

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 1 / 30

E G I - I n S P I R E

S E R V I C E S F O R H I G H E N E R G Y

P H Y S I C S

EU MILESTONE: MS610

Document identifier: EGI-doc-540-V2.docx

Date: 12/08/2011

Activity: SA3

Lead Partner: EGI.eu

Document Status: FINAL

Dissemination Level: PUBLIC

Document Link: https://documents.egi.eu/document/540

Abstract

The computing systems of the LHC experiments at CERN are probably the most complex Grid-

integrated applications currently in production. This milestone describes the critical services on

which these computing systems are based and how they interact with each other. This description

represents the current state of the art in the high energy physics community. This document revises

and replaces MS603 (EGI-doc-147-V5.doc).

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 2 / 30

I. COPYRIGHT NOTICE

Copyright © Members of the EGI-InSPIRE Collaboration, 2010. See www.egi.eu for details of the

EGI-InSPIRE project and the collaboration. EGI-InSPIRE (“European Grid Initiative: Integrated

Sustainable Pan-European Infrastructure for Researchers in Europe”) is a project co-funded by the

European Commission as an Integrated Infrastructure Initiative within the 7th Framework Programme.

EGI-InSPIRE began in May 2010 and will run for 4 years. This work is licensed under the Creative

Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second

Street, Suite 300, San Francisco, California, 94105, and USA. The work must be attributed by

attaching the following reference to the copied elements: “Copyright © Members of the EGI-InSPIRE

Collaboration, 2010. See www.egi.eu for details of the EGI-InSPIRE project and the collaboration”.

Using this document in a way and/or for purposes not foreseen in the license, requires the prior written

permission of the copyright holders. The information contained in this document represents the views

of the copyright holders as of the date such views are published.

II. DELIVERY SLIP

 Name Partner/Activity Date

From Andrea Sciabà CERN 14/7/2011

Reviewed by
Moderator: John Gordon

Reviewers: Antun Balaz

STFC

IPB
10/8/2011

Approved by AMB & PMB 11/8/2011

III. DOCUMENT LOG

Issue Date Comment Author/Partner

1 14 July 2011 First draft CERN IT-ES group

2 10 Aug 2011 Second draft CERN IT-ES group

3 11 Aug 2011 Final CERN IT-ES group

IV. APPLICATION AREA

This document is a formal deliverable for the European Commission, applicable to all members of the

EGI-InSPIRE project, beneficiaries and Joint Research Unit members, as well as its collaborating

projects.

V. DOCUMENT AMENDMENT PROCEDURE

Amendments, comments and suggestions should be sent to the authors. The procedures documented in

the EGI-InSPIRE “Document Management Procedure” will be followed:

https://wiki.egi.eu/wiki/Procedures

VI. TERMINOLOGY

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/.

https://wiki.egi.eu/wiki/Procedures
http://www.egi.eu/about/glossary/

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 3 / 30

VII. PROJECT SUMMARY

To support science and innovation, a lasting operational model for e-Science is needed − both for

coordinating the infrastructure and for delivering integrated services that cross national borders.

The EGI-InSPIRE project will support the transition from a project-based system to a sustainable pan-

European e-Infrastructure, by supporting „grids‟ of high-performance computing (HPC) and high-

throughput computing (HTC) resources. EGI-InSPIRE will also be ideally placed to integrate new

Distributed Computing Infrastructures (DCIs) such as clouds, supercomputing networks and desktop

grids, to benefit user communities within the European Research Area.

EGI-InSPIRE will collect user requirements and provide support for the current and potential new user

communities, for example within the ESFRI projects. Additional support will also be given to the

current heavy users of the infrastructure, such as high energy physics, computational chemistry and

life sciences, as they move their critical services and tools from a centralised support model to one

driven by their own individual communities.

The objectives of the project are:

1. The continued operation and expansion of today‟s production infrastructure by transitioning to

a governance model and operational infrastructure that can be increasingly sustained outside

of specific project funding.

2. The continued support of researchers within Europe and their international collaborators that

are using the current production infrastructure.

3. The support for current heavy users of the infrastructure in earth science, astronomy and

astrophysics, fusion, computational chemistry and materials science technology, life sciences

and high energy physics as they move to sustainable support models for their own

communities.

4. Interfaces that expand access to new user communities including new potential heavy users of

the infrastructure from the ESFRI projects.

5. Mechanisms to integrate existing infrastructure providers in Europe and around the world into

the production infrastructure, so as to provide transparent access to all authorised users.

6. Establish processes and procedures to allow the integration of new DCI technologies (e.g.

clouds, volunteer desktop grids) and heterogeneous resources (e.g. HTC and HPC) into a

seamless production infrastructure as they mature and demonstrate value to the EGI

community.

The EGI community is a federation of independent national and community resource providers, whose

resources support specific research communities and international collaborators both within Europe

and worldwide. EGI.eu, coordinator of EGI-InSPIRE, brings together partner institutions established

within the community to provide a set of essential human and technical services that enable secure

integrated access to distributed resources on behalf of the community.

The production infrastructure supports Virtual Research Communities (VRCs) − structured

international user communities − that are grouped into specific research domains. VRCs are formally

represented within EGI at both a technical and strategic level.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 4 / 30

VIII. EXECUTIVE SUMMARY

The physics experiments using the Large Hadron Collider (LHC) facility located at CERN are running

the vast majority of their offline distributed computing activities on the infrastructure provided by the

Worldwide LHC Computing Grid (WLCG). The LHC collider has been operational since late 2009,

but the computing systems were already fully commissioned in 2008.

In this document, first we classify the computing services that serve as basic components of the

computing systems. These services can be classified in four main categories:

1. Experiment services;

2. Middleware services;

3. Fabric services;

4. Infrastructure services.

The most important among these services are explicitly listed.

Then, we describe for each of the LHC experiments the high-level services, which provide most – if

not all – of the functionality available to the end users. For each of them we summarize the main

features (scope, dependencies, interfaces) and give some insight of their architecture and their

implementation.

Finally we conclude with a description of the main high-level middleware services provided by

external projects (EMI, OSG, Condor, NorduGrid, etc.) and explain their function and their role in the

LHC computing systems.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 5 / 30

Table of Contents

1 INTRODUCTION ... 7

2 OVERVIEW ... 8

3 EXPERIMENT COMPUTING SYSTEMS AND SERVICES 10

3.1 ALICE .. 10
3.1.1 AliEN... 11

3.2 ATLAS .. 12
3.2.1 PanDA ... 13

3.2.2 Distributed Data Management ... 13

3.2.3 PanDA Dynamic Data Placement (PD2P) .. 14

3.3 CMS .. 14
3.3.1 CRAB .. 15

3.3.2 CRAB Analysis Server .. 16

3.3.3 ProdAgent .. 16

3.3.4 WMAgent .. 16

3.3.5 PhEDEx ... 17

3.3.6 DBS ... 17

3.3.7 Data Popularity .. 18

3.4 LHCb .. 18
3.4.1 DIRAC... 19

4 MIDDLEWARE SERVICES ... 21

4.1 Data Management ... 21
4.1.1 LCG File Catalogue ... 21

4.1.2 File Transfer Service ... 21

4.2 Workload Management .. 21
4.2.1 Ganga... 22

4.2.2 Condor-G ... 22

4.2.3 gLite Workload Management System ... 22

4.2.4 GlideinWMS ... 23

4.3 Persistency .. 23
4.3.1 CORAL ... 23

4.3.2 POOL... 23

4.3.3 COOL .. 24

4.3.4 Frontier/Squid and CORAL server/proxy ... 24

4.4 Monitoring ... 24
4.4.1 Experiment Dashboard .. 24

4.4.2 SAM/Nagios .. 25

4.4.3 HammerCloud ... 25

5 SERVICES SUPPORTED BY SA3 ... 26

5.1 Common Solutions with EGI-InSPIRE Involvement .. 26

5.2 Services and Operations ... 26

6 CONCLUSION .. 28

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 6 / 30

7 APPENDIX ... 29

8 REFERENCES ... 30

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 7 / 30

1 INTRODUCTION
The goal of this document is to provide a concise yet complete description of the distributed systems

that the High Energy Physics experiments at CERN use for their offline computing, which includes, in

very general terms, data processing, data analysis and event simulation. In particular the services used

by these systems are briefly described together with their relative dependencies. This document can

therefore serve as a reference for the current status of the LHC computing and its basic components.

This document focuses on describing the main experiment services used for their distributed

computing activities and the high-level middleware services. It does not cover:

1) experiment computing services not related to distributed activities (for example, prompt

reconstruction at the CERN Tier-0)

2) low-level middleware services (computing and storage elements, VOMS and MyProxy

servers, etc.), short of mentioning them where appropriate.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 8 / 30

2 OVERVIEW
The computing systems of the LHC experiments can be seen as some of the most complex distributed

data processing systems, both from an architectural point of view and for their scale. In fact, each of

them is able to process several Petabytes of data each year and serve thousands of users; finally they

are truly distributed on a worldwide level and are integrated with several Grid infrastructures and

middleware stacks.

Although each of them was developed independently, they inevitably address and implement similar

use cases and functionality and rely on some underlying services, in particular those belonging to the

middleware layer. Therefore, all the computing systems can be represented by the schema in Figure 1,

showing a layered service stack, having at its lowest levels the basic, non-Grid aware computing

services typically provided by a computer centre.

Figure 1. Global service architecture.

We therefore classify services in the following categories:

1. Experiment services: These are services developed, maintained and operated by the

collaborations themselves; providing functionality very specific to the experiment

applications. They are, by experiment:

a. ALICE: AliEN

b. ATLAS: PanDA, DDM, PanDA PD2P

c. CMS: CRAB, Analysis Server, Production Agent, PhEDEx, DBS, Data

Popularity

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 9 / 30

d. LHCb: DIRAC

2. Middleware services: These are generic services at the Grid middleware layer, providing

high-level but application-independent functionality, used by one or more experiments

(but typically also by a wide spectrum of VOs outside HEP). They are developed by a

variety of Grid projects and software providers and are typically operated by the WLCG

in the LHC context. They include:

a. Data management services: LFC, FTS

b. Workload management services: Ganga, Condor-G, gLite WMS, glideinWMS

c. Persistency services: CORAL, POOL, COOL, Frontier

d. Monitoring services: HammerCloud, Experiment Dashboard, Nagios

e. Security services: VOMS, VOMRS, MyProxy

f. Computing elements: LCG CE, CREAM CE, OSG CE, ARC CE

g. Storage elements: CASTOR, dCache, DPM, XrootD, StoRM, BeSTMan

3. Fabric services: These are fabric-related services operated by the sites and include:

a. Batch systems: LSF, PBS, Torque/Maui, Condor, etc.

b. Tape systems: CASTOR, TSM, Enstore, HPSS, etc.

c. Disk servers or distributed file systems: GPFS, Lustre, AFS, NFS, etc.

d. Database services: Oracle, Oracle Streams, MySQL, PostgreSQL, etc.

4. Infrastructure services: These are utility services which are not part of the experiment

computing systems but are anyway important for their operations. Examples include:

documentation services, web services, bug tracking systems, etc. and are not further

mentioned here.

The services described in detail in this document are those written in italics in the previous list.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 10 / 30

3 EXPERIMENT COMPUTING SYSTEMS AND SERVICES
All the computing systems of the LHC experiments are based on a variety of services developed inside

the collaborations. Typically these services provide functionalities very specific to the experiment and

strongly coupled to the computing and data model; however, in some cases two or more experiments

have developed similar services which could possibly have been implemented as a common generic

service. There are some possible reasons for this:

a) the experiment needed a service on a timescale incompatible with the one of the Grid projects;

b) the development cycle needed to be much faster than it was possible within a Grid project;

c) the experiment requirements were not fully compatible with those of the user communities

served by the Grid project.

Nevertheless, there are a number of areas where common solutions have been developed. These

include those the pre-date EGI-InSPIRE: the (W)LCG Persistency Framework – POOL, COOL,

CORAL and CORAL server, Ganga and the Experiment Dashboards being the main examples. These

are all described in detail below (see sections 4.2.1, 4.2.14.3 and 4.4.1). In addition, there are common

solutions that have been made possible through EGI-InSPIRE. Whilst these are also described below

(see sections 4.4.3 and 3.3.7), we include a short summary in section 5.1 to highlight those areas to

which EGI-InSPIRE has contributed.

In this section the main experiment-specific services are briefly described. These services are typically

(but not always) used by a single experiment, although, given the similarities of the use cases of each

VO, the functionalities they provide are similar.

Rather than giving a fully comprehensive description of all services, we choose to concentrate on

those providing the workload management and the data management and transfer functionalities,

which are undoubtedly the most important in a distributed environment.

In the next sections, we will first summarize the experiment-specific services and describe their main

dependencies, and then provide a more detailed description.

3.1 ALICE

In the case of ALICE, computing system is fully integrated and based on a single framework with a

limited number of external dependencies.

ALICE framework

Problem area Service Depends on Interfaces

Workload management AliEN CE Web, CLI

Data management AliEN SE, xrootd Web, CLI

Data Catalogue AliEN Database Web, CLI, API

Security AliEN MyProxy, VOMS API

Monitoring MonALISA Web, API

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 11 / 30

3.1.1 AliEN

AliEN [R1] is the set of middleware tools and services developed and used by ALICE and other

collaborations for data production and analysis in the Grid. The ALICE computing services are

summarized in Figure 2 and their most important components are:

a) the file catalogue

b) a data management system based on xrootd and the File Transfer Daemon

c) a workload management system

d) authorization services

e) a monitoring system based on MonALISA

The file catalogue service provides the mapping from the logical file name (LFN) to one or more

physical file names (PFN), with an interface that resembles a UNIX file system. It is used to record all

data, including software packages used for data production and analysis. Furthermore, it supports file

collections as user-defined lists of entries and arbitrary metadata information. The file catalogue is

built on top of a relational database and accessed via several interface layers (the AliEN DB interface,

a generic Perl DB interface and a specific DB driver). Each branch in the catalogue directory tree can,

in principle, be supported by different RDBMS engines running on different hosts.

The AliEN data management allows to remotely accessing any file by automatically resolving a LFN

into the “best” PFN given the client location. Direct access is handled via the xrootd protocol, while

scheduled transfers are run via the File Transfer Daemon (FTD). All storage systems used by AliEN

are required to support the xrootd protocol (as is the case for those used in WLCG).

The workload management system is based on the so-called pull approach. A central Task Queue

contains all the submitted jobs, while on each site a Computing Element (CE) service advertises its

capabilities. A Job Broker tells eligible CEs to start Job Agents (an implementation of the “pilot job”

concept) and then sends the jobs to them, by taking into account job requirements such as the input

files needed, the CPU time, the operating system architecture, the amount of needed disk space and the

user and group quotas. At the end of each job, the Job Agent takes care to register the job output files

in the file catalogue.

Security is provided by the Authorization Service and the Database Proxy Service. The

authentication service is implemented using SASL and uses GSSAPI via a Perl module based on

Globus GSI, which allows it to use various authentication mechanisms (token, RSA key, X.509

certificates) as well as Grid proxy certificates. Once authenticated, the user is given a database token

which allows him to connect and identify himself to the database engine using the Database Proxy

service.

All the AliEN monitoring is based on the MonALISA framework [R2], which is used to collect and

aggregate all relevant information about jobs, resources and services. The MonALISA information

repository can also be used to take automatic actions depending on the information received.

AliEN is coded in Perl, mainly because of the wide availability of reusable Open Source modules,

which provide a complete security support, a full featured SOAP platform and easy Web integration.

The user interacts with the Web Services via SOAP messages and the Web Services constantly

exchange messages between themselves acting as a web of collaborating services.

Finally, AliEN is interfaced to several Grid middleware implementations, namely all those used in

WLCG: gLite, VDT and ARC.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 12 / 30

Figure 2. ALICE computing services.

3.2 ATLAS

The ATLAS computing system is built on two high-level services: PanDA, the workflow management

system used for both production and analysis jobs, and DDM, the data management system. PanDA is

used also as a “back-end” for Ganga, a generic job management framework that will be described

later; Ganga is also used to directly send jobs to the gLite WMS as back-end, although this method is

gradually being phased out. In this section we describe their architecture and functionality and their

relationship with the underlying Grid services.

ATLAS framework.

Problem area Service Depends on Interfaces

Workload management

Ganga
DDM, PanDA, CE,

gLite WMS, VOMS,

MyProxy

API

PanDA
DDM, CE, Condor-G,

VOMS, MyProxy
Web, CLI, API

Data management DDM FTS, SE, VOMS Web, CLI, API

Data Catalogue DDM LFC, Oracle CLI, API

Monitoring

Dashboard Web, API

Panda monitor Web

DDM monitoring Web

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 13 / 30

3.2.1 PanDA

Figure 3. (a) PanDA architecture; (b) DDM architecture.

The Production and Distributed Analysis (PanDA) system (Figure 3a) is a Grid workload

management system developed by the ATLAS collaboration [R3]. As in the case of AliEN, the system

is built around the concept of “pilot jobs”: Grid jobs (workloads) are submitted to a Task Buffer and

generic pilots, already running on a worker node, retrieve these jobs and execute them. The PanDA

server implements fairshare policies and priorities and assigns work via a brokerage module, while

pilots contact the job dispatcher to request a job to run; this mechanism allows reducing job latency

and increases efficiency and throughput.

Pilots are submitted to Grid CEs from multiple pilot factories developed around Condor-G. The

PanDA server and clients are implemented in Python to allow trivial portability across operating

systems and architectures. The server maintains its state in an Oracle database.

PanDA is tightly coupled with the ATLAS Distributed Data Management system described in the next

section: this integration enables PanDA to replicate datasets to sites before jobs are submitted.

PanDA end-user clients (pathena and Ganga) are used by physicists to package and send user jobs to

the PanDA server, while production jobs are submitted via a dedicated interface. Finally, PanDA

provides a web-based monitoring tool that is used by users and operators to track the progress of the

grid jobs. Since late 2006 PanDA has processed over 269 million jobs; in particular, during 2010

PanDA processed 110 million jobs and in the first half of 2011 it processed over 80 million jobs.

3.2.2 Distributed Data Management

The ATLAS Distributed Data Management (DDM) project (Figure 3b) is responsible for the

replication, access and bookkeeping of ATLAS data across the participating WLCG sites [R4]. It also

enforces data management policies defined in the ATLAS Computing Model and provides a central

link between the WLCG and ATLAS analysis components.

To ensure the DDM scalability and fault tolerance, the core of the system has been designed as a set of

independent clients and services. One of the main components of the system are the Central

Catalogues, which hold the information about which datasets exist in the system (repository), their

composition (content), where they are located (location), which replication requests have been

submitted (subscription), how often the datasets are accessed (data usage); finally an accounting

catalogue contains information such as the amount of data existing at each site and metadata.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 14 / 30

The DDM Site Services are the software agents that take care of the transfer requests, of the deletion

of datasets, of finding and fixing consistency issues and of recording monitoring information.

At the lowest level DDM is interfaced to the WLCG data management and storage services: FTS to

run file transfer jobs, LFC to implement the local dataset catalogue and SRM to remotely access and

write files to storage.

The DDM interface to external components is implemented by the DQ2 Clients that allow users,

production and analysis systems to interact with DDM. ATLAS DDM is currently managing 64 PB of

data and has achieved aggregated transfer rates of over 10 GB/s.

3.2.3 PanDA Dynamic Data Placement (PD2P)

The early distribution of ATLAS data was defined in the ATLAS Computing Model in an overly

generous way in order to guarantee the persistency of the data, but also to facilitate the analysis of the

data and its access to the users. However, by examining the data usage statistics, it was noticed that a

large fraction of the replicated data was never accessed and thus the usage of network and storage

resources was done in a suboptimal fashion: uninteresting data was being preplaced in the same way

as interesting data.

The evolution of the early pre-placement model is known as the PanDA Dynamic Data Placement.

This new algorithm defines a minimal fraction of pre-placement to Tier1s according to their agreed

share in order to guarantee the persistency of the data. The workload management system dynamically

triggers further replication of datasets that have been recently accessed. The destination sites are

chosen by the probability to run promptly a job on the new replica.

3.3 CMS

The CMS offline computing system includes a large number of services, but for the purpose of this

document we will focus on those which are closer to the Grid infrastructure: the workload and data

management systems and the data catalogue. Other services, such as the Tier-0 production and

monitoring system, are not covered as they are inherently non-distributed. In the table below the

WMAgent is mentioned, the WMAgent is a replacement for ProdAgent, thus it is used by the same

community.

CMS Key Grid infrastructure services framework.

Problem area Service Depends on Interfaces

Workload management

CRAB DBS, Analysis server CLI

Analysis server
DBS, CE, gLite WMS,

Condor-G, Condor

glideins, MySQL

API

ProdAgent
DBS, CE, gLite WMS,

Condor-G, Condor

glideins, MySQL

CLI

WMAgent

DBS, CE, gLite WMS,

Condor-G, Condor

glideins, MySQL,

CouchDB

Web, CLI, API

Data management PhEDEx DBS, FTS, SE Web

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 15 / 30

Data Catalogue
DBS

Oracle, MySQL,

SQLite
Web, CLI, API

Monitoring

PhEDEx Web, API

Dashboard Oracle Web, API

Data Popularity Oracle Web, API

Figure 4. A workflow diagram of the CMS user analysis system.

3.3.1 CRAB

The CMS Remote Analysis Builder (CRAB) is a tool to allow users to run analysis jobs over

distributed datasets and collect the results by hiding as far as possible the complexity of the underlying

system [R5]; it can be used to execute jobs both on CERN local resources (as the CMS Analysis

Facility at CERN) and remote (the WLCG sites).

As shown in Figure 4 the interaction with the Grid can be either direct, leaving to the user tasks such

as job submission, status check and output retrieval, or via a CRAB Analysis Server (see next

section). The direct interaction requires a very small set of operations by the user, but full workflow

automation can be reached only using the server, leaving to the user just the task of preparing a

configuration file, while the server will notify the user when the analysis is completed.

The user specifies the dataset to be analysed and CRAB queries the Database Bookkeeping System

(DBS), which is the CMS data catalogue, to resolve a list of sites hosting the dataset; then the analysis

task can be split in several jobs which are submitted to eligible sites. Finally, when the jobs are

finished, their output is retrieved to the user local host and the produced data is remotely copied to an

appropriate site and published in the DBS.

CRAB is implemented in Python as a batch-like command-line application. In order to interact with

the Grid middleware and with the CMS analysis software (CMSSW), CRAB must be installed on a

Grid user interface where CMSSW is also available. CRAB uses an SQLite database for logging

purposes. CRAB transparently interacts with all middleware flavours in WLCG (gLite, VDT and

ARC) and can use ad back-end the gLite WMS, Condor-G, glideinWMS and several batch systems.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 16 / 30

During 2011 the CRAB user community exceeded one thousand with a submission rate greater than

200,000 jobs per day and it is stable around 1200 unique users per month.

3.3.2 CRAB Analysis Server

The purpose of the Analysis Server is to fully automate the workflow management, leaving to the user

just the preparation of the configuration file and notifying him of the output availability [R5]. It also

allows implementing complex workflows, such as the possibility to automatically schedule analysis

jobs on new data as soon as it appears in the DBS.

The server architecture is completely modular and shared with the old CMS production core system

(ProdAgent, see next section).Thanks to its design model, the Analysis Server is comprised of a set of

independent components implemented as daemons and communicating asynchronously through a

shared messaging service supporting the publish/subscribe paradigm.

Most of the server components are multi-threaded to allow a multi-user scalable system and to avoid

bottlenecks in the most intensive and slower operations such as job (re)submission, job status tracking

and output handling. The status of the server is defined in a MySQL database.

A crucial element of the Analysis Server architecture is an external Storage Element where user input

and output data are stored.

A completely new implementation of the Analysis Server is near completion. It represents one of the

specializations of WMCore, the common data and workload management framework developed by

CMS in the recent years with the aim to improve the sustainability of the overall system.

3.3.3 ProdAgent

The ProdAgent is the system used to manage all production activities (simulation, reconstruction and

skimming) and was designed aiming at automation, scalability, absence of single points of failure and

support for different Grid middleware. In addition, ProdAgent is integrated with the CMS event data

model, data management system and data processing framework (CMSSW).

The ProdAgent interacts with the data management system to discover data to be processed or to

register produced data. Input data are read directly from the local storage system using the appropriate

local I/O access protocol and output data are staged out into the local storage system. The CMS data

transfer and placement system, PhEDEx, takes care of harvesting production files and transferring

them to the appropriate sites.

ProdAgent is implemented as a set of loosely coupled Python daemons that communicate through a

MySQL database. As for the Analysis Server, components use an asynchronous publish/subscribe

model for communication and their states are defined in the database. Scaling is achieved by running

in parallel several ProdAgent instances, where every instance makes use of a local ProdAgent MySQL

database for operation and monitoring of the components as well as a local DBS instance for data

bookkeeping. Produced data are published into the data transfer system database and into the global

DBS instance to make them available for transfer and to the collaboration for analysis.

The ProdAgent is being gradually phased out and replaced by the WMAgent.

3.3.4 WMAgent

The WMAgent represents another example of a specialization of the WMCore framework.

In term of objectives and roles the WMAgent project does not have any main difference with respect

to the ProdAgent, but the implementation is completely different.

In the WMAgent the core framework and the adopted technologies were reviewed with the main

purpose to solve some known issues and to improve the overall performance of the system. Although

the distributed nature of the system and the modular approach has been preserved, the various

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 17 / 30

components are not communicating any more via a MySQL-based message service but they use a

well-defined Job State Machine, which prevents messages from being lost.

Another important change which improves the overall performance is the adoption of CouchDB, a

NoSQL database that it is fully integrated with an HTTP framework and also exposes a RESTful

based interface.

Another new feature of the system indeed is the usage of the RESTful-based interface to expose APIs

and to enable the communication between the various pieces of the distributed framework.

The WMAgent is assessed to be of pre-production quality and the integration phase is close to finish

in the next months.

3.3.5 PhEDEx

The Physics Experiment Data Export (PhEDEx) is a software project started by the CMS

experiment in 2004 to reliably manage by a simple mechanism large-scale data transfers and data

placement policies across the Grid [R5]. It was derived from a prototype, developed for the DC04

CMS data challenge, which consisted in a number of agents using a central database (the TMDB, see

below) as a central blackboard. It is notable how some of the PhEDEx architectural choices were later

adopted in the development of the gLite File Transfer System.

In PhEDEx, data transfers are requested by specifying only the destination storage area, while the

source is selected using an algorithm which calculates the path of least cost, determined from the

recent history of the corresponding link. This allows to automatically balance the load and to be fault-

tolerant in case a link becomes unavailable.

PhEDEx is based on a high-availability Oracle database cluster hosted at CERN (Transfer

Management Data Base, or TMDB) acting as a “blackboard” for the global system state, including

the data location and the current tasks.

Furthermore, PhEDEx is composed by software daemon processes or agents implemented in Perl,

which contact the central database to retrieve their work queue.

A set of service agents run centrally at CERN, while each site runs the agents that directly interact

with the local storage to execute file transfers to the site (usually by submitting a job to FTS), for file

deletion and to run on-demand data consistency checks.

Finally, PhEDEx provides two interfaces for data operations management (transfer request and

approval), and for transfer and activity monitoring: a web site implemented in HTML and JavaScript

as an interactive interface, and a Web Data Service using Apache, for the upload into and retrieval

from TMDB of data in machine-readable formats such as XML and JSON.

Since the beginning of the 2011 LHC physics run in March, CMS has been steadily transferring data

with PhEDEx at an average global speed between all sites above 2 GB/s with peaks exceeding 3.5

GB/s, with up to 120,000 file transfers per day and 37 PB of replicas distributed over all the sites.

3.3.6 DBS

The Dataset Bookkeeping Service (DBS) describes all the CMS event data by cataloguing CMS-

specific data definitions like run number, the algorithms and configurations used to process it and the

composition of each dataset in terms of files [R5]. It can be used for data discovery via either an API

or a Web interface. There are different DBS differing by scope: the global scope DBS is a single

instance describing all official CMS data, while local scope DBS instances can be used as temporary

data catalogues, by production teams or individuals.

The DBS is a multi-tier Web application and supports Oracle, MySQL and SQLite as database back-

ends. The global scope DBS is hosted in the CERN Oracle RAC cluster and local scope DBS

instances are installed both at CERN and at remote sites.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 18 / 30

The DBS does not contain the physical file names: it knows only the logical file names and the sites

where the dataset is replicated. Translation from the logical to the physical file name is performed

locally at sites according to a set of simple string manipulation rules, called the Trivial File

Catalogue.

3.3.7 Data Popularity

The CMS Data Popularity project started at the beginning of 2011 inspired by the ATLAS Popularity

System. The main role of this service is to allow the experiment to measure data access patterns, in

particular by recording how often files are accessed, where, by which users, how much CPU time was

spent processing them, etc. Understanding these patterns is a crucial step ahead towards the

automation of data cleaning and dynamic data placement.

The project aims at providing a generic framework which can be adopted by the LHC experiments.

While the source of information can be experiment-specific, the core database and the presentation

layer can implement a generic design. For this reason the architecture is designed to be modular as

possible, where specific plugins can be added.

The current implementation is composed by three main components named as:

 Oracle popularity database

 Populator daemons

 Presentation framework

The populator daemon, written in Python, runs once a day and fills the popularity database by

extracting the information generated from analysis jobs and temporarily stored in the Dashboard

database and converting it in data-related information.

The presentation layer, which includes both the web application and an API, has been implemented

using the Django framework and is written in Python. This layer represents a key point in the overall

implementation since is at this level that data from the popularity database and other services are

combined, and this approach allows to keep the database schema as simplest as possible.

Finally the web interface provides three types of presentations: a JSON API, built-in graphics and

specialized interfaces for various external applications to guarantee versatilities of the tool.

At the time of writing the described system is assessed to be of pre-production quality and first results

are now ready. After a complete validation and integration phase the plan is to move the system in to

production.

3.4 LHCb

As in the case of ALICE, in LHCb the computing system is based on a single, all-encompassing

framework, but with stronger dependencies on the middleware layer, as shown below:

Problem area Service Depends on Interfaces

Workload management

Ganga DIRAC API

DIRAC
gLite WMS, CE,

MySQL
Web, CLI, API

Data management DIRAC LFC, FTS, SE, MySQL Web, CLI, API

Data Catalogue DIRAC Oracle Web, GUI, CLI, API

Security DISET VOMS, MyProxy API

Monitoring and

accounting
DIRAC Web, API

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 19 / 30

3.4.1 DIRAC

DIRAC (Distributed Infrastructure with Remote Agent Control) (Figure 5) is a distributed

computing framework designed to meet all the requirements for the LHCb data processing [R6]. It

covers all tasks, including raw data distribution from the detector to the Grid storage, and data

processing from reconstruction to analysis. DIRAC provides a secure framework (DISET) for building

service-oriented distributed systems and a complete pilot job framework for workload management.

Finally it includes several subsystems to manage various operations like data production and

distribution.

DIRAC is implemented as a network of lightweight agents written in Python and follows the Service

Oriented Architecture paradigm. It is interfaced to various types of batch systems and Grid interfaces,

including GRAM-based and ARC computing elements, the CREAM CE, PBS/Torque, LSF, Sun Grid

Engine, Condor, BQS and Microsoft Compute Cluster. For LHCb the DIRAC services maintain their

status in a MySQL database and are deployed at CERN and Tier-1 sites. The DIRAC user interface

includes command line tools, a Python API and a Web portal providing users with a secure access to

the system. In LHCb end users interact with DIRAC via Ganga to submit jobs.

In contrast to other experiment frameworks, the DIRAC development is not completely specific to

LHCb and is used by other communities, like the Belle II collaboration.

.

Figure 5. The DIRAC architecture.

DIRAC Framework. The DIRAC secure client/service framework (DISET) provides authentication

and authorization to determine the user‟s rights to access the service functions. Moreover, DIRAC

provides a set of tools for managing extended proxy certificates with VOMS attributes to encode

group membership information. Finally DISET offers a security logging service where all the

operations in the secure distributed environment are traced.

Workload Management. The DIRAC Workload Management System is again based on the pilot job

concept. Jobs are submitted to the central Task Queue where they wait until they are picked up by

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 20 / 30

pilot job agents running close to the computing resources. The pilot job agents are submitted by Pilot

Director components specialized for each type of computing resources and perform sanity checks on

the local environment before pulling jobs. This approach allows to increase the overall reliability and

to apply global policies on how to share common resources via a central prioritization system.

Configuration service. This component hosts all the static configuration data and makes it available

to all the clients

Data Management System. The Data Management System takes care of all data operations: data

transfer, data access from the worker nodes, data integrity checks and organized recall from tape. An

automatic data distribution system is used to create replication requests for incoming data and these

are executed using the FTS or specialized transfer agents. Another subservice, the Data Integrity

Checking System, takes care of finding and fixing inconsistencies between storage systems and file

catalogues.

File catalogue. In LHCb the file catalogue service used for data is provided by LFC (see next section),

with a single master write accessible instance at CERN and multiple read-only mirrors at Tier-1 sites.

Another simpler file catalogue is used in the context of the production management system.

Request Management System. The Request Management System is a specialized database with a

service interface, which allows collecting and serving requests for various operations (data

management operations, framework operations and WMS operations). The RMS itself is organized as

a distributed redundant set of services. An instance of the RMS system is running at each site.

Production Management System. The Production Management System allows a large number of

production jobs to be defined and managed by automating job submission and job management via a

set of convenient user tools and interfaces.

Bookkeeping. The Bookkeeping Database Service collects and serves the provenance information

about all the data files produced by LHCb. It contains all the necessary metadata to allow users

selection of their preferred data sets and to allow the production system to select the input data to be

processed.

Monitoring and accounting. This DIRAC component allows collecting, querying and displaying

monitoring and accounting information such as job-related information and history and data transfer

information.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 21 / 30

4 MIDDLEWARE SERVICES
In this section we describe the high-level Grid services developed by Grid projects to be VO-

independent. In the context of the LHC computing, they are deployed at different sites and are

operated as part of the WLCG infrastructure. They can be classified in four main areas of

functionality: data management, workload management, data persistency and monitoring. A more

detailed description of the middleware used by WLCG is available elsewhere [R7].

4.1 Data Management

The purpose of the middleware data management services is to address in a VO-agnostic way two

main needs: data discovery and data transfer. To do this, the traditional Grid paradigm of a central File

Catalogue, mapping logical file names to their actual replicas, is being adopted, while data transfer is

optimized to transfer very large numbers of files in a reliable way. At this level, data is considered to

be just a set of individual files, while the concept of dataset is implemented only in the experiment

service layer.

4.1.1 LCG File Catalogue

The LCG File Catalogue (LFC) is the evolution of the EDG Catalogues, providing more features and

fixing the performance and scalability problems seen on the previous file catalogues. Some of the

features it provides are the use of a hierarchical namespace, namespace operations, built-in security,

use of Access Control Lists, checksums and the possibility to use bulk methods to avoid long round-

trip times. It is implemented as a client/server model, where the server is multi-threaded and well

decoupled from the database backend. The available client interfaces span from a command line

interface to C, Python and Perl APIs. LFC instances are used in over 60 sites by several Virtual

Organisations, including ATLAS and LHCb. In the case of ATLAS, as of today, 118 million files are

registered between 11 LFC instances.

4.1.2 File Transfer Service

The File Transfer Service (FTS) is a data movement service used by experiment frameworks to

manage high volume data streams. It provides site resources usage balancing and prevents network

and storage overload. Additionally it features service monitoring and statistics gathering.

FTS is based on the concept of channel, which defines a unidirectional management queue for

transfer jobs, where the endpoints might as well be single sites, site groups or all possible destinations.

The FTS channel defines the transfer protocol (direct GridFTP or via srmCopy), transfer limits and

parameters, as well as VO shares and transfer priorities.

The server is deployed as decoupled components communicating through a common database. The

Web service is responsible to receive the transfer jobs submitted by the user. These transfer jobs are

picked up by the VO Agents, which queue them on an appropriate channel between the source and the

destination. Finally the Channel Agent is responsible to select the transfers according to shares and

priorities and start them.

The agents can be split across multiple nodes to ensure load balancing. FTS is security-aware using

X.509 credentials and logs all the operations carried out. In WLCG, FTS is used by ATLAS, CMS and

LHCb.

4.2 Workload Management

The middleware provides several types of workload management. For all of them the basic goal is to

provide a convenient way for a user to submit and manage generic batch jobs on Grid resources. Each

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 22 / 30

system differs from the others in terms of the level of automation provided in the job management and

in the user interface. All systems described here are now able to interact with all flavours of

Computing Element used in the WLCG.

4.2.1 Ganga

Ganga [R8] is an end-user tool used to manage jobs running on arbitrary execution back-ends, be they

local to the user, on a nearby computing batch system, or on the Grid.

Ganga jobs are composed of a few configurable plugins including an Application plugin, Input and

Output Datasets plugins, a Splitter which divides the task into smaller work units, and a Backend

execution service.

Ganga is implemented in Python and is a community-driven project: the core of Ganga provides basic

job management functionality such as job persistency and functions to interact with jobs (submit,

retry, copy, kill), while end-user communities develop plug-ins which map their applications to the

execution back-ends.

Ganga is used extensively by heavy user communities in HEP (ATLAS and LHCb) and by many other

VOs including Life Sciences and Earth Sciences. Built-in back-ends provide the ability to run jobs on

gLite Computing Elements either directly or via the gLite Workload Management System. During

2010 Ganga has been used by more than a thousand users at more than hundred sites.

4.2.2 Condor-G

Condor-G is a Grid workload management system developed by the Condor project and based on the

Globus Toolkit and the Condor technologies. Condor-G allows submitting, managing and executing

jobs on distributed resources, while Globus is used to communicate with the remote resources via the

GRAM protocol for job submission.

Condor-G was and is still used for job submission by ATLAS CMS, and it is used internally by other

workload management systems, like the gLite WMS and glideinWMS (see next sections).

4.2.3 gLite Workload Management System

The gLite WMS was developed as a high-level job submission service for EGEE implementing the

“push” paradigm. It takes care of the distribution and management of tasks to remote Grid resources

and supports several types of tasks, including single batch jobs, collections, MPI jobs and workflows

with arbitrary dependencies.

The gLite WMS includes several components: WMProxy, a Web Service interface to access the

WMS functionality; the Workload manager, which is the core component of the system; the

Resource Broker, which finds the best suitable resource for a job; the Information Supermarket,

which contains a local cache of the information needed for the matchmaking; the Task Queue,

holding the submission requests, CondorC, which performs the actual job management operations,

the Log Monitor, which is responsible to react to specific events in the job history, the Proxy

Renewal Service and finally the Logging and Bookkeeping, which records all information about

submitted jobs.

The gLite WMS has been (and still is) extensively used by the LHC experiments and by several other

VOs, in particular on the EGEE and SEE-GRID infrastructures, and it is capable to submit to different

types of Computing Elements (LCG CE, OSG CE, CREAM CE, ARC CE), which is why it is the only

WMS directly supported by the WLCG project. However, in the recent years part of the workload was

migrated to pilot job-based systems; the only experiment running a significant fraction of its jobs via

the gLite WMS is CMS, but also in this case the plan for the future is to rely exclusively on pilot jobs.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 23 / 30

4.2.4 GlideinWMS

GlideinWMS [R9] is a general purpose pilot-job based Workload Management System that works on

top of Condor by creating and using a virtual private pool over Grid resources.

User jobs are handled by the glideinWMS Condor pool, whose execution daemons (called

condor_startd) run on remote Grid worker nodes; jobs are matched to the existing execution daemons

and sent to a matched worker node.

The condor_startd daemons are started by dedicated pilot jobs, called glideins; glideins are submitted

to remote sites by glidein factories using Condor-G. A component called VO frontend uses a

submission logic by which the number of glideins dynamically adapts to the number of centrally

queued jobs.

Among the LHC experiments only CMS is using GlideinWMS, for part of its production and analysis

activities. Outside CERN, it is used by the CDF and the MINOS experiments at Fermilab.

4.3 Persistency

The Persistency Framework consists of three software packages (POOL, CORAL and COOL) which

address the requirements of the heavy user communities in HEP for storing and accessing several

different types of scientific data produced by the LHC experiments. The software is developed by the

CERN IT department in collaboration with the three LHC experiments that are using it to store their

data (ATLAS, CMS and LHCb). In contrast to the middleware services that make up the infrastructure

for the submission and monitoring of data processing jobs and for the management and distribution of

the input and output data sets of these jobs, the Persistency Framework software is used inside these

jobs to allow the data processing algorithms to read or write data in the appropriate user-defined

format.

The Persistency Framework software is used by the LHC experiments for both of their main categories

of scientific data: event data (which contain information about the response of the detectors to the

passage of the particles generated in the collisions of the two LHC beams) and conditions data

(which record the state of the detector at the time the event data were collected). The functionalities

provided by the software are however not specific to the HEP experiments and some of the

components may be reused by other communities to store their own, different, types of data.

All three software packages provide a set of libraries and APIs which are used directly by the user

code of the HEP experiments. The APIs are often defined via abstract interfaces which decouple the

user code specific from the details for a given storage technology. The APIs and implementation code

are all written in C++, but Python bindings are also available for most components.

4.3.1 CORAL

The CORAL package [R10] is an abstraction layer with an SQL-free API for accessing data stored

using relational database technologies. It is used by ATLAS, CMS and LHCb to store their conditions

and other types of data, both directly by experiment-specific applications and via COOL or POOL.

CORAL supports data persistency for several back-ends and deployment models, including local

access to SQLite files, direct client connections to Oracle and MySQL servers, as well as client

connections to database servers through intermediate caching/multiplexing tiers using the Frontier and

CORAL server technologies (described in a later section).

4.3.2 POOL

The POOL package is a hybrid technology store for C++ objects, using a mixture of streaming and

relational technologies to implement both object persistency and object metadata catalogues and

collections [R11]. POOL provides generic components that can be used by the experiments to store

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 24 / 30

event data (ATLAS and LHCb, using object streaming to ROOT files), event 'tag' collections

(ATLAS, using Oracle collections) and conditions data (CMS, using object streaming to Oracle).

4.3.3 COOL

The COOL package provides specific software components and tools for the handling of the

conditions data of the HEP experiments (ATLAS, LHCb) [R12]. The main properties of conditions

data are that they vary with time and that they can exist in several versions. COOL defines a data

model where conditions data are assigned an interval of validity and provides an API for the retrieval

of the conditions data valid at a given point in time, with particular emphasis on the optimization of

the relevant database queries.

4.3.4 Frontier/Squid and CORAL server/proxy

The master repositories of the conditions data (and many other types of relational data) of ATLAS,

CMS and LHCb are hosted on Oracle database servers at CERN. These data, that are typically written

once and seldom updated, generally need to be read back simultaneously by several CORAL clients at

several geographical locations in the Grid (either from the Oracle master repository at CERN or from

one of the Tier-1 sites where an Oracle Streams replica exists). To reduce the load on the Oracle

servers and serve all relevant clients in the fastest and most efficient way, CORAL supports two

technologies that allow the deployment of intermediate multiplexing and caching tiers between the

database servers and the client applications.

In the Frontier/Squid technology [R13], based on the HTML protocol, a CORAL plugin in the client

application encodes SQL queries into HTTP requests that are decoded back into SQL queries by a

Frontier server deployed close to the Oracle server, to which it is connected using JDBC. The results

of the queries, encoded as HTML pages, may be cached in a tree of Squid caches deployed between

the client and the Frontier server. This read-only technology is used for conditions data access on the

Grid by both CMS (since several years) and ATLAS (since the end of 2009). It is also used in the

CMS online system for the configuration of the High Level Trigger farm.

Similarly, in the CORAL server/proxy technology, SQL requests and replies are exchanged using a

custom binary protocol between the client applications and a CORAL server deployed close to the

Oracle server. The CORAL server is itself a CORAL application that may connect to Oracle servers

via OCI, but also to any other supported backend (e.g. MySQL servers). The results of queries may be

cached in a tree of CORAL server proxies deployed between the client and the CORAL server. At

present, this technology is read-only and is used in the ATLAS online system to configure the High

Level Trigger farm. Work is ongoing to extend it by implementing read-write functionalities with

secure authentication based on SSL and Grid certificates.

4.4 Monitoring

In the context of the LHC experiment computing systems, monitoring is particularly relevant in two

areas: application monitoring and site monitoring. Application monitoring is crucial to understand the

status of the experiment activities and their time evolution, while site monitoring is important to

measure the health of the Grid infrastructure.

4.4.1 Experiment Dashboard

In order to monitor the computing activities of the LHC experiments, several monitoring systems were

developed, most of which are coupled with the Data Management and Workload Management System

of specific experiments. They were developed independently by each experiment along with their data

management and workload management systems. And as a consequence they work in the scope of a

single experiment. Experiment Dashboard is an attempt to provide a common solution which can be

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 25 / 30

shared by several experiments. In addition, the Experiment Dashboard was developed as a generic

monitoring framework for the LHC experiments.

The Experiment Dashboard system [R14] covers the complete range of the LHC computing activities,

that is job processing, data transfer and site monitoring, across the whole WLCG infrastructure (EGI,

OSG and NorduGrid).

It is extensively used by the LHC experiments; for CMS alone, more than 5,000 unique visitors use it

per month and approximately 100,000 pages are accessed daily. These numbers are steadily growing.

The structure of the Experiment Dashboard monitoring system consists of several information

collectors, the data repositories (implemented in an ORACLE database) and the user interfaces. Its

framework is implemented in Python. All the output data produced by the Experiment Dashboard can

be retrieved in HTML, XML, CSV, JSON or image formats. This flexibility allows the system to be

used not only by the users but also by other external, third party, applications. A set of command line

tools is also available.

4.4.2 SAM/Nagios

The Service Availability Monitoring (SAM) framework provides a site-independent, centralised and

uniform monitoring for all Grid services. SAM can also offer greater flexibility for individual VO‟s

with the option of tailoring the monitoring to align with their specific services. Within EGI, SAM is

used in the validation of sites and services and to calculate the site availability and reliability.

SAM is based on Nagios, a well-known open-source monitoring system, and provides a set of probes

which are submitted at regular intervals, and a database that stores test results. In effect, SAM

provides monitoring of grid services from a user's perspective. At the present time, SAM is being used

by more than 330 certified and production sites in 48 countries to monitor more than 3400 grid

services.

Due to the evolution of EGI from EGEE to a multitude of national grid initiatives, the resources and

responsibility for grid monitoring had to move away from a centrally administered monitoring

function. This is why the original SAM architecture was realigned to encompass the organisational

charges that took place as we moved towards EGI by using the Nagios open-source framework for

monitoring network hosts and services.

4.4.3 HammerCloud

HammerCloud [R15] is a distributed analysis stress testing system built around Ganga. Inspired by an

older and less advanced service, the CMS Job Robot, it was motivated by a requirement from the

ATLAS collaboration for site- and central-managers to easily test a set of Grid sites with an arbitrarily

large number of real analysis jobs. These tests are useful during site commissioning to validate and

tune site configurations, and also during normal site operations to periodically benchmark the site

performance.

HammerCloud generates a test report including metrics such as the event processing rate, the mean

CPU utilization, and timings related to various stages of the user analysis jobs. The report is presented

in a web interface which makes it simple to compare sites and observe trends over time. The system

has been used by the ATLAS experiment to run more than 200,000 CPU-days of test analyses.

HammerCloud is implemented as a Django web application, with state maintained in a MySQL

database and job management built around Ganga in Python. Jobs can be submitted to Grid sites using

the gLite User Interface commands and to all ATLAS sites using PanDA.

Although HammerCloud was born as an ATLAS-only service, recently CMS and LHCb adopted it

and it is actively used to run site functional tests.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 26 / 30

5 SERVICES SUPPORTED BY SA3
The EGI InSPIRE WP6-SA3 activity supports or contributes development effort to almost all of the

experiment services and to some of the middleware services. The following table summarizes the

services supported by SA3 and their corresponding subtasks.

Summary of SA3 supported services.

Service Subtask

Analysis tools and support

Ganga TSA3.2.2

CRAB TSA3.3

CRAB analysis server TSA3.3

Data management

ATLAS DDM TSA3.3

PhEDEx TSA3.3

Data Popularity TSA3.3

Persistency and conditions

CORAL TSA3.3

CORAL server TSA3.3

POOL TSA3.3

COOL TSA3.3

Frontier/Squid TSA3.3

Monitoring

Experiment Dashboard TSA3.2.1

HammerCloud TSA3.3

5.1 Common Solutions with EGI-InSPIRE Involvement

As is shown in the table above, EGI-InSPIRE effort contributes to a number of common solutions,

including Ganga, the LCG Persistency Framework and the Experiment Dashboard that pre-date the

EGI-InSPIRE project, as well as HammerCloud and the Data Popularity framework – both of which

have been adopted (and where necessary adapted) via EGI-InSPIRE funded resources. The goal is to

increase the level of commonality both within the HEP community whilst ensuring that the solutions

are applicable also to others with the additional goal of reduced long-term support as part of the

overall strategy for addressing sustainability.

5.2 Services and Operations

In order to provide the above services to the HEP community, a number of additional tools and

services are required. These are defined in the Memorandum of Understanding (draft) between EGI.eu

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 27 / 30

and WLCG and are expected to be reviewed approximately twice per year. The current list is given

below:

 (EGI.eu) Quality verification and Staged Rollout of software provided by the EGI Technology

Providers, which is made available for deployment on EGI.

 (EGI.eu) EGI Community Repository for software contributed and supported by the WLCG

community.

 (EGI.eu) The EGI Help desk (GGUS): provided by EGI.eu and its partners to WLCG VRC

and other user communities.

 (EGI.eu) First, second and third-level support (this with the involvement of the Technology

Providers) to users and site administrators about EGI-supported software and operations

support.

 (EGI.eu) Support Units: EGI.eu will maintain and develop the EGI Helpdesk to ensure the

support units and workflow needed to support the WLCG VRC are implemented in a timely

manner.

 (EGI.eu) Core middleware services: EGI.eu in collaboration with its NGI providers will

provide a highly-available core middleware services according to the WLCG demand (e.g.

top-level information discovery services, workload management services, etc.) to support their

communities.

 (EGI.eu) Monitoring: EGI.eu provides in collaboration with its NGIs the distributed

monitoring infrastructure needed to check the status of the deployed services (central MyEGI

portal, the central databases and the messaging infrastructure).

 (EGI.eu) Configuration Database: EGI.eu will provide a configuration database (GOCDB)

that will provide information on the sites and services accessible to the WLCG VRC.

 (EGI.eu) Accounting: EGI.eu will provide an accounting database and portal that will allow

the WLCG VRC to review its usage of EGI resources, together with the messaging

infrastructure needed to centrally collect usage records.

 (WLCG) Dashboard: WLCG VRC will provide to EGI.eu and its community the Dashboard

functionality so that EGI‟s user communities can integrate their own domain specific probes

into the Dashboard infrastructure.

 (WLCG) Availability Computation: WLCG will provide and maintain the system, including

consideration of functionality enhancements specific to EGI, needed to calculate availability

and reliability statistics for the (OPS VO) and to customise profiles according to the EGI

needs.

 (WLCG) GSTAT: WLCG will provide and maintain the system, including consideration of

functionality enhancements specific to EGI.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 28 / 30

6 CONCLUSION
We have seen how the HEP experiments rely on a very large number of services to implement their

computing systems. As expected, given the complexity of the experiment activities, both the core

functionality and the user interfaces are in the domain of the experiment services (with the exception

of Ganga). The boundary between the experiment and the middleware domains is not always clear,

with some functionality being sometimes offered by the middleware, sometimes by the experiment,

and this boundary moved over time (as an example, the diminishing role of the gLite WMS in favour

of a pilot job approach). The middleware services, on the other hand, play an essential role in the

operation of the WLCG infrastructure according to common and agreed policies in the provision of the

computing, storage and network resources.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 29 / 30

7 APPENDIX
Several of the experiment services have a web interface. As a reference, we give some web links that

may be of interest.

Service URL

AliEN home page http://alien2.cern.ch/

MonALISA http://monalisa.caltech.edu/

PanDA monitor http://panda.cern.ch/

DDM monitoring http://bourricot.cern.ch/dq2/

PhEDEx http://cmsweb.cern.ch/phedex

DBS Data Discovery https://cmsweb.cern.ch/dbs_discovery/

LHCb DIRAC portal http://lhcbweb.pic.es/DIRAC/

Ganga home page http://cern.ch/ganga

Persistency home page https://twiki.cern.ch/twiki/bin/view/Persistency

Frontier home page http://frontier.cern.ch/

Experiment Dashboard http://dashboard.cern.ch/

HammerCloud http://hammercloud.cern.ch/

http://alien2.cern.ch/
http://monalisa.caltech.edu/
http://panda.cern.ch/
http://bourricot.cern.ch/dq2/
http://cmsweb.cern.ch/phedex
https://cmsweb.cern.ch/dbs_discovery/
http://lhcbweb.pic.es/DIRAC/
http://cern.ch/ganga
https://twiki.cern.ch/twiki/bin/view/Persistency
http://frontier.cern.ch/
http://dashboard.cern.ch/
http://hammercloud.cern.ch/

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 30 / 30

8 REFERENCES

R 1 S. Bagnasco et al, AliEN: ALICE environment on the GRID, J. Phys.: Conf. Ser. 119 (2008)

062012

R 2 I. Legrand et al, MonALISA: An Agent based, Dynamic Service System to Monitor, Control

and Optimize Grid based Applications, Comp. Phys. Comm. 180, 12, (2009), 2472

R 3 T. Maeno, PanDA: distributed production and distributed analysis system for ATLAS, J.

Phys.: Conf. Ser. 119 (2008) 060236

R 4 M. Branco et al, Managing ATLAS data on a petabyte-scale with DQ2, J. Phys.: Conf. Ser.

119 (2008) 062017

R 5
A. Fanfani et al, Distributed analysis in CMS, J. Grid Comp. 8 (2010) 159

R 6 A. Tsaregorodtsev et al, DIRAC: a community solution, J. Phys.: Conf. Ser. 119 (2008)

062048

R 7
S. Burke et al, gLite User Guide, https://edms.cern.ch/document/722398/

R 8 J. T. Mościcki et al, Ganga: A tool for computational-task management and easy access to

Grid resources, Comp. Phys. Comm. 180, 11 (2009) 2303

R 9 I. Sfiligoi, GlideinWMS – A generic pilot-based Workload Management System, J. Phys.:

Conf. Ser. 119 (2008) 062044

R 10 I. Papadopoulos et al, CORAL, a software system for vendor-neutral access to relational

databases, proceedings of CHEP06

R 11 G. Govi, POOL Developments for Object Persistency into Relational Databases, proceedings

of CHEP06

R 12
A. Valassi, COOL Development and Deployment - Status and Plans, proceedings of CHEP06

R 13 L. Lueking et al, CMS Conditions Data Access using FroNTier, J. Phys.: Conf. Ser. 119

(2008) 072007

R 14 J. Andreeva et al, Experiment Dashboard for Monitoring Computing Activities of the LHC

Virtual Organizations, J. Grid Comp. 8 (2010) 323

R 15 D. C. Van Der Ster et al, Functional and large-scale testing of the ATLAS distributed analysis

facilities with Ganga, J. Phys.: Conf. Ser. 119 (2008) 072021

