin for each supported backend.. For each API 

(VERB), the plugins perform specific operations based on what the actual backend is. Submitting a 

Pod to the cluster means the plugin will receive from interLink the list of all related Secrets, 

ConfigMaps, EmptyDirs and the description of the Pod itself. Utilizing this information, the plugin 

takes specific actions accordingly. Each plugin accepts the three standard outgoing calls described 

above the interLink API. 

The plugins currently available are: 

●​ interlink-slurm-plugin: A GO-based plugin to connect the Slurm-managed batch system to 

interlink; 

●​ interlink-kueue-plugin:  A Container plugin to connect Kueue to interlink; 

●​ interlink-htcondor-plugin: A Python-based plugin to connect HTCondor-CE to interlink; 

●​ interlink-docker-plugin: A Python-based plugin to connect any system with docker engine 

to interLink; 

●​ interlink-unicore-plugin: A Python-based plugin to connect UNICORE API to interlink; 

●​ interlink-arc-plugin: A Python-based plugin to connect the ArcCE gateway to interLink; 

At the time of writing, interLink has already been integrated with several frameworks running on top 

of Kubernetes (k8s), including itwinai, in order to successfully exploit large-scale systems such as 

EuroHPC. In terms of computing sites, interLink has already been deployed in: 

●​ VEGA: The first of eight peta and pre-exa-scale EuroHPC hosted in Slovenia. 
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●​ Juelich: JSC provides seamlessly integrated cloud and HPC resources through UNICORE 

middleware using interLink. 

●​ PSNC: Provides access to a world-class e-Infrastructure for the scientific community, a 

specific research and development environment. In terms of plugin, this integration uses the 

SLURM one. 

●​ KBFI: The cluster consists of around 8000 compute cores and a distributed storage facility 

with 3.8 PB of raw disk capacity, where interLink interacts with compute resources via the 

ARC-CE Compute model.  

●​ Leonardo at CINECA: Both Booster and General Purpose (GP) Partitions are exploited via 

interLink deployed at the edge running with the Slurm plugin. 

3.2.1.​ Component Status Overview 

The development status of interLink is already at an advanced stage and has demonstrated the 

necessary flexibility. On one hand, it supports a variety of backends to offload computation; on the 

other hand, it is able to integrate distinct types of high-level services, ensuring their compatibility 

with a k8s-based solution for provisioning computational resources.  

In summary, the main functionalities provided by interLink are:  

●​ Offload Kubernetes applications with tasks to be executed on HPC systems: This feature 

focuses on Kubernetes applications that require HPC resources for executing tasks (AI 

training and inference, ML algorithm optimizations, etc.). These tasks might involve complex 

computations, simulations, or data processing that benefit from the specialized hardware 

and optimized performance of HPC systems. 

●​ Remote "runner"-like application for heavy payload execution requiring Graphical 

Processing Units (GPUs): interLink is designed for applications that need to execute heavy 

computational payloads, particularly those requiring GPU resources. These applications can 

be run remotely, leveraging powerful GPU hardware to handle tasks such as model training, 

data analysis, or rendering. 

●​ Designed to ease the work required to include new remote providers: interLink is designed 

to simplify the integration of new remote providers. Extending beyond HPC+SLURM involves 

creating simple web servers in the preferred language, where the provider can decide the 

proper way of managing the container execution lifecycle. 

User documentation: https://interlink-project.dev/ 

Developer documentation:  https://interlink-hq.github.io/interLink/docs/Developers 

Governance: https://github.com/interlink-hq/interLink/blob/main/GOVERNANCE.md 

Source code:  https://github.com/interlink-hq/interLink 
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Licence is Apache 2.0 

3.2.2.​  Identified Gaps and Developments planned in RI-SCALE 

In RI-SCALE, the interLink component will be extended to include functionalities needed to support 

new and advanced use cases needed to enabling scientific applications to effectively exploit 

computing capacity. In particular:  

●​ Networking adapters: Enabling interLink, creating a network mesh (at the user namespace 

level) with the internal Pod overlay. It represents a possible game changer for hybrid clusters 

to support off-the-shelf AI frameworks.  

●​ AuthN/Z interLink already integrates JWT-based flows. Building on top of this, a more 

fine-grained (group/scope-based) authorization mechanism is a task for development. 

●​ Data Management / Data Access: Effective data access is a key to the efficient usage of 

resources. InterLink can offer handles to enhance the integration with data orchestration 

systems and input data caching mechanisms. 

●​ Monitoring and Accounting: Based on current experience, a solid system to track any action 

executed on target providers via interLink is mandatory. Evolving the current implementation 

is key to a higher Technology Readiness Level (TRL). 

Those developments will be driven by specific needs, and priorities will be adjusted based on 

requirements from scientific communities.  

3.2.3.​  Planned Integration with other Components in WP3 

The goal of interLink integration is to support any of the WP3 AI frameworks that run on top of k8s in 

order to successfully exploit computing resources not necessarily available locally.   

●​ itwinai: The existing integration with itwinai will be exploited for this, where interLink will be 

enhanced following the requirements of the community using itwinai to define and manage 

AI pipelines. 

●​ AI Model Hub/BioEngine: The AI Model Hub is already containerized and implements a k8s 

resources provisioning model. As such, it will be integrated and supported.  

AI Applications: Other than that, the integrations with the AI applications (defined by Tasks 3.3 and 

3.4) are envisioned by the development of test pilots.  

3.3.​ AI Model Hub 
The AI Model Hub is the central WP3 service for hosting, discovering, and executing AI models within 

the DEP. The model hub will be built based on existing work in the AI4Life project17 and closely 

17 https://ai4life.eurobioimaging.eu/ 
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integrated with the BioImage Model Zoo18. By integrating with the Hypha19 framework, it integrates 

persistent storage, scalable execution, and lightweight application interfaces into a single platform. 

By consolidating these functions, it ensures that models are preserved with rich metadata, easily 

searchable, and directly usable in scientific workflows without extra deployment steps. 

At its core, the Artifact Manager20 stores models as versioned artifacts in S3-compatible object 

storage, with metadata indexed in a SQL database for fast, structured search. Metadata fields 

capture descriptive, technical, and provenance details, enabling precise queries by parameters such 

as model name, version, author, dataset, or license. Integrated access control ensures that sensitive 

models are only available to authorised users. For hosted execution, the hub connects to BioEngine21, 

a Ray-based distributed backend that retrieves models from the Artifact Manager and runs them in 

isolated, containerised environments. This setup guarantees reproducibility, supports CPU and GPU 

acceleration, and scales across local servers, HPC systems, or Kubernetes clusters. BioEngine 

exposes standard APIs for integration with desktop tools, notebooks, and other DEP services. The AI 

Model Hub also leverages Hypha’s serverless application framework, allowing developers to build 

lightweight Python or JavaScript applications that provide graphical interfaces or automated 

workflows for hosted models. These applications can be accessed directly from the hub, lowering the 

technical barrier for end users. 

By combining model storage, scalable execution, and user-friendly application interfaces, the AI 

Model Hub delivers a modular and interoperable foundation for AI-powered research in the DEP. 

3.3.1.​Component Status Overview 

The core components of the AI Model Hub - the Artifact Manager, BioEngine, and the serverless 

application framework - are already in an advanced stage of development, with stable open-source 

implementations available through the Hypha and BioEngine projects. These components have been 

deployed and tested in production-like environments, primarily in the context of the BioImage Model 

Zoo and related research infrastructures, demonstrating their capability to support real-world AI 

model hosting and execution. 

●​ The Artifact Manager is a mature Hypha service for storing and indexing models as 

versioned artifacts in S3-compatible object storage. It includes a relational metadata 

database for structured search and retrieval, as well as access control features to manage 

public and private content. This component is already in use for managing large model 

collections and has proven stable for both small and large-scale deployments. 

●​ BioEngine, the Ray-based execution backend, is also in an advanced state, supporting 

containerised model execution with GPU acceleration and scalable task scheduling. It 

provides a standardised API for invoking models and has been integrated with multiple client 

21 https://doi.org/10.5281/zenodo.14169671 

20 https://docs.amun.ai/#/artifact-manager 

19 https://docs.amun.ai/ 

18 https://bioimage.io 
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interfaces, including Jupyter notebooks and web applications. While it is already in use for 

bioimage analysis pipelines, targeted adaptations will be needed to support a broader set of 

AI model types and to align with DEP’s infrastructure and orchestration requirements. 

●​ The serverless application framework within Hypha enables the creation of lightweight, 

interactive applications for accessing and visualising model results. It supports both Python 

and JavaScript runtimes, making it straightforward to deploy custom user-facing tools that 

connect directly to hosted models. While the framework is fully functional, further work will 

be needed to adapt these applications for seamless integration within the DEP’s user 

interface and to support the specific workflows of WP3 use cases. 

Overall, the AI Model Hub components are technically mature and production-ready in their current 

domains. However, their deployment in the DEP will require integration work, interface 

harmonisation, and targeted extensions to meet the needs of WP3 applications and ensure smooth 

operation in the DEP environment. 

User Documentation: https://docs.amun.ai/#/getting-started  

Source code: https://github.com/amun-ai/hypha  

Licence: MIT 

3.3.2.​  Identified Gaps and Developments planned in RI-SCALE 

The AI Model Hub (Artifact Manager + BioEngine + Hypha serverless apps) is technically mature for 

bioimage models from AI4Life, but several extensions are required for DEP-wide adoption across 

domains and infrastructures: 

●​ Scope and metadata generalisation: Extend the current BioImage-centric schema into a 

domain-agnostic model card covering tasks, modalities, licenses, dataset references, runtime 

requirements, and provenance fields. Enhance the SQL-based index with richer search 

(facets, tags, aliases) so models are reusable and discoverable across multiple scientific 

domains. 

●​ Execution portability and heterogeneous compute integration: Maintain BioEngine as the 

primary hosted inference backend while adding an interLink pathway for offloading 

workloads to HPC and cloud resources. This requires runtime compliance for different 

environments (e.g., Apptainer on HPC), adapters to interLink’s plugin system, and 

mechanisms to propagate job status and results back to the Hub. 

●​ Workflow orchestration and provenance tracking: Integrate tightly with itwinai so pipelines 

can pull Hub models for training or inference and push back packaged checkpoints as new 

versions. Standardise manifest hand-off to ensure reproducible runs, and feed execution 

metadata into yProv4ML/MLflow for lineage tracking, metrics collection, and basic 

benchmarking linked to datasets and outputs. 
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●​ Access control, policy compliance, and data management alignment: Connect Hub 

operations with WP4’s policy-based authorisation to enforce project/group-level 

permissions, logging, and accounting. Support integration with WP2’s data services so model 

runs can directly reference DEP dataset IDs, co-locate execution near data, or stream large 

datasets through tiling and chunked I/O. 

●​ User-facing interaction through serverless apps and LLM agents: Harden the Hypha 

serverless app framework for safe, multi-tenant use, enabling lightweight Python/JS UIs (e.g., 

forms, visualisers, notebooks) attached to Hub models. Surface these apps directly in DEP 

interfaces and expose LLM-friendly OpenAPI/JSON-Schema endpoints so agents like the 

BioImage.IO Chatbot can search, configure, and invoke models in use cases such as SUC 8. 

●​ Operational robustness and scalability: Improve caching, de-duplication of repeated runs, 

logging/observability, rate-limiting, and retry mechanisms. Support external weight fetching 

from sources like Hugging Face using the requester’s credentials, and ensure large-artefact 

handling is efficient and resilient. 

3.3.3.​  Planned Integration with other Components in WP3 

The main planned integrations of the AI Model Hub with other technical solutions in WP3 are: 

●​ itwinai: Potential interoperability between itwinai and the AI Model Hub could allow 

orchestration workflows defined in itwinai to invoke models hosted in the Hub through the 

BioEngine inference backend. This would enable more complex workflows, such as 

combining simulation components with AI-based analysis. Model execution endpoints may 

be referenced in itwinai configurations, allowing seamless selection of computational 

infrastructure for running inference tasks. 

●​ interLink: The AI Model Hub may connect with interLink’s resource brokering and workload 

distribution mechanisms to make better use of heterogeneous computing resources across 

the DEP. This would allow BioEngine-managed inference jobs to be scheduled on suitable 

HPC or cloud resources, improving scalability and efficiency without requiring manual 

resource selection by end users. 

●​ yProv4ML: Model execution metadata from the AI Model Hub could be aligned with 

provenance and traceability formats supported by yProv4ML. This would provide consistent 

recording of model versions, input data references, and execution parameters, aiding 

reproducibility across workflows that span multiple DEP components. 

●​ Data Access and Delivery Services: Where beneficial, AI Model Hub workflows could be 

adapted to operate directly on datasets accessible through DEP’s data access layers, 

including support for streaming large image or numerical datasets. This would minimise data 

movement and enable more efficient execution of data-intensive models. 
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3.4.​ BioImage.IO Chatbot 
The BioImage.IO Chatbot22 is a conversational assistant designed to help researchers navigate the 

increasingly complex ecosystem of bioimaging tools, data resources, and analysis workflows. 

Originally developed for the BioImage Model Zoo23, it was built on GPT-4 and enhanced with 

retrieval-augmented generation (RAG) and tool execution capabilities. The chatbot connects users 

to a curated knowledge base drawn from community documentation, including resources like 

ImageJ, deepImageJ, and the BioImage Model Zoo—as well as external databases such as bio.tools 

and the Human Protein Atlas. It goes beyond static question-answering by dynamically generating 

Python code, running AI models via BioEngine, and even inspecting image data using vision 

capabilities. Within the context of RI-SCALE, the chatbot acts as a user-friendly access point to 

large-scale bioimaging resources and services, lowering technical barriers and making AI-driven 

analysis more approachable. Through its extension system, it can be embedded into different 

platforms or customized for specific use cases, offering a flexible interface that supports both 

discovery and hands-on data analysis. As part of the RI-SCALE effort to make data more accessible 

and actionable, the chatbot demonstrates how LLM-based systems can support researchers in 

working more effectively with scientific data. 

3.4.1.​ Component Status Overview 

The BioImage.IO Chatbot is in an advanced but evolving stage of development, having originated 

within the BioImage Model Zoo ecosystem and subsequently expanded to support more interactive 

and multimodal capabilities. It operates as a web-based conversational interface built on large 

language models (currently GPT-4), enhanced with retrieval-augmented generation (RAG) pipelines 

and tool execution modules. The chatbot is designed to operate with multiple assistant 

“personalities” (e.g., Melman for model discovery, Bridget for image analysis), each specialised for 

different aspects of bioimage research. 

A public, production-grade instance is available at https://bioimage.io/chat, allowing users to explore 

bioimaging resources through natural language interaction. The backend integrates with curated 

domain knowledge bases - including documentation for ImageJ, deepImageJ, and BioImage Model 

Zoo entries - as well as external APIs such as bio.tools and the Human Protein Atlas. In addition to 

pure information retrieval, the chatbot can dynamically generate Python code, execute AI models via 

BioEngine, and perform basic image inspection through integrated vision model capabilities. 

The system is modular and supports embedding into third-party portals, making it adaptable for 

different research infrastructures or institutional deployments. Extensions can be added to connect 

the chatbot with additional datasets, computational backends, or workflow engines. These features 

are enabled through a tool-calling architecture, which allows the chatbot to trigger remote services 

(e.g., running a segmentation model) and handle asynchronous responses. 

23 https://bioimage.io 

22 https://github.com/bioimage-io/bioimageio-chatbot/ 
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Demo link: https://bioimage.io/chat 

Source code: https://github.com/bioimage-io/bioimageio-chatbot 

Licence: MIT 

3.4.2.​  Identified Gaps and Developments planned in RI-SCALE 

The BioImage.IO Chatbot[R9] is mature for bioimaging-oriented Q&A and guided discovery, but 

several extensions are needed for broader DEP adoption and interactive analysis: 

●​ Scope and interface generalisation: Broaden beyond bioimage-specific intents to a 

domain-agnostic skill set where feasible (tasks, data modalities, model families). Provide 

clearer, machine-readable tool descriptions (OpenAPI/JSON-Schema) and stable function 

signatures so external services can be invoked reliably from chats. 

●​ Execution handoff and long-running jobs: Add first-class support for asynchronous, 

resumable jobs (job IDs, status polling, partial results) so the chatbot can initiate analysis that 

runs on backend services and return when ready. Standardise request/response envelopes 

for tasks that route to the AI Model Hub (BioEngine) or other DEP services. 

●​ Data access alignment with DEP: Enable selection and referencing of DEP datasets (IDs, 

access policies), lightweight preview/tiling for large images, and safe upload where 

permitted. Minimise data movement by preferring in-place processing and streaming 

pathways exposed by DEP data services. 

●​ Provenance, tracking, and reproducibility: Emit structured run metadata (model/version, 

parameters, dataset references) for actions triggered by the chatbot, compatible with 

yProv4ML/MLflow, so results are traceable and comparable across sessions and users. 

●​ Safety, policy, and multi-tenancy: Integrate with DEP AAI/authorisation to respect project- 

and role-based access when discovering models or launching runs. Add guardrails (rate limits, 

quota checks, input validation) for multi-user environments. 

●​ LLM/agent robustness and multimodality: Improve tool-use reliability (fallbacks, retries, 

timeouts) and strengthen image-aware prompting for vision-in-the-loop tasks (e.g., ROI 

guidance, quick quality checks). Where helpful, expose small, scoped serverless UIs (Hypha 

apps) that the chatbot can open for parameter entry or result visualisation. 

●​ Operational observability: Add logging and telemetry for tool calls (success/failure, latency), 

lightweight analytics for intent coverage, and configurable feature flags to enable 

incremental rollout within DEP sites. 

These developments aim to keep the chatbot’s role focused - conversational discovery and 

orchestration - while enabling dependable handoff to DEP services (AI Model Hub/BioEngine, data 

access, provenance) in a modular, standards-friendly way. 
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3.4.3.​  Planned Integration with other Components in WP3 

As part of SUC 8 and WP3, the BioImage.IO Chatbot will serve as a conversational access point to 

DEP’s AI model hub and execution services. The main planned integrations are: 

●​ AI Model Hub / BioEngine: The chatbot will connect directly to the AI Model Hub - backed 

by the Hypha Artifact Manager for model hosting and indexing - and to BioEngine for 

scalable inference on Ray clusters. This will enable users to search for models, review 

metadata, and trigger inference tasks (e.g., segmentation, classification) on selected 

datasets using natural language prompts. Support will include both interactive execution and 

submission of long-running jobs. 

●​ itwinai: Potential integration with itwinai could allow chatbot-initiated model execution 

requests to be incorporated into digital twin workflows. This would enable models triggered 

from conversational queries to be part of broader simulation or predictive scenarios defined 

in itwinai. 

●​ yProv4ML: Workflows launched from the chatbot may be connected to yProv4ML to 

capture provenance data, including model identifiers, execution parameters, and dataset 

references. This will enhance traceability and reproducibility for AI-powered analyses 

initiated via the chatbot. 

●​ interLink: For cases where model execution needs to leverage heterogeneous computing 

resources, the chatbot could route jobs via InterLink, enabling execution on HPC, cloud, or 

other infrastructure while maintaining a unified user experience. 

These integrations will be designed to remain modular and standards-based, ensuring the chatbot 

can act as a flexible orchestration layer for SUC 8 and potentially other WP3 scenarios. 

 

Figure 3: Integration of AI Agents for the DEP in SUC 8 
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3.5.​ yProv4ML 
yProv4ML is a Python library designed with the objective of efficiently handling large-scale ML 

experiments. Its modular architecture and data model ensure that provenance information can be 

managed effectively, regardless of the complexity or size of the ML project. Since the library saves 

provenance data in the JSON format, the interoperability between different ML tools and platforms 

is enhanced, as users are allowed to choose their preferred data analysis method. This facilitates the 

sharing and comparison of provenance information across diverse research groups and projects, 

which in turn fosters collaboration and advances the state of the art in ML research. Provenance 

documents generated by yProv4ML are stored within the yProv store service, another component of 

the yProv ecosystem [R2], that will support provenance management within the RI-SCALE project. 

3.5.1.​ Component Status Overview 

yProv4ML has been developed in accordance with the specifications set forth by MLFlow, which 

allows for seamless integration of provenance tracking into existing workflows. yProv4ML offers a 

set of function calls that enable users to track metrics and parameters that are useful for the 

subsequent analysis of the training process and embed them within interoperable provenance 

documents.  

This library separates the collected information into three modalities: artefacts, parameters and 

metrics. The first category identifies any file or output used in subsequent phases of the workflow; 

parameters represent one-time logged values utilized during the training phase; metrics relate to 

information that is updated during the training process (i.e., energy efficiency, power consumption, 

and GPU usage). 

The main modules of yProv4ML are:  

●​ Main module: which includes all of the functionalities of the library and allows for context 

declaration and shutdown. 

●​ Energy module: it contains all utility functions to save energy-related metrics. 

●​ System module: contains directives to save information related to the system. 

●​ Time module: it contains helper functions to manipulate and save information. 

The user and technical documentation are available at: https://github.com/HPCI-Lab/yProvML and 

https://hpci-lab.github.io/yProv4ML.github.io/index.html.  

The source code is available at https://github.com/HPCI-Lab/yProvML.  

The license is GPLv3.  
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3.5.2.​  Identified Gaps and Developments planned in RI-SCALE 

According to the use case requirements listed in D5.1 [R1], here is a set of gaps and developments 

planned during the RI-SCALE project.  

The gaps identified in the yProv4ML component relate to the following areas: 

●​ Scaling Metrics: Depending on the number of epochs and steps, the set of metrics in 

training processes can be challenging to manage. Developments in this area will focus on (i) 

decoupling the provenance metrics from the process description and (ii) identifying more 

efficient data formats to store metrics as well as (iii) embedding compression techniques.  

●​ Experiment-level provenance view: ML experiments can be quite articulated and include 

multiple runs. A cohesive view of all of them is missing from a provenance perspective, 

which, of course, could provide a more consistent view of the entire ML experiment. 

Developments in this area relate to fully implementing the yProv4ML data model, which 

already defines the experiment concept and its integration with RO-Crate24. 

●​ GUI: Navigating, analyzing and exploring yProv4ML provenance documents can be beneficial 

for end users as it allows drilling down into the ML process, understanding metrics in depth, 

comparing different runs, etc. Developments in this area relate to a graphical interface that 

can fill this gap. 

●​ Ecosystem integration and interoperability: yProv4ML will be further integrated with tools 

and standards in the area (e.g., MLflow, yProv store service) to provide users with better 

support in the development of AI models. 

●​ Metrics: Improving metrics management across the ML training process will be addressed 

throughout the project lifetime.  

3.5.3.​  Planned Integration with other Components in WP3 

Planned integration with other WP3 components includes: 

●​ itwinai: This will involve further extending and strengthening the integration with itwinai 

(early-stage development done in interTwin). This has been realized through the logger 

mechanism in itwinai, which makes the integration of yProv4ML transparent as one of the 

“logger” libraries available to the end users. The activity will extend to the new yProv4ML 

developments that will be addressed during the project. 

●​ AI Model Hub: Integration with the model hub framework will be performed, which involves 

at least MLflow and the yProv store components. This activity will connect yProv4ML 

documents with PIDs and artifacts (i.e., AI models) that will be stored on the model hub. It 

will also provide a better link to MLflow through the implementation of the experiment 

concept foreseen in yProv4ML. 

24 RO-Crate https://www.researchobject.org/ro-crate/ 
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4.​AI Applications in WP3 
This section summarizes the AI applications that drive the technical developments in WP3. These 

consist of the environmental and health/life science applications. Each is presented with a summary 

of the involved SUC and the associated compute and data challenges. 

4.1.​Environmental Applications 
AI is playing a pivotal role in environmental science, enabling the extraction of insights from 

increasingly complex and voluminous datasets. However, unlocking the full potential of AI in this 

domain requires not only access to high-quality data but also compute resources and dedicated 

models tailored to the environmental monitoring and analysis challenges. 

In the scope of RI-SCALE, domain-specific AI models will be integrated into the DEP framework and 

trained on big data to assist RI operators and users, thus enhancing their ability to monitor, 

understand, and manage environmental systems in a more informed, timely and effective way. The 

environmental applications include four SUCs targeting two thematic RIs from Environmental 

sciences: European Network for Earth System Modelling (ENES) and European Incoherent Scatter 

Scientific Association (EISCAT). These use cases include: 

●​ High-resolution downscaling of climate scenarios and risk trend analysis in agriculture; 

●​ Smart detection of anomalies in climate data usage; 

●​ Intelligent Scheduling of Radar Observations and Experiments; 

●​ Space Debris and Anomaly Detection. 

Further details are provided in the following subsections, which provide an overview of each AI 

application along with the related compute and data challenges aimed to be tackled. 

4.1.1.​SUC 1: High-resolution Downscaling of Climate Scenarios and 
Risk Trend Analysis in Agriculture 

Use Case Overview:  

The agricultural and insurance sectors critically depend on high-resolution climate data (spatial 

resolution of a few hundred meters) for accurate risk assessment, operational planning, and 

long-term strategy development. However, currently available climate projections, such as those 

from CMIP625 (Coupled Model Intercomparison Project Phase 6) and EURO-CORDEX, are provided at 

much coarser resolutions (10–100 km), which are insufficient for regional or local-scale 

decision-making. 

 

25 https://pcmdi.llnl.gov/CMIP6/ 
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WP3 Developments / AI Approach: 

In the RI-SCALE project, the aim is to develop a novel infrastructure for downscaling the 

coarse-resolution climate datasets into high-resolution maps suitable for sectoral applications. This 

infrastructure will leverage AI and statistical methods, with a particular focus on Convolutional Neural 

Networks (CNNs). State-of-the-art CNN-based models, based on prior work (such as [R7] and [R8]), 

will be evaluated and fine-tuned within the project. These models will address two different 

approaches commonly used in statistical downscaling of climate scenarios: "perfect prognosis" and 

"super-resolution". 

The technical implementation will exploit various regional reanalysis datasets (e.g., CERRA, 

VHR_REA_IT), depending on the geographical region, as predictands, and climate projection 

datasets as predictors. In addition, Digital Elevation Models (DEMs) and terrain features will be 

incorporated to improve the accuracy of the high-resolution outputs. 

The infrastructure will support large-scale data access and processing from ESGF and Copernicus 

repositories, including CORDEX and CMIP6 simulations, and will enable the training of AI models 

required for downscaling. The development pipeline will include distributed training, hyperparameter 

optimization, and inference, carried out on GPU-based systems, as well as model benchmarking 

against classical statistical downscaling methods (e.g., quantile mapping) to evaluate performance 

across multiple metrics (accuracy, computational cost, scalability). Model development and testing 

will initially focus on two or three pilot sub-domains to contain computational costs. 

A core objective will be to validate and exploit the high-resolution outputs in real-world settings, 

particularly within risk trend analysis in agriculture, to demonstrate the added value of 

high-resolution data in these sectors. 

Compute and Data Challenges: 

The development of the downscaling models presents significant data and computational 

challenges. Climate projections and reanalysis datasets from ESGF and Copernicus sources can 

exceed 100 TB, depending on the number of models processed and on the domain and variables 

used. This requires extensive pre-processing, storage management, and data reduction strategies. 

Model training will be carried out in Python/Conda environments using frameworks such as PyTorch, 

TensorFlow, or Keras, with distributed training on GPU clusters and hyperparameter optimization. 

Based on prior studies, training similar CNN-based architectures may require hundreds to thousands 

of GPU hours, depending on model complexity, input domain size, and resolution targets. Different 

architectures (such as DeepSD) will be tested, fine-tuned, and benchmarked against classical 

downscaling techniques (e.g., quantile mapping) in terms of accuracy, training time, and scalability. 

Containerized workflows may be adopted during the development. 
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4.1.2.​ SUC 2: Smart Detection of Anomalies in Climate Data Usage 

Use Case Overview:  

In the Climate Science domain, community efforts like CMIP26 represent very relevant large-scale 

global experiments initiatives, which have led to the development of the Earth System Grid 

Federation (ESGF) [R3], one of the largest collaborative data efforts in Earth system science. ESGF 

consists of a federation of autonomous data nodes, distributed across several countries and united 

by common standards, protocols and interfaces. Data, including simulations, observations and 

reanalysis, is hosted at multiple sites worldwide and served through local data and metadata services. 

Therefore, monitoring this large distributed infrastructure has become a very challenging topic over 

the years. 

WP3 Developments / AI Approach: 

ML techniques can help enhance the operational reliability of the ESGF infrastructure, providing 

valuable information about data access patterns, transfer activities, and user interactions across the 

distributed network of ESGF nodes. By applying anomaly detection algorithms, it would potentially 

be possible to automatically identify irregular behaviours, such as sudden drops in data access, 

unexpected traffic spikes, or incomplete data transfers, that may signal underlying technical issues or 

failures in the data delivery process. 

Moreover, integrating ML into the ESGF data usage monitoring system could contribute to 

uncovering trends in data usage and detecting changes in download patterns, which is particularly 

relevant for the climate science community. Understanding how CMIP data is accessed and utilized 

through the ESGF infrastructure can help optimize resource allocation, improve data dissemination 

strategies, and support long-term planning for future model intercomparison projects. 

Compute and Data Challenges: 

The ESGF Data Statistics service [R4] is a core component of the ENES RI that takes care of 

collecting, analyzing, and reporting a comprehensive set of data usage metrics and data archive 

information across the ESGF infrastructure. More specifically, the service continuously gathers 

fine-grained information on data access, transfers, and usage across the globally distributed ESGF 

infrastructure. The considerable amount of data usage information retrieved from each ESGF data 

node (~1TB of historical data from January 2018 to February 2025) requires efficient storage 

solutions capable of handling heterogeneous, high-volume log data. To this purpose, a series of data 

warehouse systems have been designed to collect and archive usage logs, allowing for scalable 

ingestion, fast querying and seamless integration with ML workflows aimed at anomaly detection, 

trend analysis and usage pattern forecasting.  

 

26 https://wcrp-cmip.org/ 
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Moreover, preprocessing and harmonizing such logs, as well as training the corresponding ML 

models, could demand significant computational resources needing access to both GPUs and CPUs. 

This is due not only to the volume of the collected data, but also to the need for efficient filtering 

and aggregation, temporal alignment, hyperparameter tuning, iterative optimization, and 

performance model validation. All of this proves to be important for ensuring timely detection of 

anomalies or changes in data usage, and for enabling the deployment of a robust, responsive 

monitoring system supporting the research infrastructure operations. 

In addition, transparency, reproducibility, and traceability represent essential aspects for ensuring 

that model results can be understood, verified, and trusted. In this regard, it would be worth tracking 

provenance (including artefacts, parameters and performance metrics) throughout the entire ML 

pipeline in order to enable future exploration, thus allowing infrastructure managers and scientists to 

understand how models were trained, which data were used, and under which conditions. 

4.1.3.​ SUC 3: Intelligent Scheduling of Radar Observations  

Use Case Overview:  

EISCAT AB operates high-power ionospheric research radars (incoherent scatter radars, ISR) in 

Northern Fenno-Scandinavia and on Svalbard, which provide detailed information of the atmosphere 

and ionosphere from 70 km altitude upwards, even as far away as the Moon. Currently, the new 

tri-static, phased-array EISCAT_3D radar is being deployed. Other than the legacy radars, EISCAT_3D 

will be fully remotely controlled. 

All radars will operate on request by the EISCAT users. In practice, a researcher requests radar time 

and specifies what kind of radar operations they want and what kind of space weather 

(environmental) conditions are required. For EISCAT_3D, eventually EISCAT will decide when to run 

the requested observations, and - in case of competing requests - which request to prioritise. 

The specification of radar operations, resulting in a “radar experiment”, consists of information such 

as beam pointing direction (azimuth, elevation), range extent, range resolution, timing, and, for 

multi-beam experiments, the schedule and order of beams to cycle through. Furthermore, for 

tri-static experiments involving the two remote receiver sites, the user also specifies the altitude 

resolution of the common volumes (beam overlaps) for which to compute wind velocities as 3D 

vectors. 

The environmental conditions for a radar experiment include space weather parameters such as solar 

wind density and velocity, direction of the interplanetary magnetic field, solar activity, geomagnetic 

activity, as well as terrestrial weather parameters, mostly whether or not it’s cloudy or clear, and the 

elevation of the Sun as well as elevation and phase of the Moon, which are important to define light, 

twilight, and dark conditions. 
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WP3 Developments / AI Approach: 

The purpose of SUC 3 is to define an ML process, which analyses the current and near-future 

environmental situation as well as the user-specified observational parameters and makes a 

suggestion for operations, i.e. which experiment to execute for the best possible outcome. The 

process can also reject all experiments when none are expected to yield useful data. 

Compute and Data Challenges: 

The core data challenges for SUC 3 include the correct definition of the requirements and access to 

the relevant resources. This is preceded by the selection of the parameters, which will be available to 

the radar users to specify their experiment. 

These parameters largely belong to two groups: (1) required environmental conditions and (2) 

required radar setup. These groups can each be split into two sub-categories: environmental 

conditions may refer to (1.1) space weather or (1.2) terrestrial weather, and the radar setup typically 

consists of (2.1) beam geometries, i.e. number of beams and pointing directions, and (2.2) radar signal 

coding, which defines temporal and spatial resolution and extent of the experiment. While the 

choices for (2) are well defined, the choices for (1) need to be specified, and user feedback should be 

obtained. 

With the choices defined, data products need to be identified to match the requested choices. Note 

that most of these data products come from external providers, so access policies and technical 

interfaces need to be clarified accordingly. 

These two challenges are mutually dependent: radar users cannot be offered to make a choice of 

environmental conditions without corresponding data products to check the current state, while the 

choices requested by users will, in turn, determine which data products are required to make 

decisions. 

The main task of SUC 3 is for an AI process to evaluate whether a specific radar experiment should 

be conducted on a given day. However, the next challenge is consequently to decide if the result of 

the experiment would be better on the following day, i.e. allow for limited forecasting of 

environmental parameters. 

The computational challenges for SUC3 arise primarily from the need to evaluate complex, 

time-dependent data in a dynamic operational setting. The system must ingest and harmonise a wide 

range of environmental data streams (both from terrestrial and space weather sources), often in real 

time and with possible varying data formats and latencies. To assess whether an experiment should 

be run now or postponed, the AI process must include short-term forecasting capabilities and reason 

over predicted conditions, which adds computational load and uncertainty handling. The decision 

logic must support prioritisation among competing requests, balancing scientific value against 

timing and resource availability, all while remaining responsive to new inputs. Additionally, the system 

RI-SCALE 101188168​ ​ ​ ​ ​ ​ ​ ​          www.riscale.eu 
39 

http://www.riscale.eu


D3.1 – AI Systems and Models Specification and Roadmap 

must learn from outcomes over time, adapting its recommendations based on past experiment 

success. This requires infrastructure for continuous learning and the integration of feedback. 

4.1.4.​  SUC 4: Space Debris and Anomaly Detection 

Use Case Overview:  

EISCAT AB has operated incoherent scatter radars in Northern Fenno-Scandinavia since 1981, and 

thereby accumulated a vast archive of near-Earth space observations. These data have been actively 

studied, and EISCAT can look back to nearly 2500 papers published in international scientific 

journals. However, sometimes new phenomena are detected, which earlier were disregarded or 

misinterpreted. Furthermore, statistical studies of the occurrence of particular phenomena are, in 

practice, a lot of work of manually browsing quick-look plots. 

WP3 Developments / AI Approach: 

With SUC 4, AI methods will be investigated to find specific events as well as anomalies, i.e. rare 

events or disturbances, in this dataset. This requires classification of known events and then 

searching for non-classified structures in the data, which can include, but is not limited to, 

anthropogenic space objects as well as meteoroids traversing the radar beams. 

The aim is to uncover phenomena in the data which have been missed in previous analyses or have 

been possibly wrongly categorised. Furthermore, it is intended to extract statistical information from 

the observations. Such a tool can be trained on the existing data, and using it to study the archive 

will already facilitate new science. However, the method will then be applied to future radar data to 

automatically flag and identify the phenomena and events in real time as they happen. 

With the advent of “New Space” (i.e. miniaturisation leading to ever smaller satellites, as well as 

rapidly increasing numbers of satellites), overcrowding of orbits increases the risk of collisions, 

thereby creating more space debris, which eventually can lead to cascading, i.e. causing a “chain 

reaction” (Kessler Syndrome). The existing EISCAT data will be used to identify events related to the 

presence of space objects, establish occurrence statistics and find connections between these 

events, and then identify anthropogenic objects that can threaten sustainable space use, while 

producing sets of tracks (range, range rate, and radar cross-section measurements) to be used for 

orbital determination. 

Compute and Data Challenges: 

SUC 4 is an exercise in data analysis. EISCAT has accumulated an archive of radar data reaching back 

to 1981. The archive is fully digital, but the interface for the use of the data for AI processes must be 

specified and implemented. The data formats have to be implemented as well, as these might have 

changed over the years. While radar experiments have evolved and changed over time, it is intended 

to use exclusively standard incoherent scatter data (high-level data) for this use case. Among them, 

the most important are the vertical profiles of electron density, as well as electron and ion 

temperature. These vary over time only in altitude extent, as well as temporal and spatial resolution. 
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One particular challenge related to radar experiment definition is that every measured profile is 

associated with the radar beam direction (azimuth, elevation), which can change in so-called 

scanning experiments. Any analysis process needs to be able to recognise this and treat scanning 

experiments differently from fixed-beam experiments. 

Finally, the developed process has to be applied to future data to detect phenomena as they occur. 

However, the format of the future data is yet unspecified. Therefore, the process should have a data 

interface into which it is easy to feed data. This would also allow applying the process to other, 

unrelated incoherent scatter radars from our collaborators. 

As mentioned, the AI process must handle decades of radar data collected under varying 

experimental setups and evolving data formats. Training AI models on such a large and varied dataset 

is computationally demanding, both in terms of storage and processing power, especially when 

accounting for changing data formats, resolutions, and experimental configurations over time. 

Furthermore, the system must be designed for efficient inference to allow real-time application on 

future radar streams, even though those data formats are not yet defined. This calls for a flexible and 

modular architecture that can generalise across both historical and new data. 

4.2.​  Health and Life Science Applications 
DEPs are expected to have a wide impact on biological and medical imaging. The scientific image 

datasets stored at repositories such as the  BBMRI-ERIC or the BioImage Archive (BIA) are large and 

complex, and, in the case of medical imaging, they can contain sensitive patient information that 

cannot be shared openly. AI methods have the potential to help analyse, categorise, and understand 

these complex collections of images, and ultimately provide insights, both in fundamental scientific 

research and for health benefits through clinical application. The DEPs present the perfect 

opportunity to do this at scale. In Task 3.4, generative, foundational, and multimodal AI methods will 

be developed and trained to address challenges related to health and life science applications. 

4.2.1.​  SUC 5: Colorectal Cancer Prediction with explainable AI 

Use Case Overview:  

Since lymph nodes are the first anatomical checkpoint in metastatic spread, their microarchitecture 

and immune-cell composition may contain prognostic signals that routine histopathology overlooks. 

In SUC 5, algorithms will be developed for patient‑survival prediction from lymph‑node whole‑slide 

images (WSIs) of colorectal cancer (CRC). 

WP3 Developments / AI Approach: 

Deep neural network models will be trained that regress an individual’s survival directly from WSIs. By 

analysing the resulting attention maps and feature-attribution scores, specific microscopic 

structures will be identified, whose presence or absence systematically correlates with longer or 
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shorter survival times. Such image-derived biomarkers, once validated, could refine adjuvant therapy 

decisions and advance the understanding of CRC progression at the biological level. 

Development will proceed in close collaboration with clinical experts from the 

Medical University Graz (MUG) and the Masaryk Memorial Cancer Institute (MMCI).  Their domain 

knowledge is essential for several stages of the pipeline: curating high-quality lymph-node 

annotations, reviewing attention maps to determine whether highlighted regions correspond to 

plausible histological features, guiding the selection of clinically meaningful evaluation metrics, and 

assessing the clinical actionability of the resulting risk scores.  Interim model outputs will be 

discussed with experts, and final models will be tested against established benchmark datasets. 

Compute and Data Challenges: 

For the implementation of this use case, approximately 90,000 lymph-node WSIs extracted from the 

BBMRI-ERIC CRC cohort [R5] will be utilized. To enable a multi-centre assessment of generalisability, 

an additional collection of lymph-node slides will be obtained from the MMCI and ingested through 

the same DEP workflow. 

WSIs scanned at large magnifications typically reach resolutions around 100,000 × 100,000 pixels, 

with individual files ranging from 2 GB to 5 GB; the BBMRI set alone therefore occupies hundreds of 

terabytes. Handling image data of this scale requires substantial storage capacity, high-throughput 

pipelines, and extensive multi-GPU compute resources. These requirements are met through the 

DEP’s data-orchestration layer (Rucio + FTS) for secure transfer, the data-preparation service for 

format harmonisation and optional JPEG 2000 compression, and the itwinai framework for 

distributed training across clustered GPUs, with checkpoints and metadata captured in the DEP 

model hub. Additionally, an instance of the web-based WSI viewer XoPat will run within the DEP, 

allowing clinicians and data scientists to inspect raw slides, attention maps, and synthetic outputs 

directly in the browser, thereby eliminating the need to transfer terabyte-scale datasets to local 

machines. 

4.2.2.​  SUC 6: Synthetic Data for Computational Pathology 

Use Case Overview:  

​​In SUC 6, diffusion‑based generative modelling will be investigated as a means to mitigate the 

data‑access constraints imposed by patient‑privacy laws and the corresponding institutional policies 

governing high‑resolution WSIs. Since histological slides encode uniquely identifiable cellular 

patterns, these regulations mandate that pathology images held by RI repositories remain within 

secure computing environments, limiting their availability for external method development and 

validation. 

WP3 Developments / AI Approach: 

Training state-of-the-art diffusion models on these protected data will allow the creation of 

synthetic WSIs whose image statistics faithfully mirror cellular architecture, staining variability, and 
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artefacts while containing no patient-specific information. Such privacy-preserving surrogates can 

be shared without legal impediment, thereby expanding access to realistic training materials and 

benchmark sets. Moreover, a systematic analysis of the generator’s latent space and attention 

mechanisms provides a novel, data-driven avenue for identifying the histomorphological motifs most 

characteristic of colorectal cancer tissue, offering complementary insights into tumour organisation 

and variability. 

The use case has two primary objectives. The first is the generation of entire WSIs at full scanning 

resolution, employing cascaded or patch‑assembly diffusion schemes to preserve both the global 

slide layout and fine cellular detail. The second objective is conditional synthesis, in which the 

diffusion process is steered, for example, by spatial semantic maps that encode tissue classes or 

regions of interest, enabling the creation of slides with user‑specified structural 

composition. Pursuing these directions will yield privacy‑preserving data that are simultaneously 

anatomically realistic and experimentally controllable, broadening the scope for downstream method 

development and validation. 

Compute and Data Challenges: 

For the implementation of SUC 6, about  200 TB of colorectal cancer WSIs obtained from the 

BBMRI‑ERIC repositories are planned for use. A major challenge is posed by the fact that 

state‑of‑the‑art image generation models are typically designed for images ranging only up to a few 

megapixels. In contrast, each pathology slide reaches the gigapixel range (≈ approximately 100,000 × 

100,000 pixels, 2–5 GB per file). Adapting these models, therefore, poses both algorithmic and 

computational challenges: the global context must be preserved across full WSIs, and latent spaces 

must accommodate orders of magnitude more information. Therefore, the development of the 

generative model is expected to require about 75,000 GPU hours on 64–128 GPUs. 

These demands are addressed through the same DEP components used in SUC 5. Slides are staged 

via the data-orchestration layer into DEP storage, harmonised by the data-preparation service (with 

optional JPEG 2000 compression), and then streamed into a distributed diffusion workflow 

executed by the itwinai framework. Checkpoints and hyperparameters are versioned in the DEP 

model hub, while access remains restricted by the platform’s policy‑based AAI layer. An XoPat viewer 

instance hosted on the DEP will facilitate structured user studies with pathologists, allowing them to 

inspect real and synthetic slides side by side, assess visual fidelity, and provide feedback without 

transferring gigapixel data outside the controlled environment. 

4.2.3.​SUC 7: Foundational Models for Heterogeneous Biological Image 
Data 

Use Case Overview: 

The BIA is EMBL-EBI’s data resource for biological images, and it hosts over 800TB of image data. 

However, biological images are very diverse;  they can be multidimensional, produced by different 

imaging tools, come in different formats, and are typically acquired to address questions in varied 
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scientific disciplines. As a result, users of the BIA may find it difficult to make sense of the plethora 

of data available in the repository.  A promising path forward is to create foundation models that 

understand and represent heterogeneous image data, providing BIA users with better data 

categorisation and search.  

WP3 Developments / AI Approach: 

To address the above challenges, a foundational model that will enable better discoverability, 

organisation and reuse of imaging data will be developed. The DEPs will be exploited to train the 

model on a curated subset of data from the BIA, taking data from multiple different database entries. 

In parallel, existing natural image segmentation models will be fine-tuned on heterogeneous 

datasets, and the models will be benchmarked using task-specific evaluation datasets. The model 

outputs and resulting metadata will then be transferred back to the BIA, where the model 

embeddings will be used to support downstream use cases, such as categorisation and similarity 

search, and derived measurements such as cell dynamics and morphology.  

Compute and Data Challenges: 

To support the development and deployment of a large-scale biological imaging foundation model, 

the proposed project requires access to computational resources, including 10,000 GPU hours on 64 

A100 GPUs or equivalent infrastructure. The work will involve training and fine-tuning models on a 

dataset of approximately 100TB, leveraging both domain-specific and natural image segmentation 

models such as SAM [R6] (~1.3GB). Given the size of the datasets, distributed training and inference 

using Ray may be needed in this workflow. All environments will be containerized using Apptainer or 

similar to ensure reproducibility and compatibility with HPC systems. 

4.2.4.​SUC 8: Generative AI-Powered Assistant for Data Discovery and 
Analysis 

Use Case Overview: 

The complexity associated with biological images is exacerbated by the variety of available tools for 

image analysis. BIA users sometimes struggle to find the most appropriate tool for a specific task or 

image type. Generative chat engines could revolutionise the way BIA users search through and 

interpret vast datasets. 

WP3 Developments / AI Approach: 

For this use case, a generative AI-powered assistant which is embedded directly within the BIA 

interface will be developed. This assistant will integrate advanced AI models for both efficient data 

retrieval and complex image analysis - such as segmentation, classification, and cell morphology 

assessments - while offering an intuitive, natural-language-based interface. Users will be able to 

locate relevant datasets, ask analytical questions, and execute detailed workflows (e.g. segmentation 

or quantification) without leaving the platform. By dynamically generating Python code, executing AI 

models, and returning results in interpretable formats, the assistant lowers technical barriers for 

non-expert users and enables more inclusive access to BIA’s growing data landscape. 
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The assistant builds on the foundation established in SUC 7, adding a generative layer for dataset 

interaction and analysis. It acts as an accessibility layer to the BIA, supporting semantic search, 

exploratory queries, and on-demand execution of models such as Segment Anything, Cellpose, and 

the BioImage.IO Chatbot, see Section 3.4. The assistant will also provide guidance for selecting tools 

appropriate to specific image types and tasks, helping to reduce the manual support burden for RI 

operators. Developed jointly by Euro-BioImaging and KTH, and integrated tightly with the DEP 

infrastructure, this system aims to democratise bioimage analysis while strengthening the role of 

Euro-BioImaging as a key access point for data and services in the European research landscape. 

Compute and Data Challenges: 

A flexible, GPU-accelerated infrastructure is required, which is ideally built on k8s rather than 

traditional HPC setups using job schedulers like Slurm. Approximately 12,000 GPU hours across 8 

GPUs will be needed to support the development, fine-tuning, and inference of large-scale ML 

models - including transformers, LLMs, and computer vision models ranging from 50 million to over 

100 billion parameters. The raw dataset volume is expected to be between 10–100 TB, with 

additional capacity required for intermediate data, model outputs, and user-generated analyses. To 

support scalable experimentation, distributed training, profiling, and hyperparameter tuning will be 

orchestrated using Ray clusters deployed on k8s. 

The assistant’s backend must meet demanding requirements for responsiveness, fault tolerance, and 

efficient data access under multi-user workloads. To that end, the system will be tightly integrated 

with the DEP's federated data infrastructure - including Rucio and FTS for dataset distribution, and 

containerized preprocessing pipelines for format harmonization and compression. Model serving and 

orchestration will be handled via a dedicated model hub running on Kubernetes, equipped with 

S3-compatible object storage, public IP routing, and ingress configuration for secure and scalable 

inference APIs. All services will be containerized to ensure reproducibility, ease of deployment, and 

compatibility across DEP nodes. These compute and data capabilities are critical to enable real-time 

AI interactions over large bioimage datasets and to deliver a robust assistant experience accessible 

directly from the BIA interface. 
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5.​Test and Integration Pilots 
Testbeds will be established to pilot and evaluate the WP3 solutions, building on the architectural 

definition in Section 2 and incorporating updates from ongoing project discussions. These testbeds 

will be the key to collecting feedback from the use case partners such that the overall architecture 

can be further refined to address their needs. The vision in this respect is that these testbeds will 

provide the necessary playground that will actually enable the fruitful process of co-design. 

The implementation of these testbeds will rely on the computing resources provided by TUBITAK and 

TU Wien. Of course, these resources may be supplemented by additional providers who, during the 

course of the project, will serve as early adopters and contribute with in-kind resources. In this 

context, the use case from DestinE may contribute by providing access to one of the EuroHPC 

systems.  

From TUBITAK, an OpenStack-based cloud platform will be provided, which shall be backed by a 

small HPC cluster dedicated to the cloud system. Both the cloud and HPC systems will include 

GPU-enabled servers. While the cloud platform is aimed to provide continuous operation both in 

CPU- and GPU-based workloads, the HPC system will allow users to offload jobs that require more 

processing power and/or multiple servers. The HPC system will be SLURM-based and will be 

designed as an “accelerator” for time-limited tasks which need higher performance and more 

resources. The cloud computing platform will allow users to build their server infrastructures for 

extended workloads and services and serve them to external consumers. For the Cloud/HPC 

continuum, either SLURM native REST-based methods or more sophisticated software designed for 

this aim, such as interLink, can be used.  

5.1.​Early Demonstrators and Ongoing Testbed 
Integrations 

In order to bootstrap the piloting activities that are key to the success of the WP3 architecture 

integration and enhancement, activities will be initiated, similar to those of the interTwin project. In 

particular, the planned testbeds can benefit from the fact that two components of Task 3.1, namely 

itwinai and interLink, have already demonstrated a basic integration. Similarly, early-stage integration 

between itwinai and yProv4ML has already been proven, which defines an initial link and solid 

foundation for future activities between Task 3.1 and Task 3.2.  

itwinai has already been used in many scientific and technical use-cases, such as fast particle 

detector simulation at CERN, lattice QCD physics at ETH Zürich, tropical cyclone detection for 

CMCC, and many others. All the integrated use-case workflows are kept at the main itwinai 

repository and are freely available to anyone. A full list of use-cases currently integrated together 
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with the associated documentation can be found in the footnote27. In particular, it is relevant to note 

here the CMCC use case (defined in Section 4.1) that can already benefit from the experience gained 

from these earlier activities. 

To start these developments and experiment on the RI-SCALE use-cases, TUBITAK resources on 

OpenStack could be used, and a k8s cluster will be deployed for itwinai. The cluster will be equipped 

with a Virtual kubelet, and an interLink instance dedicated to RI-SCALE will be deployed in order to 

enable the offloading to the HPC part of TUBITAK. This integrated testbed will be the first initial 

demonstrator and will be made available for testing as well as to support the other WP3 services that 

can benefit from such a model. In the future, testbeds will also be implemented with the TU Wien 

resources, which will be exploited for implementing the use cases from health and life science 

applications. 

5.2.​ Roadmap for Future Setups 
In the following months, the implementation towards a complete testbed to provide an integrated 

DEP platform will include the following main steps. The steps are grouped based on the DEP release 

timeline, where the steps are expected to be completed. 

DEP 1st Release (in M12) 

●​ Extend other services from Tasks 3.1 and 3.2 to integrate with access to both Cloud and HPC 

resources, i.e. via interLink; 

●​ Initial demonstration of use case integration through the testbed with WP3 software 

components;  

●​ Initial demonstration of integration with services and components from WP2 and WP4, 

particularly AAI and Data Management (i.e. RUCIO). This is especially important to realize the 

DEP workflow; 

●​ Initial demonstrator of integration of AI scaling framework (itwinai) with the model repository 

(such as the model hub) for model loading/uploading to the use case repository, as well as 

the yProv ecosystem (in particular Prov4ML); 

●​ Initial demonstration of the AI Model Hub provides basic model listing and hosting. 

DEP 2nd Release (M24) 

●​ Update the use case integration with the testbed; 

●​ Update the integration of services and components from WP2 and WP4; 

●​ Extend the testbed to TU Wien HPC and potentially additional providers, e.g. EuroHPC; 

27 https://itwinai.readthedocs.io/latest/use-cases/use_cases.htm 
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●​ Update to integration of AI scaling framework (itwinai) with the model repository (such as 

the model hub) and the yProv ecosystem (in particular yProvStore and PID service).  

●​ Include any early adopters not only as a scientific community but also as a resource provider, 

e.g. GROQ.   

DEP 3rd Release (M36) 

●​ Final integration of use cases; 

●​ Final integration of services and components from WP2 and WP4; 

●​ Leverage the existing BioImage.IO chatbot/agent and expand its functionality for the AI 

computing framework and DEP as a whole; 

●​ Final integration of provenance support for AI model documentation through the yProv GUI, 

to advance the user's experience regarding provenance visualization and exploration, as well 

as AI models' interpretability;  

●​ Explore the scalability of the testbeds to enable RIs to exploit large-scale compute and data 

infrastructure.  

These testbeds and integration pilots will contribute to the implementation of the requirements 

defined in D5.1 [R1]. The functional and non-functional requirements from WP3 are provided in the 

Annexure. In this table, the DEP release where these requirements will be delivered is specified. 

Depending on how critical a requirement is for the DEP and the associated use case, the associated 

release is prioritized   
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6.​Summary and Next Steps 
This deliverable provides the foundation for the development of AI-based technical solutions in the 

DEP. The AI capabilities are key to the RIs and allow them to tackle the data and compute challenges 

in the SUCs. The software solutions presented in this deliverable provide the basis for enabling these 

use cases in the DEP. It should be noted here that the connection of WP3 to the technical use cases 

is realized with the identified requirements (mostly non-functional). Considering these requirements, 

the developments in the software components are planned, and milestones in the roadmap are 

proposed.  

This document presented user stories based on various kinds of DEP users (end user, model 

developer and DEP operator). These stories present workflows for executing user-specific tasks and 

the corresponding DEP responses for each of the steps in a workflow. Here, the AI-focused user 

stories were presented. The DEP responses highlighted the exploitation of various components of 

the “AI Lifecycle Management” container, presented in the WP3 architecture. The presented 

architecture is modular and flexible, allowing users to make customized definitions of their 

workflows. The “AI Lifecycle Management” container interacts with other containers in the DEP, 

which are the technical solutions developed in WP2 and WP4. At this stage of the project, these 

cross-WP interactions are not known in detail. However, the conceptual workflow that is presented 

in this deliverable is expected to be consistent with the final adopted solution. 

The presented software solutions include components that bring together various functionalities in 

the “AI Lifecycle Management” container. These components provide the basis for the specification 

of the AI systems in the DEP. For each of these components, gaps were identified based on 

requirements gathered in D5.1 [R1]. Furthermore, the AI applications were also presented in this 

document. The main objective of these applications, the associated AI modelling scenarios and the 

compute and data challenges for each application were identified. These applications drive the 

requirements and guide the architectural design of WP3. The technology gaps and the technical 

challenges provided by the applications guide the developments that are still needed for the 

software solutions in order to be deployed in the DEP. Overall, these components bring together all 

the essential elements needed in an MLOps lifecycle. In the next steps, these individual components 

need to be integrated to deliver the “AI Lifecycle Management” container. The flexible nature of this 

container allows each of the components to retain their core functionalities. 

Finally, the proposed testbeds and roadmap for WP3 were presented, which will contribute to the 

integration among the technical solutions and the use cases. These provide the methodological basis 

and the playground for the implementation of the AI technical solutions. These testbeds will be 

deployed in the next weeks in the infrastructure provided by RI-SCALE partners. Furthermore, 

discussions with other technical WPs (WP2 and WP4) will guide the overall implementation of the 

DEP. This will possibly involve workshops, hands-on sessions and focused pilots with other WPs. The 
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identified roadmap provides a timeline based on the DEP releases, where the testbeds and 

integrations will be provided. 

Overall, the deliverable provides the detailed specification of the AI-based components that form 

the DEP. The technical solutions have already demonstrated promising performance across a wide 

range of applications and across diverse infrastructure. This deliverable presented the basic building 

blocks of these solutions that will contribute to the DEP and enable the RIs to scale up their scientific 

and technical use cases.  

 

 

RI-SCALE 101188168​ ​ ​ ​ ​ ​ ​ ​          www.riscale.eu 
50 

http://www.riscale.eu


D3.1 – AI Systems and Models Specification and Roadmap 

References 
Reference 

No Description/Link 

R1 Psychas, A., Spiliotopoulou, A., Tenhunen, V., & Sipos, G. (2025). RI-SCALE_D5.1 – 
Data Exploitation Platform Requirements and Design Considerations (V1_Under EC 
Review). Zenodo. https://doi.org/10.5281/zenodo.15755803 

R2 Padovani, G. et al. (2024). A software ecosystem for multi-level provenance 
management in large-scale scientific workflows for AI applications. SC24-W: 
Workshops of the International Conference for High Performance Computing, 
Networking, Storage and Analysis, Atlanta, GA, USA, pp. 2024-2031. 
https://doi.org/10.1109/SCW63240.2024.00253 

R3 Cinquini, L. et al. (2014). The Earth System Grid Federation: An open infrastructure 
for access to distributed geospatial data. Future Generation Computer Systems, 
vol. 36, pp. 400–417. https://doi.org/10.1016/j.future.2013.07.002 

R4 Fiore, S., Nassisi, P., Nuzzo, A., Mirto, M., Cinquini, L., Williams, D. & Aloisio, G. 
(2019). A Climate Change Community Gateway for Data Usage & Data Archive 
Metrics across the Earth System Grid Federation. In Proceedings of the 11th 
International Workshop on Science Gateways (IWSG 2019)”, vol. 2975 of CEUR 
Workshop Proceedings, p. 6, CEUR, Ljubljana, Slovenia, 12-14 June 2019. URL: 
https://ceur-ws.org/Vol-2975/paper5.pdf. 

R5 BBMRI ERIC Colorectal Cancer Cohort. URL: 
https://www.bbmri-eric.eu/scientific-collaboration/colorectal-cancer-cohort/ 

R6  Kirillov, A. et al. (2023). Segment Anything.  
Preprint at https://arxiv.org/abs/2304.02643. 

R7 Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R. & Ganguly, A. (2017). 
DeepSD: Generating High Resolution Climate Change Projections through Single 
Image Super-Resolution. https:/doi.org/10.48550/arXiv.1703.03126. 

R8 Baño-Medina, J., Manzanas, R., & Gutiérrez, J. M. (2020). Configuration and 
intercomparison of deep learning neural models for statistical downscaling, 
Geosci. Model Dev., 13, 2109–2124. https://doi.org/10.5194/gmd-13-2109-2020.  

R9 Lei, W., Fuster-Barceló, C., Reder, G. et al. BioImage.IO Chatbot: a 
community-driven AI assistant for integrative computational bioimaging. Nat 
Methods 21, 1368–1370 (2024). https://doi.org/10.1038/s41592-024-02370-y 

 

 

 

RI-SCALE 101188168​ ​ ​ ​ ​ ​ ​ ​          www.riscale.eu 
51 

https://doi.org/10.5281/zenodo.15755803
https://doi.org/10.1109/SCW63240.2024.00253
https://doi.org/10.1016/j.future.2013.07.002
https://ceur-ws.org/Vol-2975/paper5.pdf
https://www.bbmri-eric.eu/scientific-collaboration/colorectal-cancer-cohort/
https://arxiv.org/abs/2304.02643
http://doi.org/10.48550/arXiv.1703.03126
https://doi.org/10.5194/gmd-13-2109-2020
https://doi.org/10.1038/s41592-024-02370-y
http://www.riscale.eu


D3.1 – AI Systems and Models Specification and Roadmap 

Annexure 
The annexure contains the WP3-specific requirements submitted in Deliverable 5.1 - Data Exploitation Platform [R1] requirements and design considerations. 

Additionally, in the tables below, the release date for these requirements is also specified.  

Functional Requirements 

Requirement 

Jira Key 

Requirement Source Description Rationale Component 

that fulfils it 

Priority Release 

Date 

RSREQ-10 [ITT] Internal – 

Technical Team 

The AI computing framework must 

support large-scale offloading of AI 

training and inference seamlessly 

across cloud and HPC 

infrastructure. 

This ensures that the AI framework 

in the DEP is readily portable, which 

allows RIs to deploy it in their local 

machine, cloud provider or a large 

HPC center. It contributes directly 

to KPI#3, KPI#4 and KPI#7. 

AI Computing 

Framework 

(WP3-T3.1) 

MUST M24 

RSREQ-12 [ITT] Internal – 

Technical Team 

The DEP must have a user-friendly 

interface that allows for seamless 

application and deployment for the 

use cases. 

The value of a technology is 

determined by how effectively it is 

used in practice. Functionality and 

utility of the DEP, delivered by the 

Technical Team, must be sustained 

(project duration and beyond) and 

widespread (use-cases) 

application by the Scientific and 

Technical Use Cases and the 

AI Computing 

Framework 

(WP3-T3.1) 

SHOULD M36 
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associated end users. 

RSREQ-13 [ITT] Internal – 

Technical Team 

The AI Model Hub component 

must provide REST APIs and a 

basic Web UI for core model 

lifecycle operations (upload, 

discovery, versioning, retrieval) 

using Hypha and MLflow as a 

backend. It must enable the 

storage and API-based retrieval of 

key provenance metadata (e.g., 

creator, date, dataset reference, 

parameters/environment, license) 

with each model version, and offer 

interfaces to initiate model 

benchmarking. 

Fulfils the task requirements for 

delivering an AI Model Hub 

capable of storing, serving, and 

benchmarking models, 

incorporating a provenance model, 

and leveraging Hypha and MLflow. 

This supports model sharing, 

reproducibility, transparency, and 

trustworthiness, contributing to 

project goals and potential KPIs 

related to model management and 

usage. 

AI Model Hub 

(WP3-T3.2) 

MUST M24 

RSREQ-14 [ITT] Internal – 

Technical Team 

The AI Model Hub must integrate 

with the central RI-SCALE 

Authentication and Authorisation 

Infrastructure (AAI), anticipated to 

be the Policy-Based Authorization 

Framework (WP4-T4.1), to enforce 

access control. Authorization 

decisions for all Hub functionalities 

Directly addresses the task 

requirement to establish 

Authentication/Authorisation 

mechanisms for enforcing model 

access policies. This ensures 

secure and governed access to AI 

models within the Hub, aligning 

with project security requirements 

AI Model Hub 

(WP3-T3.2) 

MUST M24 
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and resources must be governed 

by policies managed within this 

AAI. 

and potential KPIs for controlled 

resource access and compliance. 

RSREQ-15 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The platform must support 

foundational model training and 

inference execution on data from 

the BioImage Archive   

This functionality is essential for 

Scientific use case 7 (Foundational 

models for heterogeneous 

biological image data). Also, to 

train foundation models for 

heterogeneous image data, as 

required on T3.4; It directly 

contributes to KPI#7 (No. of AI 

models trained in DEP pilots) and 

KPI#8 (No. of use cases developed 

for DEP validation). 

AI for Health 

and Life 

Sciences 

(WP3-T3.4) 

MUST M24 

RSREQ-16 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The platform must enable 

fine-tuning models on data from 

the BioImage Archive 

This functionality is essential for 

Scientific use case 7 (Foundational 

models for heterogeneous 

biological image data). Also, to 

fine-tune models for image 

classification, segmentation and 

anomaly detection, as required on 

T3.4, it directly contributes to 

KPI#8 (No. of use cases developed 

AI for Health 

and Life 

Sciences 

(WP3-T3.4) 

MUST M24 
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for DEP validation). 

RSREQ-17 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The platform must support the 

development, training, and 

deployment of ML models to learn 

patterns in data usage and transfer 

failures, and predict 

changes/anomalies as required for 

the use case in T3.3. 

This functionality is needed for 

implementing the use case in 

WP3.3 as well as validating the use 

case in WP5.2. It contributes KPI#7 

(No. of AI models trained in DEP 

pilots) and KPI#8 (No. of use cases 

developed for DEP validation). 

Moreover, it is linked to KPI#4 (No. 

of AI models offered within DEPs). 

AI Computing 

Framework 

(WP3-T3.1) 

MUST M24 

RSREQ-20 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The platform must support the 

development, training, and 

deployment of ML models 

(probably CNNs) to perform 

statistical downscaling of climate 

projections at higher spatial 

resolution. 

This functionality is needed for the 

implementation of one of the 

scientific use cases in WP3.3, and 

for the validation of the use case in 

WP5.2. It contributes to KPI#7 (No. 

of AI models trained in DEP pilots) 

and KPI#8 (No. of use cases 

developed for DEP validation). 

Moreover, it is linked to KPI#4 (No. 

of AI models offered within DEPs). 

AI for 

Environmental 

Science 

(WP3-T3.3) 

MUST M24 

RSREQ-26 [ISU] Internal – 

Scientific Use Case 

The DEP should integrate with the 

Itwinai workflow orchestration 

Hyperparameter optimization is 

essential for developing AI models. 

AI Computing 

Framework 

SHOULD M36 
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(Scientific UC) framework to support HPO for AI 

models. Users should be able to 

define HPO tasks as part of their 

model training workflows and 

execute them on DEP compute 

infrastructure. 

The HPO framework should allow 

users to: 

●​ Define a search space for 

hyperparameters (e.g. learning 

rate, batch size, …) 

●​ Choose from standard 

optimization strategies, such as 

grid search, random search, and 

Bayesian optimization. 

●​ Specify the objective metric to 

optimize (e.g. validation 

accuracy, AUC). 

●​ Set constraints on resource 

usage, including maximum 

number of trials, parallel runs, or 

GPU-hour budgets. 

●​ Enable early stopping of 

Supporting early stopping helps 

minimize waste of computing 

resources by stopping poorly 

performing trials early. This will be 

used for Use Case 5 and Use Case 

6, and contributes to KPI03: No. of 

AI frameworks/toolboxes offered 

within DEPs. 

(WP3-T3.1) 
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unpromising trials based on 

intermediate results to save 

computational resources. 

Supported strategies should 

include Median stopping rule, 

Asynchronous Successive 

Halving (ASHA), and 

Hyperband. 

●​ Automatically deploy 

training jobs for each HPO trial to 

the DEP, without requiring manual 

submission by the user. 

RSREQ-27 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The DEP should support the use of 

MLflow to track AI model training 

workflows executed within the 

platform. Users should be able to 

log metadata about each training 

run directly to an MLflow tracking 

server provided by the DEP. This 

tracking should include: 

●​ Hyperparameters, such as 

learning rate, batch size, and 

number of epochs. 

MLflow provides an established 

mechanism for capturing and 

organising metadata during model 

training, which is essential for 

reproducibility, comparison of 

experiments, and responsible 

model development. For 

WSI-based AI workflows, where 

models may require significant 

tuning and iteration, the ability to 

track all aspects of training is 

AI Computing 

Framework 

(WP3-T3.1) 

SHOULD M36 
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●​ Performance metrics, such as 

accuracy, AUC, loss, or 

task-specific indicators. 

●​ Artifacts, such as trained model 

files, logs, and visualisations. 

●​ Environment metadata, 

including the Git commit hash 

of the training code and the 

container image identifier used 

for the run. 

●​ Dataset references, including 

internal DEP dataset IDs. 

The tracking functionality should 

be accessible programmatically 

from within the training code (e.g. 

via the mlflow Python client) and 

operate seamlessly with training 

jobs launched on all DEP compute 

sites. Access to the web interface 

of MlFlow should be controlled 

through the user management of 

the DEP. It should be asserted that 

users only have access to training 

critical. This requirement supports 

model development in Use Cases 5 

and 6, and contributes to KPI03: 

No. of AI frameworks/toolboxes 

offered within DEPs. 
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logs and metadata of projects they 

are associated with. 

RSREQ-28 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The AI Model Hub should let users 

launch inference on any supported 

data modality via web UI or API. 

Inputs include dataset IDs, a 

chosen model, and run-time 

parameters (e.g., resolution, tile 

size). Workloads are sharded into 

parallel jobs (e.g., via itwinai) to 

scale on large datasets. The service 

must honour DEP’s 

user-management and ACL rules, 

ensuring users access only 

authorised data and models. 

Results are cached and reused 

whenever the same model, 

parameters and data recur, 

regardless of project or requester. 

Foundation models are integrated, 

and external ones requiring 

Hugging Face keys use the caller’s 

key at run time. 

Simple and scalable WSI inference 

through the AI Model Hub is a key 

component of the DEP and 

essential for a good user 

experience. Foundation models will 

be used in Use Case 5, and the 

requirement contributes to KPI04: 

Number of AI models offered 

within DEPs. 

AI Model Hub 

(WP3-T3.2) 

MUST M36 
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RSREQ-31 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

In the DEP, algorithms should be 

developed for survival prediction 

based on Whole Slide Image (WSI) 

data. These algorithms should 

estimate patient outcomes using 

visual patterns in histopathological 

slides. The models should be 

implemented using reproducible 

workflows and make use of the 

training and orchestration tools 

provided by the DEP compute 

infrastructure. The developed 

models should produce predictions 

that are interpretable, allowing 

validation and assessment by 

pathologists. 

To ensure scientific relevance and 

robustness, validation should be 

performed: 

●​ On publicly available survival 

prediction benchmarks to 

demonstrate the novelty and 

competitiveness of the 

Developing survival prediction 

algorithms within the DEP 

highlights how RI data can be 

leveraged to address clinically 

relevant research challenges. The 

colorectal cancer use case 

demonstrates this approach in 

practice and contributes directly 

to RI-SCALE Use Case 5 and 

KPI#4 (No. of AI models offered 

within DEPs). Furthermore, the 

potential identification of novel 

biomarkers through model 

interpretation and validation may 

result in new scientific insights, 

contributing to KPI21: No. of 

peer-reviewed scientific 

publications and KPI22: No. of 

research outputs. 

AI for Health 

and Life 

Sciences 

(WP3-T3.4) 

SHOULD M36 
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developed algorithms against 

the current state of the art. 

●​ On the colorectal cancer cohort 

available within the DEP, which 

includes WSIs of lymph node 

tissue, provided by MUG and 

MMCI, with the aim of 

supporting the potential 

identification of novel 

biomarkers. 

RSREQ-32 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

Algorithms should be developed 

for generating synthetic 

histopathological images using 

generative AI models, such as 

diffusion-based approaches. These 

models should be trained on real 

pathology data available within the 

DEP. 

To ensure scientific relevance and 

output quality, validation of the 

generated synthetic images should 

include: 

This requirement contributes to 

use case 6 and supports KPI#4 

(No. of AI models offered within 

DEPs), KPI#21 (No. of 

peer-reviewed scientific 

publications), and KPI#22 (No. of 

research outputs). 

AI for Health 

and Life 

Sciences 

(WP3-T3.4) 

SHOULD M36 
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●​ Privacy risk assessment, e.g. 

membership inference testing, 

to confirm that synthetic 

images do not expose 

identifiable patient information. 

●​ A user study with pathologists, 

who will review synthetic 

images and assess their realism, 

diagnostic plausibility, and 

fitness for research or training. 

RSREQ-40 [ITU] Internal – 

Technical Use Case 

(Technical UC) 

AIFS should be able to use at least 

some of the distributed ML 

frameworks on at least  

one of the EuroHPC systems that 

DestinE is currently using, Lumi 

(CSC), Leonardo (Cinceca), MN5 

(Bsc) 

The technical use case states: 

Evaluate and measure the scale at 

which the DEP can work on a 

EuroHPC machine while serving a 

challenging AI model with large 

data from DestinE. 

Hence, AIFS should be able to use 

at least some of the distributed ML 

frameworks on at least one of the 

EuroHPC systems that DestinE is 

currently using, Lumi (CSC), 

Leonardo (Cinceca), MN5 (Bsc) 

AI Computing 

Framework 

(WP3-T3.1) 

MUST M12 
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RSREQ-87 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The DEP must enable to send any 

analysis outputs and model 

metadata back to the BIA. Model 

outputs and metadata must be 

returned to the BIA using a 

consistent schema so they can be 

used to support automated data 

categorisation and similarity search 

within the RI 

This functionality is essential for 

Scientific use case 7 (Foundational 

models for heterogeneous 

biological image data). It directly 

contributes to KPI#8 (No. of use 

cases developed for DEP 

validation). 

AI for Health 

and Life 

Sciences 

(WP3-T3.4) 

MUST M24 

RSREQ-94 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The assistant should enable users 

to perform basic bioimage analysis 

tasks—such as segmentation or 

object detection—through a 

conversational interface. Users 

should be able to upload images or 

select existing datasets, request a 

supported analysis (e.g., “Segment 

cells using CellPose”), and receive 

both visual and downloadable 

results. 

Many users accessing RI imaging 

data do not have the technical 

expertise to deploy AI models or 

run analysis workflows 

independently. This requirement 

aims to provide a simplified 

interface for triggering standard 

analysis tasks, improving usability 

and promoting broader adoption 

of AI tools in image-based 

research. 

AI Model Hub 

(WP3-T3.2) 

SHOULD M24 

RSREQ-95 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The project must provide an 

ML-based model for enabling 

prediction and/or detection of 

This functionality is needed for 

implementing the use case in 

WP3.3 as well as validating the use 

AI for 

Environmental 

Science 

MUST M24 
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changes/anomalies in the usage of 

climate data from ESGF (Earth 

System Grid Federation). ML 

models can be effectively used to 

learn from historical data usage 

and transfer log patterns 

associated with usage and 

anomalies. The trained model will 

then be applied to current data 

usage streams, for example, to 

identify the most used data in a 

given period or react based on 

anomaly detection of high loads in 

the data downloads. 

case in WP5.2. It contributes KPI#7 

(No. of AI models trained in DEP 

pilots) and KPI#8 (No. of use cases 

developed for DEP validation). 

Moreover, it is linked to KPI#4 (No. 

of AI models offered within DEPs). 

(WP3-T3.3) 

RSREQ-96 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The platform must support the 

development, training, and 

deployment of ML models to learn 

spatial patterns in climate 

projections and predict 

high-resolution climate scenarios as 

required for the use case in T3.3. 

This functionality is needed for 

implementing the use case in 

WP3.3 as well as validating the use 

case in WP5.2. It contributes KPI#7 

(No. of AI models trained in DEP 

pilots) and KPI#8 (No. of use cases 

developed for DEP validation). 

Moreover, it is linked to KPI#4 (No. 

of AI models offered within DEPs). 

AI Computing 

Framework 

(WP3-T3.1) 

MUST M36 
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Non-Functional Requirements 

Requirement 

Jira Key 

Requirement Source Description Rationale Component 

that fulfils it 

Priority Release 

Date 

RSREQ-11 [ITT] Internal – 

Technical Team 

The AI computing framework 

should be able to integrate all RIs 

and scale efficiently (>80%) to 

more than 100 GPUs. 

This benchmark demonstrates the 

versatility of the AI framework and 

its large-scale training capabilities. 

It contributes directly to KPI#4 and 

also to KPI#6, to enable training 

with large-scale datasets. 

AI Computing 

Framework 

(WP3-T3.1) 

SHOULD M36 

RSREQ-19 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

The ML model should be efficient 

enough to be potentially applied for 

real-time detection of anomalies in 

data usage streams when deployed 

in the infrastructure. 

Real-time prediction can support 

early detection of changes in data 

usage patterns. This could allow RI 

managers to deal with high loads in 

data download patterns and react 

to potential issues connected with 

data transfer failures in a timely 

manner. 

AI for 

Environmental 

Science 

(WP3-T3.3) 

COULD M36 

RSREQ-29 [ISU] Internal – 

Scientific Use Case 

(Scientific UC) 

Users of the DEP should be able to 

automatically deploy an instance of 

the WSI visualization toolkit XOpat. 

The viewer is deployed in an 

Apptainer container. In this 

User experience is improved 

through seamless interaction of 

WSIs and algorithm results directly 

in the DEP platform. Having an 

in-platform viewer is essential, as it 

AI Computing 

Framework 

(WP3-T3.1) 

SHOULD M36 
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container, directories for the 

following data should be mounted: 

WSIS that the user has access to, 

the algorithm output of the user, 

and a directory where the viewer 

saves annotations. The algorithm 

output should be writable by 

compute jobs while the viewer is 

running, enabling real-time 

monitoring of results during 

training. The viewer's web interface 

is exposed through a URL, where 

access is controlled through the 

user management of the DEP. 

XOpat enables users to: 

●​ Zoom, pan, and navigate in 

gigapixel-sized WSIs with 

minimal latency by streaming 

only the visible viewport instead 

of full images. 

●​ Create pixel-level annotations 

on WSIs, which can be used as 

training data for algorithms. 

is impractical to download 

terabyte-scale datasets to local 

machines for visualisation. 

Moreover, it ensures sensitive data 

remains within the secure DEP 

environment while still allowing 

users to interact with it effectively. 

XOpat will be used in the scientific 

validation (Task 5.2) of Use Cases 5 

and 6, and contributes to KPI03: 

No. of AI frameworks/toolboxes 

offered within DEPs. 
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●​ Visualize algorithm outputs on 

WSIs, such as heatmaps or 

segmentations. 

RSREQ-86 [ITU] Internal – 

Technical Use Case 

(Technical UC) 

Advanced image compression for 

histopathology Whole Slide Images 

should be investigated. The goal is 

to enhance DEP storage and 

transfer efficiency without harming 

diagnostic value or model accuracy. 

In particular, JPEG2000 should be 

evaluated, focusing on the effects 

of AI training, inference, and 

processing speed. 

Histopathological images, 

particularly WSIs, require large 

storage and are expensive to 

transfer across infrastructures. 

Efficient compression reduces 

system load and speeds up data 

access, while preserving image 

quality is essential for clinical 

validation and trustworthy AI 

development. This technical use 

case contributes to optimising the 

DEP’s performance and supports 

sustainability, interoperability, and 

usability across health science 

domains. 

AI for Health 

and Life 

Sciences 

(WP3-T3.4) 

SHOULD M12 

RSREQ-102 [ITU] Internal – 

Technical Use Case 

(Technical UC) 

The GROQ cards being tested need 

to be accessible and usable via 

appropriate interfaces and/or 

software elements 

To use GROQ cards in inference, 

we assume the software layers 

need to be adapted. 

AI Computing 

Framework 

(WP3-T3.1) 

SHOULD M24 
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