
   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 1 / 37 

 

 

 

 

E G I - I n S P I R E  
 

 

E G I  S O F T W A R E  R E P O S I T O R Y  

A R C H I T E C T U R E  A N D  P L A N S  

 

 

EU MILESTONE: MS506 

 

 

 

Document identifier: EGI-InSPIRE-MS506-v1-reviewed.docx 

Date: 14/06/2011 

Activity: SA2 

Lead Partner: GRNET 

Document Status: FINAL 

Dissemination Level: PUBLIC 

Document Link: http://documents.egi.eu/document/503 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 2 / 37 

 

Abstract 

This document describes the current design and architecture of the EGI Software Repository 
(http://repository.egi.eu) and associated support tools (http://www.egi.eu). It also discusses the 
future plans for year 2 of the EGI-InSPIRE Project. 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 3 / 37 

 

I. COPYRIGHT NOTICE 

Copyright © Members of the EGI-InSPIRE Collaboration, 2010. See www.egi.eu for details of the EGI-
InSPIRE project and the collaboration. EGI-InSPIRE (“European Grid Initiative: Integrated Sustainable 
Pan-European Infrastructure for Researchers in Europe”) is a project co-funded by the European 
Commission as an Integrated Infrastructure Initiative within the 7th Framework Programme. EGI-
InSPIRE began in May 2010 and will run for 4 years. This work is licensed under the Creative 
Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit 
http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second 
Street, Suite 300, San Francisco, California, 94105, and USA. The work must be attributed by 
attaching the following reference to the copied elements: “Copyright © Members of the EGI-InSPIRE 
Collaboration, 2010. See www.egi.eu for details of the EGI-InSPIRE project and the collaboration”.  
Using this document in a way and/or for purposes not foreseen in the license requires the prior 
written permission of the copyright holders. The information contained in this document represents 
the views of the copyright holders as of the date such views are published.  

II. DELIVERY SLIP 

 Name Partner/Activity Date 

From K. Koumantaros GRNET/SA2 15/5/2011 

Reviewed by 
Moderator: Karolis Eigelis 

Reviewers: Ales Krenek 

EGI.eu/NA3 

CESNET 
6/6/2011 

Approved by AMB & PMB  14/6/2011 

III. DOCUMENT LOG 

Issue Date Comment Author/Partner 

1 2/5/2011 First draft K.Koumantaros/GRNET 

2 4/5/2011 
Adding contributions from M.Kuba, M. 

Liška and M. Chatziangelou 
M.Kuba&M.Liška/CESNET 
M. Chatziangelou/GRNET 

3 5/5/2011 2nd Revision. K.KOUMANTAROS/GRNET 

4 6/5/2011 
Adding contributions in sections 2 & 3 

overall revision. 
M. Chatziangelou/GRNET 

C. Boumpouka/GRNET 

5 7/5/2011 Adding contributions in sections 2 & 3  C. Theodosiou/GRNET 

6 9/5/2011 
addressing and comment from M. 

Drescher 
K. Koumantaros et 

al/GRNET 
7 16/6/2011 Version Ready for External Review K. Koumantaros / GRNET 

IV. APPLICATION AREA  

This document is a formal milestone for the European Commission, applicable to all members of the 
EGI-InSPIRE project, beneficiaries and Joint Research Unit members, as well as its collaborating 
projects. 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 4 / 37 

 

V. DOCUMENT AMENDMENT PROCEDURE 

Amendments, comments and suggestions should be sent to the authors. The procedures 
documented in the EGI-InSPIRE “Document Management Procedure” will be followed: 
https://wiki.egi.eu/wiki/Procedures 

VI. TERMINOLOGY 

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/.     

https://wiki.egi.eu/wiki/Procedures
http://www.egi.eu/about/glossary/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 5 / 37 

 

VII. PROJECT SUMMARY  

To support science and innovation, a lasting operational model for e-Science is needed − both for 
coordinating the infrastructure and for delivering integrated services that cross national borders.  

The EGI-InSPIRE project will support the transition from a project-based system to a sustainable pan-
European e-Infrastructure, by supporting ‘grids’ of high-performance computing (HPC) and high-
throughput computing (HTC) resources. EGI-InSPIRE will also be ideally placed to integrate new 
Distributed Computing Infrastructures (DCIs) such as clouds, supercomputing networks and desktop 
grids, to benefit user communities within the European Research Area.  

EGI-InSPIRE will collect user requirements and provide support for the current and potential new 
user communities, for example within the ESFRI projects. Additional support will also be given to the 
current heavy users of the infrastructure, such as high energy physics, computational chemistry and 
life sciences, as they move their critical services and tools from a centralised support model to one 
driven by their own individual communities. 

The objectives of the project are: 

1. The continued operation and expansion of today’s production infrastructure by transitioning 
to a governance model and operational infrastructure that can be increasingly sustained 
outside of specific project funding. 

2. The continued support of researchers within Europe and their international collaborators 
that are using the current production infrastructure. 

3. The support for current heavy users of the infrastructure in earth science, astronomy and 
astrophysics, fusion, computational chemistry and materials science technology, life sciences 
and high energy physics as they move to sustainable support models for their own 
communities. 

4. Interfaces that expand access to new user communities including new potential heavy users 
of the infrastructure from the ESFRI projects. 

5. Mechanisms to integrate existing infrastructure providers in Europe and around the world 
into the production infrastructure, so as to provide transparent access to all authorised 
users. 

6. Establish processes and procedures to allow the integration of new DCI technologies (e.g. 
clouds, volunteer desktop grids) and heterogeneous resources (e.g. HTC and HPC) into a 
seamless production infrastructure as they mature and demonstrate value to the EGI 
community. 

The EGI community is a federation of independent national and community resource providers, 
whose resources support specific research communities and international collaborators both within 
Europe and worldwide. EGI.eu, coordinator of EGI-InSPIRE, brings together partner institutions 
established within the community to provide a set of essential human and technical services that 
enable secure integrated access to distributed resources on behalf of the community.  

The production infrastructure supports Virtual Research Communities (VRCs) − structured 
international user communities − that are grouped into specific research domains. VRCs are formally 
represented within EGI at both a technical and strategic level.  



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 6 / 37 

 

 

VIII. EXECUTIVE SUMMARY 

This document describes the current design and architecture of the EGI Software Repository 
(http://repository.egi.eu) and associated support tools.  Section 2 is dedicated to presenting in detail 
the different components that are involved in the Unified Middleware Distribution (UMD) 
provisioning workflow. The first two subsections refer to the workflow of a new software release 
bundle into the EGI Software Repository and the procedures that internal and external Technology 
Providers have to follow in order to submit such a new release. The rest of the section deals with 
what a UMD release is, as well as describing the necessary metadata that should escort releases in 
order to be successfully submitted to the RT and therefore qualify for a UMD release. The metadata 
that are provided to the RT are stored to the EGI Repository and are used locally to provide 
meaningful semantics to the users. Section 3 describes the current implementation of the 
aforementioned processes using EGI’s repository and associated support tools.  Finally section 4 
discusses future plans for the 2nd year of the EGI-InSPIRE project. This document is a formal 
milestone for the European Commission, applicable to all members of the EGI-InSPIRE project, 
beneficiaries and Joint Research Unit members, as well as its collaborating projects. It is of most 
interest for the Technology providers, and EGI WP4 (SA1) Release management. 

 

 

 

 

http://repository.egi.eu/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 7 / 37 

 

TABLE OF CONTENTS 

1 INTRODUCTION ...................................................................................................... 8 

2 UMD PROVISIONING WORKFLOW ...................................................................... 9 

2.1 Introduction ........................................................................................................................................ 9 
2.2 Internal technology providers Software Provisioning Process .................................................. 9 
2.3 External technology providers Software Provisioning Process .............................................. 10 
2.4 UMD Release building .................................................................................................................... 11 
2.5 Internal Technology Provider metadata ..................................................................................... 12 
2.6 External Technology Provider metadata .................................................................................... 13 

3 ARCHITECTURE .................................................................................................... 15 

3.1 Introduction ..................................................................................................................................... 15 
3.2 Data Layer ......................................................................................................................................... 15 

3.2.1 Storage Backend ................................................................................................................................... 15 
3.2.2 Metadata backend & content .......................................................................................................... 18 

3.3 Business Layer.................................................................................................................................. 18 
3.3.1 Bouncer Component ........................................................................................................................... 18 
3.3.2 Request Tracker (RT) Component ................................................................................................... 18 
3.3.3 Repo-backend Component ............................................................................................................... 21 
3.3.4 UMD Composer .................................................................................................................................... 25 

3.4 External interaction layer .............................................................................................................. 28 
3.4.1 Web Portal ............................................................................................................................................. 28 
3.4.2 Repository Provision Site ................................................................................................................... 29 
3.4.3 GGUS Component and Dashboard ................................................................................................. 30 

3.5 Auxiliary Components .................................................................................................................... 32 
3.5.1 Replication Mechanism ...................................................................................................................... 32 
3.5.2 Metrics Collection ................................................................................................................................ 33 

4 NEXT STEPS – PLANS ........................................................................................... 34 

5 REFERENCES ......................................................................................................... 35 

5.1 Table of Figures ............................................................................................................................... 36 

6 APPENDIX ............................................................................................................. 37 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 8 / 37 

 

1 INTRODUCTION 

This document thoroughly presents the architecture and functionality of the EGI Software Repository 
(http://repository.egi.eu), along with the tools developed around it. Important aspects of the 
Repository are argued, such as the definition of a Unified Middleware Distribution, also known as a 
UMD release, what kind of software bundles qualify for a UMD release, the submission procedure for 
Technology Providers, as well as the workflow that submitted packages will have to pass through 
before ending up in an official UMD release. The Repository's architectural design is explained and 
the behaviour of each component participating in the submission process is analysed. The remainder 
of the milestone is organized as follows: Section 2 describes EGI’s Software Provisioning process for 
both internal and external Technology Providers. Section 3 describes the current implementation of 
the aforementioned processes using EGI’s Repository and associated support tools.  Finally, section 4 
discusses future plans for the 2nd year of the EGI-InSPIRE project. This document is a formal 
milestone for the European Commission, applicable to all members of the EGI-InSPIRE project, 
beneficiaries and Joint Research Unit members, as well as its collaborating projects. It is of most 
interest for the Technology providers, and EGI WP4 (SA1) Release management. 

 

  

http://repository.egi.eu/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 9 / 37 

 

2 UMD PROVISIONING WORKFLOW 

2.1 Introduction 

This section is dedicated to presenting in detail the different components that are involved in the 
Unified Middleware Distribution provisioning workflow. The first two subsections refer to the 
workflow of a new software release bundle into the EGI Software Repository and the procedures that 
internal and external Technology Providers have to follow in order to submit such a new release. 
Software releases are submitted via the Request Tracker (RT) ticketing system, introduced in Section 
3.3.2. The rest of this section deals with what a UMD release is, as well as describing the necessary 
metadata that should escort releases in order to be successfully submitted to the Request Tracker 
(RT) and therefore qualify for a UMD release. The metadata that are provided to the RT are stored to 
the EGI Repository and are used locally to provide meaningful semantics to the users. The proposed 
metadata schema, outlined in Sections 2.5 and 2.6 for the Internal and External Technology Providers 
respectively, is rich enough to allow all parts of the repository infrastructure (YUM/APT repositories 
and the web portal) to extract the necessary information about the different software releases. 

2.2 Internal technology providers Software Provisioning Process 

The release workflow of new software, depicted in Figure 1 for internal Technology Providers, can be 
viewed and managed by the Request Tracker (RT) component of EGI (http://rt.egi.eu). Additionally, 
automation procedures are handled by a backend component of the repository (https://admin-
repo.egi.eu), referred to as Repo in the remainder of this document. These procedures are 
responsible for the creation and management of the software. However, the triggering and execution 
of these procedures are entirely managed through RT. 

The process starts upon technology provider upload of a new release.xml file to RT. This file contains 
all the information needed. A detailed description of the structure of release.xml file can be found in 
section 2.5. A new ticket is created in RT with a custom field named RolloutProgress. The value of the 
field is Submitted. The backend starts with the parsing of the release.xml, it then downloads the 
software bundle and puts it on the “Unverified” Repository. If this procedure encounters an error, 
the RolloutProgress will remain to “Submitted” and the RT-Repo status will be set to Failed. 
Additionally, it will update the ticket in order to notify the queue watchers. If the parsing procedure 
is successful then RolloutProgress is set to Unverified. 

Afterwards, the ticket is assigned to the Software Verifier. If any issues arise during verification, the 
Technology Provider is notified. The issues should be either resolved or clarified within a specified 
time period. Otherwise, the ticket is set to Rejected and the Repo backend moves the software to the 
“Rejected” repository. When the verification process is completed the Software Verifier sets the 
RolloutProgress field to StageRollout. This action triggers a new procedure in the backend, which 
moves the software to the “StageRollout” repository.  

http://rt.egi.eu/
https://admin-repo.egi.eu/
https://admin-repo.egi.eu/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 10 / 37 

 

Moreover, RT notifies the Early-Adopters, that a new software product has been moved into the 
“StageRollout” area of the repository. At this stage, the software should follow the “StageRollout” 
procedure and upon completion, regardless of the outcome, the Stage-Rollout Manager1 is 
responsible of changing the RolloutProgress to Production, if the procedure was successful, or to 
Rejected state otherwise. This action will trigger the backend’s procedure that moves the software to 
the appropriate area of the repository. 

 

 

Figure 1 Internal Technology Providers Provisioning Process 

 

2.3 External technology providers Software Provisioning Process 

The release workflow of an external Technology Provider, depicted in Figure 2, is similar to the one 
described before, incorporating some additional steps. First of all, external Technology Providers use 
the GGUS ticketing system for submitting new releases. Since the software bundles of external 
Technology Providers may not conform to the structure required by the EGI Repository, a slightly 
different process is applied when processing releases from external Providers. The purpose of the 
extra steps in the process is to transform external software bundles submitted to GGUS into 
appropriate RT tickets that can be process by the Repo. The release procedure begins with a GGUS 
ticket, which includes a release.xml file describing the software bundle under release. In order to 

                                                      
1
 The person responsible to oversee EGI InSpire TSA1.3 task Service Deployment and Validation 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 11 / 37 

 

describe the entire bundle, this release.xml file has an extended structure. The structure of the file is 
described in detail in section 2.6. GGUS triggers an RT ticket similar to EGI’s RT tickets. Afterwards; RT 
passes the ticket to the Bouncer component, presented in Section 3.3.1. The bouncer is responsible 
for dividing the release into several Software Products2. Each product is assigned a separate RT 
ticket. From this point on, the release process follows the release process of internal software 
products. Each product is treated as if it was an internal Technology Provider’s product. The only 
difference is that the accepted products are not moved directly into the ‘Production’ area. They are 
first moved to an intermediate area, called “UMDStorerepository”, where the UMD Composer 
component, described in Section 3.3.4, takes over. By using the UMD Composer component, the 
UMD Release Manager is authorized to ‘compose’ a UMD release with a given set of products and 
finally to deploy the release into the ‘Production’ repository.  

 

 

 

Figure 2 External Technology Providers Software Provisioning Process 

 

2.4 UMD Release building 

                                                      
2
 A Product is a solution delivered by Technology Providers to EGI and provides the functionality for one, sometimes more 

Capabilities as one single, undividable unit. 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 12 / 37 

 

EGI follows its own release schedule, publishing fixed UMD updates (monthly/quarterly). Accepted 
PPAs (Product per Platform and Architecture) versions are stored into a staging area of the EGI 
Repository as delivered by the Technology Providers. When a new UMD release is to be created, the 
UMD Release building process collects the qualifying and compatible with each other Products from 
the EGI Repository and bundles them into UMD releases. That is, a UMD release is irrespective of the 
Technology Providers releases. 

There are two types of UMD Releases: 

 Base, a new major release, that includes backwards incompatible updates. 

 Update, a subsequent minor or revision release 

2.5 Internal Technology Provider metadata 

In order for the repository to process a new software release bundle, an xml metadata document 
(i.e. release.xml) providing all necessary information is required. The accompanying file contains 
necessary information about the software, structured in six major logical sections: 

 The general release section 

 The UMDmeta section (ONLY for products that are candidates for a UMD release, that is 
products that have successfully passed through the UMD workflow) 

 The YUM Repositories section 

 The APT Repositories section 

 The YUM repofiles section and 

 The APT repofiles (i.e. “.list” files) section.  

Each of these sections is defined by an xml element with the appropriate fields. A high level view of 
such an XML file is shown in Figure 3. A detailed description of each section’s fields can be found in [R 

20]. 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 13 / 37 

 

 

Figure 3: Internal Technology Provider Release example. 

 

2.6 External Technology Provider metadata 

External Technology Providers need to produce a slightly different xml metadata document (aka 
release.xml) to escort their software distribution into the EGI Repository. A meaningful release.xml 
file consists of two major logical sections:  

 The general release section and 

 The delivered product(s) specific section 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 14 / 37 

 

Each of these sections is defined by an xml element with the appropriate fields. A high level view of 
such an XML file is shown in Figure 4 and an extensive presentation of each section’s fields can be 

found in *R 21+. 

 

 

Figure 4: External Technology Provider Release example. 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 15 / 37 

 

 

3 ARCHITECTURE 

3.1 Introduction 

Due to the complex nature of the EGI Software Repository, consisting of many discrete components 
across various servers, a distributed architecture is needed; such a demand may be met by 
implementing a multi-layered architecture, which will principally allow the logical separation of the 
domain logic (Business Layer) from data storage (Data Layer). Multiple modules in an External 
Interaction Layer are also provisioned for, in order to implement end-user interaction for the various 
external user groups that may make use of the EGI Software Repository.  

 

  External Interaction Layer

   Business Layer

   Data Layer

Bouncer 

Component
UMD Composer 

Component

HTTP/REST API

Request Tracker 

Component

HTTP/REST API

REPO-backend 

Component

FileSystem

DBMS

GGUS 

A
u

x
il
ia

ry
 C

o
m

p
o

n
e

n
ts

YUM/APT Provision 

Site
Web Portal

R
e

p
li
c

a
ti

o
n

 S
y

s
te

m
/M

e
c

h
a

n
is

m

M
e

tr
ic

s
 C

o
m

p
o

n
e

n
t

 

Figure 5: EGI Repository architecture diagram 

3.2 Data Layer 

3.2.1 Storage Backend 

The main persistent versioned data artefacts (also called product releases) that are stored in the EGI 
Software Repository are bundles of binary files (packages). Storing that sort of data in a traditional 
DBMS – or any other usual kind of data repository for that matter – is most certainly a cumbersome 
task, which does not pay off well in terms of space and time complexity. The most natural choice in 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 16 / 37 

 

such cases is a file system, with an appropriate directory structure.  

In addition, persistent data to be stored are metadata of the said physical artefacts, their 
groups/bundles, and so on. Quasi-transient metadata of a similar nature must also be kept in order to 
account for the state of subsets of the repository, during the course of processes such as the 
verification and evaluation of a new release. This kind of data is indeed ideally stored in a DBMS. 

Taking into consideration the above-mentioned observations, we concluded that the best choice for a 
data storage backend is a hybrid solution of a hierarchical file system scheme containing the primary 
artefacts, complemented by a DBMS, which will hold relevant metadata while pointing to a physical 
location for each artefact or bundle, as well as metadata and repository states. 

Based on this decision, six areas/directories were made available through the repository backend 
structure respectively to the repository states that are identified by the software provisioning 
workflow (see paragraph2 for more details): 

unverified: Holds the bundle of binary artefacts that constitute the submitted product release which 
is under quality verification process.The file system structure of this area is following the pattern: 

 

stagerollout: Holds the bundle of binary artefacts that constitutes the product release which is under 
stage-rollout procedure. The file system structure of this area is following the pattern below. 

In StageRollout area, the Minor and Revision number are not used within the file system structure, 
this is because; (a) only one release per major of a given product could be available under the 
StageRollout and (b) having a file system structure that depends on the release minor and revision 
numbers, the Early-Adapter sites would be forced to adjust the YUM or APT related repofiles on 
every, frequently changing, minor or revision release of a product under the StageRollout phase, 
thus causing significant unnecessary delays to the whole workflow. 

 

deferred: Holds the bundle of binary artefacts that constitutes the product release which is stated as 
Deferred (for more details on the Deferred state see the description of the Software Provisioning 
Workflow in section 3.2). The file system structure of this area is following the pattern: 

 

 

production: Holds the final snapshot of a given product major release. This snapshot includes ‘all’ the 
releases (or the ‘last’, in case of a non-incremental release provisioning WF followed) of the 

..sw/unverified/<product-short-name>/<Major-number>/<Minor-number>/<Revision-

number>/os/arch 

..sw/stagerollout/<product-short-name>/<Major-number>/os/arch 

..sw/deferred/<product-short-name>/<Major-number>/<Minor-number>/<Revision-num>/os/arch 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 17 / 37 

 

respective product that successfully passed the stage-rollout phase. The file system structure of this 
area is following the pattern below. 

In Production area, the Minor and Revision numbers are not used within the file system structure. 
This is because the production area offers either the latest product release (in case of a non-
incremental workflow followed) or the final snapshot of the product major release (in case of an 
incremental workflow followed). Additionally, having a file system structure that is depending on the 
release minor and revision numbers, the end-users/sites would be forced to adjust the YUM or APT 
related repofiles on every, frequently changing, minor or revision release of a product under the 
StageRollout phase, thus causing significant unnecessary delays to end-users. 

 

umdstore: Holds the bundle of binary artefacts that constitute the submitted product release which 
is to be included in a given UMD release and has successfully passed the StageRollout phase. The file 
system structure of this area is following the pattern: 

 

rejected: Holds the bundle of binary artefacts that has been rejected during the Software 
Provisioning Workflow. The file system structure of this area is following the pattern: 

 

In addition to the above, two complementary areas that do not participate directly in the software 
provisioning workflow are also available through the repository backend structure: 

mirrors: Provides a collection of mirrors of rsync sites that the EGI and further on, the SA2 activity, 
has decided to make available though the EGI Repository. This area can be managed only by a group 
of authorized SA2 members using the Repository mirroring facility module (see section3.3.3 for more 
details). This area is available at: 

 

early-access: Holds the bundle of the artefacts associated with the versioned product releases, which 
have been successfully passed into the Stage-Rollout phase; they are targeting a specific UMD-Major 
release, but they are not yet released into the production area. 

The file system structure of this area is following the pattern: 

..sw/production/<product-short-name>/<Major-number>/os/arch 

 

..sw/umdstore/<product-short-name>/<Major-number>/<Minor-number>/<Revision-num>/os/arch 

..sw/rejected/<product-short-name>/<Major-number>/<Minor-number>/<Revision-num>/os/arch 

..mirrors/ 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 18 / 37 

 

 

 

3.2.2 Metadata backend & content 

As mentioned in the previous paragraph, the versioned bundle of data artefacts (also known as 
product releases) are constituted by binary files in the form of packages. This includes, but is not 
limited to, RPM and DEB files. Each of the above bundles of packages is described by a set of 
metadata attributes, as those provided by the Technology Provider, conforming to the description 
provided in paragraph 3.5, as well as to the “Guide for internal technology provider” document *R19+. 

Moreover, additional metadata are needed to fully describe a given product release within the EGI 
Repository workflow (see section 3.2). These should provide details such as the latest state of the 
product release, URLs to the quality verification and stage-rollout reports, flags indicating whether a 
product release it is a block-listed one, insertion and last update timestamps, etc. 

An autonomous database has been implemented, based on MySQL engine, in order to store and 
make the required metadata accessible for further use. Figure 13 in Appendix provides the Entity 
Relationship Diagram.  A detailed description of the implemented database will be provided in a 
separate document (once the developments towards this direction are finalized), since such technical 
details are out of the scope of this document. 

3.3 Business Layer 

3.3.1 Bouncer Component 

The bouncer is implemented as a Python script, processing two input parameters: a parent RT ticket 
number and an XML file with a release description from an external provider (the release.xml). The 
bouncer parses the release description, where a release may contain multiple products and each 
product may contain multiple target platforms. For each target platform it performs the following: 

 Extracts all “metaPackages” and “updatedPackages” from the release description 

 Using yumdownloader and rpm finds all dependencies in a remote repository 

 Generates a new XML file containing information from the release descriptionand a list of the 
found dependencies 

 Creates a new RT ticket in the “sw-rel” queue as a child ticket of the specified parent ticket 

 Attaches the generated XML as a “ReleaseMetadata” custom field of the RT ticket 

3.3.2 Request Tracker (RT) Component 

RequestTracker (RT) *R 13+ is an is an enterprise-grade issue tracking system. It allows organizations to 
keep track of what needs to get done, who is working on which tasks, what's already been done, and 

..sw/early-access/UMD/<UMD-Major-number>/<Supported-OS(s)>/<Supported-ARCH(s)>/ 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 19 / 37 

 

when tasks were (or weren't) completed. RT is used (but not limited to) for bug tracking, help desk 
ticketing, customer service, workflow processes or network operations. RT is provided as open source 
under the terms of version 2 of the GNU General Public Licence and allows for a customizability in a 
large extent. Namely, RT allows to categorize tickets and projects using the RT queues however makes 
sense for some particular purpose. All necessary workflow and business logic can be taught to RT 
through "scrips"3, lifecycles, custom fields, approvals, and extensions. 

3.3.2.1 Design and Scrips 

The software provisioning workflow is modelled using three RTR 13queues, a number of custom fields 
to store the status of the software through its provisioning process and RT scrips to provide the 
necessary automation to the software provisioning process. The software provisioning workflow is 
implemented through a set of mutually linked tickets in three different EGI RT queues breaking down 
the software provisioning process into logically decoupled sub processes. 

If an external technology provider submits a software release, then a ticket is created in the sa2-umd-
rel queue through the RT – GGUS interface described below. The release metadata is stored within a 
ReleaseMedata custom field of upload one file type. Furthermore, the state of the ReleaseMetadata 
processing is held within the SA2UMDRelStatus custom field. The following states are allowed: New, 
InBouncer, Pending, Finished. Operations over the tickets in the sa2-umd-rel queue are mostly 
automated. The most important ones include checking and setting a default custom fields values on 
ticket creation, validation and processing of the release metadata provided by the external 
technology providers. The EGI Repository syntactically validates the release metadata using the XML 
validation API provided. If the validation is successful then the release metadata are passed to the 
Bouncer component of the workflow for further processing, otherwise an error is logged within the 
RT ticket. 

The majority of the software provisioning workflow in the EGI RT is implemented within the sw-rel 
queue. The aim of this queue is to process particular product-platform-architecture (PPA) 
combinations of the software release. A new ticket is created for each PPA combination in the sw-rel 
queue. The ticket is created either automatically by the Bouncer (through the GGUS – sa2-umd-rel – 
Bouncer workflow) in case of a software provided by external technology providers  or manually by 
internal technology providers. The release metadata for the PPA is again stored within the 
ReleaseMetadata custom field. The progress of the PPA processing is registered within the 
RolloutProgress custom field. Allowed progress states are: Submitted, Unverified, InVerification, 
Waiting for response, Deferred, StageRollout, Production, UMDStore, Rejected and Ignored. The 
following table depicts allowed state changes. 

  

                                                      
3
 Scrips: Scrips are the action driven scripts used to augment and customize the functionality 

within RT 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 20 / 37 

 

 

Rollout Progress Allowed State Transitions 

RolloutProgress 

To state → 

 

From state ↓ 

Unverified In Verification Waiting 
for 
response 

StageRollout UMDStore Deferred Production Rejected 

Submitted Trigger 
repo 

       

Unverified        Trigger 
repo 

In Verification    Trigger repo    Trigger 
repo 

Waiting for 
response 

        

StageRollout     Trigger 
repo 

Do not  
tigger repo 

Trigger 
repo 

Trigger 
repo 

UMDStore 

(terminal state) 

        

Deferred    Trigger repo       

Production 

(terminal state) 

       Trigger 
repo 

Rejected 

(terminal state) 

        

Table 1 RequestTracker progress states 

Additionally, the release version and the link to respective repository is stored within the ticket in the 
ReleaseVersion and RepositoryURL. Links to Quality Criteria Verification Report and Stage Rollout 
Report, which are stored in the EGI DocDB Document Server, are available through respective custom 
fields as well. Processing of the tickets within the sw-rel EGI RT queue is both automated and manual. 
If the ticket processing involves change its the RolloutProgress status then the EGI Repository is 
notified of this change. EGI Repository is especially provided with respective ticket id in order to allow 
the EGI Repository to interface with the EGI RT and further process the information stored within the 
ticket. The processing of the ticket in the EGI RT sw-rel queue involves the following major steps: 

 On creation of the ticket the default values for custom fields are set. Also, the release 
metadata is validated again as it can be provided by the internal technology providers. If the 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 21 / 37 

 

validation procedure is successful, then the RolloutProgress is switched automatically to the 
Unverified state and the members of Quality Criteria Verification group are notified 
automatically using the standard RT AdministrativeCc notification and the ticket moves to 
InVerification area. 

 If the Quality Criteria Verification process passes successfully, then the ticket moves to the 
StageRollout area. Respective Stage Rollout group is notified automatically again. Move to 
the StageRollout area also involves automatic spawning of a child ticket in the staged-rollout 
queue where the stage rollout process is tested thoroughly. The child ticket contains the 
Repository URL, Release Version and Release Information and link to the Quality Criteria 
Verification report from the parent ticket. 

 The tickets within the staged-rollout queue track the Outcome (Accept or Reject) of the stage 
rollout process. Moreover, a separate queue is used in order to allow finer grained 
notifications of the process especially towards the groups of Early Adopters. The ticket also 
provides a custom field to hold the Stage Rollout report. After the process is finished and the 
ticket in the staged-rollout queue is set as resolved, the Staged Rollout report link is 
transferred back to the parent ticket in the sw-rel queue. 

 Once the stage rollout process successfully finishes and the workflow returns back to the sw-
rel queue, respective ticket moves to the Production area and members of the Production 
group are notified automatically. 

3.3.2.2 Integration with GGUS 

Integration with GGUS provides the external technology providers with an entry point into the 
software provisioning workflow. The integration with GGUS is implemented as a RT – GGUS web 
services based interface. 

The RT – GGUS interface consists of two parts, both based on the Perl SOAP::Lite*R 14+ library. One 
part is the EGIRTforGGUS web service which provides the GGUS – RT interface on the RT side. The 
EGIRTforGGUS web service offers TicketCreate, TicketModify and AddTicketAttachment methods. 
TicketCreate is used to create new ticket in the sa2-umd-rel queue. A notable parameter of the 
TicketCreate method is the GGUSTicketID which is stored within respective custom field in the newly 
created RT ticket and used for further reference to the original GGUS ticket. The TicketModify method 
allows adding new correspondence to an existing RT ticket and/or changing its status. Finally, 
AddTicketAttachment is this particular case used to pass the ReleaseMetadata as GGUS ticket 
attachment to the respective custom field of a ticket in the RT sa2-umd-rel queue. 

The other part of the interface consist of RT  scrips invoked when a  ticket in the sa2-umd-rel queue is 
modified or changed its status. These scrips call the TicketModify methods of the GGUS Grid 
HelpDesk web service. The GGUS Grid HelpDesk TicketModify method is used to add correspondence 
to the GGUS ticket diary of steps or change the GGUS ticket status. The method returns a matching 
GGUSTicketID of respective ticket in GGUS when its call was successful.  

3.3.3 Repo-backend Component 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 22 / 37 

 

The Repo-backend component is the heart of the business layer. It is responsible for sanitizing 
requests to the data layer and retaining the logical integrity of the data throughout operations. It 
interfaces directly to the data layer and transforms data requested from (or sent to) its API into the 
form appropriate for presentation (or storage accordingly). The Repo-backend component is divided 
into four modules: 

 Repo daemon 

 YUM/APT Repositories Generator 

 Early-access Builder and 

 Repo mirroring facility. 

High-level details about the functionality offered by each module are provided in the next 
paragraphs.  

3.3.3.1 Repo Daemon  

Upon RolloutProgress change, the Repo daemon module receives notifications (via its HTTP API) 
originated from the RT component. It fetches the release details stored within the RT ticket as well as 
the associated release XML file and it recognizes whether the commanded RolloutProgress transition 
is an allowed one or not.  

In case of a valid RolloutProgress transition, the Repo daemon is the responsible module for: 

 parsing the given release XML file  

 performing a logical validation of the content of the release XML file. Example cases that 
could cause the logical validation to fail are: a Major release that is defined as an incremental 
one, an emergency release that is stated as a non-incremental one, etc. 

 validating the content of the given release XML file against the data exist in the EGI 
repository database. An indicative scenario, in which an error should be raised out if this 
validation, could be: a non-incremental minor release of a product has been submitted but 
the associated Major is not (yet) released into the production area 

 storing the release metadata into the EGI database  

 moving or downloading, in case of a new release submission, the corresponding bundle of 
artefacts (RPMs, DEBs, …) into the designated EGI Repository area, in respect to the 
RolloutProgress value  

 triggering the YUM/APT repositories generator module in order to create the corresponding 
YUM or APT repositories 

 and finally, regardless the result of this process (success or failure), the Repo daemon is the 
responsible module for communicating the outcome back to the RT component.  



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 23 / 37 

 

Moreover, the EGI Repo daemon, offers a built-in RESTful API, for intercommunication with the rest of 
the EGI Repository components, providing, in this way, access to the EGI Repository pool of metadata 
(data layer). In addition, it offers an RSS based mechanism for integration with the WebPortal 
component and it provides an XML validation service as well as an XMLtoHTML conversion facility.  

Finally, a web-application (https://admin-repo.egi.eu/admin/) is under development, which allows a 
group of authorized members of the SA2 activity to monitor the product releases RolloutProgress 
transitions, as those conducted by the RT component. Furthermore, the said web-application 
provides an overview of the versioned product releases distribution within the identified EGI 
Repository areas/states. 

 

Figure 6 Backend Component Admin Interface 

 

3.3.3.2 YUM/APT Repositories Generator  

As the name implies, the main aim of the module is to create the YUM and/or APT related 
repositories based on a specific set of attributes indicated by the technology provider. Furthermore, 
the module is following an asynchronous implementation logic, primarily for : 

 guaranteeing a FIFO sequence for processing the requests as they are commanded by the 
different components and modules of the EGI Repository setup.  

https://admin-repo.egi.eu/admin/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 24 / 37 

 

 to avoid causing delays to the overall workflow  

 to be easy replicated to different hosts as the creation of YUM repositories can be realized 
only in a RPM-based OSs and for the construction of APT repositories a DEB-like OS might be 
needed. 

The most important internal functions carried out by the module are: 

 Provides an interface for accepting and queuing YUM and/or APT repositories creation 
commands originated by the other internal modules or components included in the business 
layer of the EGI Repository structure (for the time being it accepts commands originated by 
the Repo daemon, the Early-access builder and the UMD Composer). 

 Communicates with the Repo DB in order to fetch the metadata needed for the YUM and/or 
APT repositories creation 

 Builds the YUM and/or APT repositories, in respect to the accepted command. 

 Generates, the YUM and/or APT related repofiles. 

 Updates the Repo database upon completion. 

3.3.3.3 Early-access Builder  

As it has been mentioned in paragraph 3.2.1, “early-access” is the area that holds the bundle of the 
artefacts, associated with the versioned product releases which have been, successfully, passed into 
the Stage-Rollout phase, they are targeting a specific UMD-Major release, but they are not yet 
released into the production area. The Early-access Builder is the responsible module for building and 
keeping this area up-to-date. In detail, it communicates periodically with the repository database and 
upon new insertion (or removal) of a product release into (from) the “UMDStore” area it performs 
the following actions: 

 (re)builds the “early-access” area 

 triggers the YUM/APT Repositories Generator module in order to (re)create the associated 
YUM and/or APT repositories 

3.3.3.4 Repo Mirroring Facility 

The Repo mirroring facility module is an autonomous sub-system, independent from the EGI Software 
provision workflow that aims to provide mirroring capabilities to a group of authorized members of 
the SA2 activity (available at https://admin-repo.egi.eu/admin/ using the Mirrors button). By using 
the module’s dedicated web interface, the user is able to set (or unset) periodic mirroring jobs, 
replicating and therefore make available through the EGI Repository any remote rsync site or service. 
Moreover, any folder existing in the mounted CERN’s AFS file system could be replicated through this 
module. 

https://admin-repo.egi.eu/admin/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 25 / 37 

 

 

 

 

Figure 7 Repository Mirroring facility Admin interface 

3.3.4 UMD Composer 

The UMD Composer component is the responsible unit within the EGI Repository structure for 
composing/constructing a major, minor or revision update of the Unified Middleware Distribution 
(UMD), based on the versioned product releases which reside in the “UMDStore” area. The said 
versioned product releases are of a specific platform and architecture pair and further on this 
document they will be referred as PPAs. 

Through the component’s user interface (currently under development), three key functionalities are 
available to a group of authorized members of the SA2 activity. They can:  

 initiate a UMD major or minor/revision update,  

 work with active UMD releases (not deployed in production yet) and  

 view archived UMD releases (already in production). 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 26 / 37 

 

 

Figure 8 UMD Composer - key functions offered (main page). 

The “initiation” function offers the capability of starting/initiating a UMD major or minor/revision 
release to work with. By starting a new major release, the user is informed by the system with the 
next available major number and is prompted to select the appropriate triplet, defining in this way 
the platform(s) (OS), the architecture(s) (ARCH) and the automated package installation technology 
(YUM/APT) that will be used for the newly initiated release.  

Moreover, acting upon initiation of a new update for a given major, the system prompts the user to 
select the type of the update, in terms of whether it is a minor or a revision one. The system informs 
the user of the next possible minor or revision number, respectively, and prompts to accept or reject 
the “initiation”. Further, two important rules constrain the update initiation process: 

 Only one update (minor or revision) per respective major version may be initiated and 
therefore be under the composition workflow. 

 A revision version of a given UMD minor release may not be initiated while a minor with a 
greater number is under composition, or has been deployed in production: For example, 
release 4.4.2 cannot be initiated if the 4.5.0 is under composition or has been already 
deployed to production. 

The next key function offered to the user by the UMD Composer component is the capability to work 
with the initiated UMD releases that are not deployed yet in the production. Under this scope, view, 
edit/modify and deployment actions can be performed. 

Viewing an active release could be performed by any authenticated user, regardless his authorization 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 27 / 37 

 

level. Through this action, one is able to review the PPAs that are already associated to a given active 
UMD release, access the metadata of each PPA (associated or not) and evaluate the active UMD 
release metadata. 

Editing/modifying an active UMD release is permitted only by specific members of the SA2 activity, 
granted with the analogous authorization level. During this action, one is able to modify an active 
UMD release by adding or removing associated PPAs and/or alter the related to the release, metadata 
(i.e. release notes, changelog, documentation links, known issues etc.).  

 

Figure 9 UMD Composer, the composition workspace – Default view 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 28 / 37 

 

 

Figure 10 UMD Composer’s composition workspace - Drag & Drop effect, instant preview of the 
PPA – UMD release associations being performed. 

Deploying a UMD release into production is performed through the UMD Composer component, as 
well. Alike editing related actions, it is permitted only to specific members of the SA2 activity, granted 
with the analogous authorization level. Upon successful UMD release deployment, the component 
communicates with the Repo daemon and updates EGI Repository database by setting the state of 
each associated PPA to “production”. This change is further communicated to the RT component by 
the Repo daemon. 

The last, but not least, key function of the UMD Composer provides the user with a review and 
reporting infrastructure for archived UMD releases that are deployed in production. However, due to 
the limited timeframe that is available for the design, development and testing of the component, 
this functionality will not be ready on the first release of the Composer scheduled for June. 

3.4 External interaction layer 

3.4.1 Web Portal 

The portal for EGI Software Repository is deployed as a Wordpress site *R 9+, available at 
http://repository.egi.eu. The site shares the same look and feel as the official EGI site *R 10+, thanks to 
a custom child theme *R 11+ that was developed based on Wordpress’ default theme (Twenty Ten). 
General information about the repository and the EGI initiative are provided, such as the goals of the 
project, user support contact points, etc. In addition, the portal serves as an entry point, providing a 
user interface where users can browse through the releases of popular grid middleware software that 
have reached the StageRollout and Production stages of the EGI workflow as well as preliminary 

http://repository.egi.eu/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 29 / 37 

 

installation guides. In specific, the information supplied by Technology Providers and displayed for 
each release is as follows, a short description for the software release, links to further 
documentation, the release notes and the link to the Repository URL where the users can download 
the aforementioned release. 

At the time being the EGI Software Repository portal is automatically updated with the new releases 
that make it into the Repository through the EGI workflow. The communication between the 
Repository and the portal is achieved through RSS feeds. The repository maintains an RSS feed 
channel, adding an RSS feed for each new release it processes. The portal retrieves the feeds and 
translates each one of them into a blog post containing basic information about the release as 
described above. This procedure is implemented by two Wordpress plugins; the first one is 
responsible for acquiring any new feeds in the channel and transforming them into blog posts *R 12+, 
whereas the second one was designed to work as a filter that customizes the information included in 
the posts, by extracting custom fields of the feed introduced especially for the communication 
between the portal and the repository. 

In the future we plan to extend the RSS functionality in order to include new UMD releases in the 
portal. A browsing interface will be developed inside the portal enabling users to browse UMD 
releases and the available packages per platform for the different products of each release. 

3.4.2 Repository Provision Site 

The repository provision site offers access to the EGI YUM/APT package repositories, by means of 
web browsing for end-users, and by acting as an access point for the automated package installation 
tools of the supported OS and architectures. Currently, the EGI Repository structure consists of two 
instances of the repository provision site, on a DNS round-robin mechanism, to ensure high-
availability. The main areas that are populated by this site and they are of significant importance for 
the stability of the overall software provisioning workflow, could be accessed at the following 
locations: 

 Location: http://admin-repo.egi.eu/sw/unverified/ 
Provide access to the YUM/APT repositories associated with the products releases that are 
under the ‘quality verification process’. These repositories are acting as automated package 
installation, for the sites that are participating into the said process. 

 Location: http://repository.egi.eu/sw/stagerollout/ 
Provide access to the YUM/APT repositories associated with the products releases that are 
under ‘stage-rollout process’. These repositories are acting as automated package 
installation, for the sites that are participating into the said process. 

 Location: http://repository.egi.eu/sw/production/ 
Provide access to the YUM/APT repositories associated with the products that have reached 
the production level. These repositories are acting as automated package installation, for 
every site within the entire EGI infrastructure. 

http://admin-repo.egi.eu/sw/unverified/
http://repository.egi.eu/sw/stagerollout/
http://repository.egi.eu/sw/production/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 30 / 37 

 

 Location: http://repository.egi.eu/sw/early-access/ 
This is a dedicated area for the UMD distribution. It provides access to the YUM/APT 
repositories associated with the products that are targeting a specific UMD Major release but 
they are not yet included into the production-level UMD snapshot. 

3.4.3 GGUS Component and Dashboard 

The Global Grid User Support (GGUS) system is the primary means by which users request support 
when they are using the grid. As such the GGUS provides an entry point to the EGI software 
provisioning workflow for the external technology providers such as European Middleware Initiative 
(EMI). For the EGI software provisioning workflow the GGUS implements a software release ticket 
submission form, software release dashboard and an interface to the EGI RT where the software 
provisioning workflow is actually undertaken. 

The software release ticket submission form allows the external technology providers to upload the 
release metadata for the software being released. Upon this action GGUS interfaces with the EGI RT 
and creates a new ticket as described in section 3.3.2.2. Changes to the tickets in the EGI RT are 
communicated back to the GGUS. The external technology providers can then review the changes 
using the software release dashboard which provides an overview of existing tickets and their status. 

http://repository.egi.eu/sw/early-access/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 31 / 37 

 

 

Figure 11 EGI Software Provisioning Submission Form 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 32 / 37 

 

 

Figure 12 EGI Software Provisioning Dashboard 

3.5 Auxiliary Components 

3.5.1 Replication Mechanism 

High-availability of the EGI repository service (http://repository.egi.eu) is implemented using two 
web servers replicating the repository data and the web portal information. The replication 
procedure is completely automated for both services. Additionally, load balancing between the web 
servers is implemented using round-robin DNS4. 

Repository data (http://repository.egi.eu/sw/ and http://repository.egi.eu/mirrors/) are replicated 
using a cron5based synchronization algorithm. Each server is responsible of running the replication 
procedure, keeping the package information up to date. 

The web portal is designed using Wordpress, which is an open source publishing platform powered 
by PHP and MySQL. The Wordpress synchronization procedure is divided into two parts: The 
synchronization of the database, and the file structure. The database synchronization uses MySQL’s 

                                                      
4
Round Robin DNS: http://en.wikipedia.org/wiki/Round-robin_DNS 

5
Cron is a time-based job scheduler in Unix-like computer operating systems. 

http://repository.egi.eu/
http://repository.egi.eu/sw/
http://repository.egi.eu/mirrors/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 33 / 37 

 

Master-Slave replication feature [R 15], enabling data transfer from one MySQL database server (the 
master) to be automatically replicated to one or more MySQL database servers (the slaves). 
Replication is asynchronous - slaves need not to be connected permanently to receive updates from 
the master. This means that updates can occur over long-distance connections. Configuration allows 
replicating complete databases, schemas, or even only a single database table. In order to prohibit a 
stale data condition a cron job replicates every 5 minutes the contents of the slaves from the master. 

The replication of the Wordpress file structure is achieved using an SVN repository service 
(https://svn.hellasgrid.gr/svn/repository.egi.eu/) deployed on each load-balanced web server, which 
keep local copies of the Wordpress file structure in synch. 

Wordpress contents are administrated and created using a dedicated, separate server, http://wp-
admin.repository.egi.eu. This server holds the master MySQL database, and has write permission to 
the repository (as opposed to the replicating, load-balancing slave servers. New posts will be inserted 
using this server and the changes will be automatically deployed to the repository and slave 
databases. Administrative tasks like, plug-in update, can be performed in a local checkout. Changes 
are committed to the repository automatically update the Wordpress administration server and the 
three web servers. 

3.5.2 Metrics Collection 

A seamless procedure is designed and deployed in order to collect, analyse and display repository 
and web portal metrics. The web server logging data are collected in a single server using syslog-ng [R 

16]. The syslog-ng application supports reliable and encrypted transport, and offers powerful 
message filtering, sorting, pre-processing and log normalization capabilities. Utilizing message 
parsing and classification, syslog-ng is able to correlate log messages.  

The collected logging data are processed and represented by AWStats [R 17]. AWStats is a freetool 
that generates advanced web, streaming, ftp or mail server statistics, graphically. This log analyzer 
works as a CGIto a web server or from command line, and shows all possible information that log file 
contains, in graphical web pages. AWStats is free software distributed under the GNU General Public 
License. As AWStats works from the command line but also as a CGI, it can work with all web-hosting 
providers, which allow Perl, CGI and log access. 

https://svn.hellasgrid.gr/svn/repository.egi.eu/
http://wp-admin.repository.egi.eu/
http://wp-admin.repository.egi.eu/


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 34 / 37 

 

4 NEXT STEPS – PLANS 

As we are currently working in full speed to finalise the implementation of the 2nd iteration of the 
EGI Repository in time for the 1st release from the EMI Project [R 18] there are no concrete plans for 
the 2nd year of the project.   Therefore the main focus for the 2nd year is to optimise the current 
workflow as needed based on the results/feedback we will get from the 1st releases of UMD.  We 
plan however to design and implement most of the following. 

 Enhance the UMD Store functionality to add some kind of archiving/reporting feature of the 
UMD Composer. 

 Provide browsing facilities per capability, and list available products including a short description 
of each. 

 Provide RSS feeds for new releases to the end-users/sites.  

 Provide support for Debian based platforms. 

 Optimise the workflow based on the experience running it in full scale. 

 Adhere to the requests/needs of the communities involved. 

 Prepare for prospective migration to Cloud computing. 

 

 

 

 

 

 

 

 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 35 / 37 

 

5 REFERENCES 

R 1 MS501 - Establishment of the EGI Software Repository and associated support 
toolshttps://documents.egi.eu/document/46 

R 2 MS504: EGI Software Repository Architecture And Plans https://documents.egi.eu/document/89 

R 3 MS402 - Deploying software into the EGI production 
infrastructurehttps://documents.egi.eu/document/53 

R 4 The Repo view: http://repository.egi.eu/sw 

R 5 The Portal of the Repository: http://repository.egi.eu/ 

R 6 UMDRoadmap http://go.egi.eu/UMDRoadmap 

R 7 MS503: Software Provisioning Process  
https://documents.egi.eu/document/68 

R 8 EGI Glossary 
https://wiki.egi.eu/wiki/EGI_SA2_Glossary 

R 9 http://wordpress.org/ 

R 10 http://www.egi.eu 

R 11 http://codex.wordpress.org/Child_Themes 

R 12 http://feedwordpress.radgeek.com/ 

R 13 Resource Tracker (RT) :http://bestpractical.com/rt/ 

R 14 SOAP lite:http://www.soaplite.com/ 

R 15 MySQL Master Slave Replication feature:http://dev.mysql.com/doc/refman/5.0/en/replication.html 

R 16 Syslog-NG:http://en.wikipedia.org/wiki/Syslog-ng 

R 17 Awstats: http://awstats.sourceforge.net/ 

R 18 European Middleware initiative (EMI): http://www.eu-emi.eu 

R19 https://documents.egi.eu/public/ShowDocument?docid=428 

R 20 Guide For The Internal Technology Providers:  https://documents.egi.eu/document/428 

 R 21 Release Xml For External Technology Providers: https://documents.egi.eu/document/399 

https://wiki.egi.eu/wiki/EGI_SA2_Glossary


   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 36 / 37 

 

 

 

5.1 Table of Figures 

Figure 1 Internal Technology Providers Provisioning Process............................................................... 10 

Figure 2 External Technology Providers Software Provisioning Process .............................................. 11 

Figure 3: Internal Technology Provider Release example. .................................................................. 13 

Figure 4: External Technology Provider Release example. ................................................................... 14 

Figure 5: EGI Repository architecture diagram ..................................................................................... 15 

Figure 6 Backend Component Admin Interface .................................................................................... 23 

Figure 7 Repository Mirroring facility Admin interface ......................................................................... 25 

Figure 8 UMD Composer - key functions offered (main page). ............................................................. 26 

Figure 9 UMD Composer, the composition workspace – Default view ................................................. 27 

Figure 10 UMD Composer’s composition workspace - Drag & Drop effect, instant preview of the PPA 
– UMD release associations being performed. ............................................................................. 28 

Figure 11 EGI Software Provisioning Submission Form ......................................................................... 31 

Figure 12 EGI Software Provisioning Dashboard ................................................................................... 32 

Figure 13 Entity Relationship Diagram of the Metadata Schema ......................................................... 37 

 

 



   

 

 

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 37 / 37 

 

6 APPENDIX 

 

 

 

 

Figure 13 Entity Relationship Diagram of the Metadata Schema 

 


