Workdir and TMPDIR

Description of the problem

The workdir is the directory associated to a user’s job. It is the directory where all the files are created, when in the user's application code a path is not specified, or specified using a relative path. It is basically the current directory (the path specified in the $PWD environment variable) from where a process, a job, is run. In many configurations a batch job is run from a workdir contained in the unix user’s home directory. Often the home directories are imported by worker nodes from a shared file system. This could raise serious performance issues for the file servers, having many jobs accessing to a distributed file system, not really needing distributed data.

 Parallel jobs/MPI jobs may need to access a shared file system to write files needed by the other jobs of the same task. Parallel jobs are only a percentage of the jobs running in the Grid, for this reason there is the need for a specific configuration (e.g. shared WORKDIR) that is triggered by specific types of jobs.
 Also sequential jobs may have disk requirements. Newer machine may have 16 or 32 cores. This means that, potentially, there my be 16-32 high disk throughput processes on the same machine. Unfortunately currently GLUE2 schema doesn’t provide this kind of information (disk throughput), so it cannot be modeled in the JSDL as a job requirement, and jobs cannot be run in different file system depending on their disk throughput.
The tmpdir is the directory that should be used by the jobs to write large files, or in general when a temporary file should not be written in the job workdir. This variable must be explicitly used in the jobs code. The solution is just to have an agreement on the variable name, and to set up it correctly in the jobs’ environment. A proposal could be LOCAL_TMP_DIR, LOCAL means that the directory is not shared.
Proposed solution

The configuration of the job work directory can be often done at LRMS configuration level. However some schedulers (like Torque) have limitations, they can’t perform all the workflow from creating and assigning the workdir to actually execute the job from the proper work directory. For this reason, and to reduce the configuration overhead for the site administrator, a custom solution provided by the middleware is advisable.
 The problem could be split in two sub-problems:

a) Define the correct paths where the jobs should be executed. Based on the job type (parallel or sequential, so far) provide an environmental variable (in the environment of the job) that contains the correct path for the job execution.

a. Currently jobs submissions cannot define disk performance requirements, otherwise these specification could be used to point a job into an appropriate file system.

b) Run the job using the correct path. The job execution scripts should be aware of the variables set by the batch system or the middleware
a. Some sites are using MPI-start to change the workdir for mpi jobs, but this doesn’t work with regular jobs that need a custom workdir as well.

b. It would be possible to perform those customization in the customization points of the jobWrapper , or in other scripts like globus-job-manager. The problem is that those solutions are middleware specific, there should be different implementation of this solution for all the middleware stacks.
Address problem a)

The output of this first step are (at least) two variables in the job execution environment:

1. G_JOB_WORKDIR : it contains the path that should be the job’s workdir
2. LOCAL_TMP_DIR : it is used for temporary files described in the introduction

It is important that this variable customization mechanism is aware of the type of the job; if it is an MPI job or not, if it requires specifically customized file system or not.

How can this result be achieved?

· Many batch systems can create these variables, and most probably many Site Managers would like to continue with their configurations.

· If the batch system cannot produce those variables, the middleware should do it. Site managers should be able to disable this feature if they want to let the batch system to produce the directory and the variables.
· This option would also be used to properly set up sequential jobs with specific disk throughput (but currently there are no ways to model this requirement).

· Is this solution realistic? How the batch system (e.g. Torque) delivers the information of the workdir where the job should be run, with an env. Variable? Is this variable name customizable (can torque write the path into G_JOB_WORKDIR for example?).
 If this configuration has to be done by the middleware, at which level should it be done?
Address problem b)

This second stage suppose that an env.variable with the proper workdir for the submitted process is set up in the job’s environment. The variable name is standardized and well-known for all the middleware stacks.

 At this point every middleware stacks should implement in its job wrapper (generally speaking the script that execute the command to run the job) a cd into the path contained in the G_JOB_WORKDIR variable before the job execution.
 There are different point in the job execution process where this can be performed:

· In the CREAM and WMS job wrapper customization points
· In the globus-job-manager
· In the MPI-start scripts

· This is useful only if site admins want to customize the workdir only for parallel jobs.

· Job wrappers for ARC and UNICORE

Basically, the site manager should only care of providing the path where the job must be run, as a variable in the execution environment; this could be done both by the LRMS or the Middleware. The middleware then takes care of executing the job in the path pointed in that variable.

