

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 1 / 32

E G I - I n S P I R E

S E R V I C E S F O R H I G H E N E R G Y P H Y S I C S

EU MILESTONE: MS616

Document identifier: EGI-doc-747-final.docx

Date: 23/07/2012

Activity: SA3

Lead Partner: EGI.eu

Document Status: FINAL

Dissemination Level: PUBLIC

Document Link: https://documents.egi.eu/document/747

Abstract

The computing systems of the LHC experiments at CERN are probably the most complex Grid-
integrated applications currently in production. This milestone describes the critical services on
which these computing systems are based and how they interact with each other. This description
represents the current state of the art in the high energy physics community. This document revises
and replaces MS610 (EGI-doc-540-V2.doc) and describes the services used for the first 3 years of
LHC data taking, processing and analysis.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 2 / 32

I. COPYRIGHT NOTICE

Copyright © Members of the EGI-InSPIRE Collaboration, 2010-2014. See www.egi.eu for details of
the EGI-InSPIRE project and the collaboration. EGI-InSPIRE (“European Grid Initiative: Integrated
Sustainable Pan-European Infrastructure for Researchers in Europe”) is a project co-funded by the
European Commission as an Integrated Infrastructure Initiative within the 7th Framework
Programme. EGI-InSPIRE began in May 2010 and will run for 4 years. This work is licensed under the
Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, and USA. The work must be attributed by
attaching the following reference to the copied elements: “Copyright © Members of the EGI-InSPIRE
Collaboration, 2010-2014. See www.egi.eu for details of the EGI-InSPIRE project and the
collaboration”. Using this document in a way and/or for purposes not foreseen in the license,
requires the prior written permission of the copyright holders. The information contained in this
document represents the views of the copyright holders as of the date such views are published.

II. DELIVERY SLIP

 Name Partner/Activity Date

From Thomas Mannifield et al. CERN 21/06/2012

Reviewed by
John Gordon

Antun Balaz

STFC

IPB
21/6/2012

Approved by AMB&PMB 26/7/2012

III. DOCUMENT LOG

Issue Date Comment Author/Partner

1 21/06/12 Annual revision of MS610 CERN IT-ES Group

2 13/07/12 Revision based on reviews. CERN IT-ES Group

3 16/07/12 Final OK from John Gordon CERN IT-ES Group

IV. APPLICATION AREA

This document is a formal deliverable for the European Commission, applicable to all members of the
EGI-InSPIRE project, beneficiaries and Joint Research Unit members, as well as its collaborating
projects.

V. DOCUMENT AMENDMENT PROCEDURE

Amendments, comments and suggestions should be sent to the authors. The procedures
documented in the EGI-InSPIRE “Document Management Procedure” will be followed:
https://wiki.egi.eu/wiki/Procedures

VI. TERMINOLOGY

A complete project glossary is provided at the following page: http://www.egi.eu/about/glossary/.

http://www.egi.eu/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.egi.eu/
https://wiki.egi.eu/wiki/Procedures
http://www.egi.eu/about/glossary/

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 3 / 32

VII. PROJECT SUMMARY

To support science and innovation, a lasting operational model for e-Science is needed − both for
coordinating the infrastructure and for delivering integrated services that cross national borders.

The EGI-InSPIRE project will support the transition from a project-based system to a sustainable pan-
European e-Infrastructure, by supporting ‘grids’ of high-performance computing (HPC) and high-
throughput computing (HTC) resources. EGI-InSPIRE will also be ideally placed to integrate new
Distributed Computing Infrastructures (DCIs) such as clouds, supercomputing networks and desktop
grids, to benefit user communities within the European Research Area.

EGI-InSPIRE will collect user requirements and provide support for the current and potential new
user communities, for example within the ESFRI projects. Additional support will also be given to the
current heavy users of the infrastructure, such as high energy physics, computational chemistry and
life sciences, as they move their critical services and tools from a centralised support model to one
driven by their own individual communities.

The objectives of the project are:

1. The continued operation and expansion of today’s production infrastructure by transitioning
to a governance model and operational infrastructure that can be increasingly sustained
outside of specific project funding.

2. The continued support of researchers within Europe and their international collaborators
that are using the current production infrastructure.

3. The support for current heavy users of the infrastructure in earth science, astronomy and
astrophysics, fusion, computational chemistry and materials science technology, life sciences
and high energy physics as they move to sustainable support models for their own
communities.

4. Interfaces that expand access to new user communities including new potential heavy users
of the infrastructure from the ESFRI projects.

5. Mechanisms to integrate existing infrastructure providers in Europe and around the world
into the production infrastructure, so as to provide transparent access to all authorised
users.

6. Establish processes and procedures to allow the integration of new DCI technologies (e.g.
clouds, volunteer desktop grids) and heterogeneous resources (e.g. HTC and HPC) into a
seamless production infrastructure as they mature and demonstrate value to the EGI
community.

The EGI community is a federation of independent national and community resource providers,
whose resources support specific research communities and international collaborators both within
Europe and worldwide. EGI.eu, coordinator of EGI-InSPIRE, brings together partner institutions
established within the community to provide a set of essential human and technical services that
enable secure integrated access to distributed resources on behalf of the community.

The production infrastructure supports Virtual Research Communities (VRCs) − structured
international user communities − that are grouped into specific research domains. VRCs are formally
represented within EGI at both a technical and strategic level.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 4 / 32

VIII. EXECUTIVE SUMMARY

The physics experiments using the Large Hadron Collider (LHC) facility located at CERN are running
the vast majority of their offline distributed computing activities on the infrastructure provided by
the Worldwide LHC Computing Grid (WLCG). The LHC collider has been operational since late 2009,
but the computing systems were already fully commissioned in 2008.

WLCG can be considered as a loose federation of grids that include those operated by EGI, OSG and
NorduGrid. From the EGI point of view, WLCG is the major user (summed over the 4 HEP VOs: ALICE,
ATLAS, CMS and LHCb).

In this document, first we classify the computing services that serve as basic components of the
computing systems. These services can be classified in four main categories:

1. Experiment services;
2. Middleware services;
3. Fabric services;
4. Infrastructure services.

The most important among these services are explicitly listed.

Then, we describe for each of the LHC experiments the high-level services, which provide most – if
not all – of the functionality available to the end users. For each of them we summarize the main
features (scope, dependencies, interfaces) and give some insight of their architecture and their
implementation.

Finally we conclude with a description of the main high-level middleware services provided by
external projects (EMI, OSG, Condor, NorduGrid, etc.) and explain their function and their role in the
LHC computing systems.

This document represents the final revision of Services for HEP in EGI-InSPIRE SA3 and covers those
services that have been used for the first data-taking years at the LHC. As the LHC is expected to run
in its current form beyond 2012, further evolution is expected. However, no major changes are
foreseen until the end of the current data-taking period and its subsequent analysis, which will
continue until the end of 2013 and possibly beyond and thus beyond the lifetime of SA3.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 5 / 32

Table of Contents

1 INTRODUCTION ... 7

2 OVERVIEW ... 8

3 EXPERIMENT COMPUTING SYSTEMS AND SERVICES 10
3.1 ALICE .. 10

3.1.1 AliEn .. 11
3.2 ATLAS ... 12

3.2.1 PanDA ... 13
3.2.2 Distributed Data Management.. 14
3.2.3 PanDA Dynamic Data Placement (PD2P) ... 15

3.3 CMS ... 15
3.3.1 CRAB .. 16
3.3.2 CRAB Analysis Server ... 17
3.3.3 ProdAgent ... 17
3.3.4 WMAgent ... 17
3.3.5 PhEDEx ... 18
3.3.6 DBS ... 18
3.3.7 Data Popularity ... 19

3.4 LHCb ... 19
3.4.1 DIRAC .. 20

4 MIDDLEWARE SERVICES ... 22
4.1 Data Management .. 22

4.1.1 LCG File Catalogue ... 22
4.1.2 File Transfer Service ... 22

4.2 Workload Management ... 23
4.2.1 Ganga ... 23
4.2.2 Condor-G .. 23
4.2.3 gLite Workload Management System .. 23
4.2.4 GlideinWMS .. 24

4.3 Persistency ... 24
4.3.1 CORAL ... 25
4.3.2 POOL .. 25
4.3.3 COOL .. 25
4.3.4 Frontier/Squid and CORAL server/proxy ... 25

4.4 Monitoring ... 26
4.4.1 Experiment Dashboard .. 26
4.4.2 SAM/Nagios .. 26
4.4.3 HammerCloud.. 27

5 SERVICES SUPPORTED BY SA3 .. 28
5.1 Common Solutions with EGI-InSPIRE Involvement ... 28
5.2 Services and Operations ... 29

6 CONCLUSION .. 30

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 6 / 32

7 APPENDIX ... 31

8 REFERENCES .. 32

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 7 / 32

1 INTRODUCTION
The goal of this document is to provide a concise yet complete description of the distributed systems
that the High Energy Physics experiments at CERN use for their offline computing, which includes, in
very general terms, data processing, data analysis and event simulation. In particular the services
used by these systems are briefly described together with their relative dependencies. This
document can therefore serve as a reference for the current status of the LHC computing and its
basic components.

This document focuses on describing the main experiment services used for their distributed
computing activities and the high-level middleware services. It does not cover:

1) Experiment computing services not related to distributed activities (for example, prompt
reconstruction at the CERN Tier-0).

2) Low-level middleware services (computing and storage elements, VOMS and MyProxy
servers, etc.), short of mentioning them where appropriate.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 8 / 32

2 OVERVIEW
The computing systems of the LHC experiments can be seen as some of the most complex distributed
data processing systems, both from an architectural point of view and for their scale. In fact, each of
them is able to process several Petabytes of data each year and serve thousands of users; finally they
are truly distributed on a worldwide level and are integrated with several Grid infrastructures and
middleware stacks.

Although each of them was developed independently, they inevitably address and implement similar
use cases and functionality and rely on some underlying services, in particular those belonging to the
middleware layer. Therefore, all the computing systems can be represented by the schema in Figure
1, showing a layered service stack, having at its lowest levels the basic, non-Grid aware computing
services typically provided by a computer centre.

Figure 1. Global service architecture.

We therefore classify services in the following categories:

1. Experiment services: These are services developed, maintained and operated by the
collaborations themselves; providing functionality very specific to the experiment
applications. They are, by experiment:

a. ALICE: AliEN

b. ATLAS: PanDA, DDM, PanDA PD2P

c. CMS: CRAB, Analysis Server, Production Agent, PhEDEx, DBS, Data Popularity

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 9 / 32

d. LHCb: DIRAC

2. Middleware services: These are generic services at the Grid middleware layer, providing
high-level but application-independent functionality, used by one or more experiments
(but typically also by a wide spectrum of VOs outside HEP). They are developed by a
variety of Grid projects and software providers and are typically operated by the WLCG
in the LHC context. They include:

a. Data management services: LFC, FTS

b. Workload management services: Ganga, Condor-G, gLite WMS, glideinWMS

c. Persistency services: CORAL, POOL, COOL, Frontier

d. Monitoring services: HammerCloud, Experiment Dashboard, Nagios

e. Security services: VOMS, VOMRS, MyProxy

f. Computing elements: LCG CE, CREAM CE, OSG CE, ARC CE

g. Storage elements: CASTOR, dCache, DPM, XrootD, StoRM, BeSTMan

3. Fabric services: These are fabric-related services operated by the sites and include:

a. Batch systems: LSF, PBS, Torque/Maui, Condor, etc.

b. Tape systems: CASTOR, TSM, Enstore, HPSS, etc.

c. Disk servers or distributed file systems: GPFS, Lustre, AFS, NFS, etc.

d. Database services: Oracle, Oracle Streams, MySQL, PostgreSQL, etc.

4. Infrastructure services: These are utility services which are not part of the experiment
computing systems but are anyway important for their operations. Examples include:
documentation services, web services, bug tracking systems, etc. and are not further
mentioned here.

The services described in detail in this document – those were EGI-InSPIRE SA3 manpower has been
particularly active – are those written in italics in the previous list.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 10 / 32

3 EXPERIMENT COMPUTING SYSTEMS AND SERVICES
All the computing systems of the LHC experiments are based on a variety of services developed
inside the collaborations. Typically these services provide functionalities very specific to the
experiment and strongly coupled to the computing and data model; however, in some cases two or
more experiments have developed similar services which could possibly have been implemented as a
common generic service. There are some possible reasons for this:

a) the experiment needed a service on a timescale incompatible with the one of the Grid
projects;

b) the development cycle needed to be much faster than it was possible within a Grid project;

c) the experiment requirements were not fully compatible with those of the user communities
served by the Grid project.

Nevertheless, there are a number of areas where common solutions have been developed. These
include those that pre-date EGI-InSPIRE: the (W)LCG Persistency Framework – POOL, COOL, CORAL
and CORAL server, Ganga and the Experiment Dashboards being the main examples. These are all
described in detail below (see sections 4.2.1, 4.2.14.3 and 4.4.1). In addition, there are common
solutions that have been made possible through EGI-InSPIRE. Whilst these are also described below
(see sections 4.4.3 and 3.3.7), we include a short summary in section 5.1 to highlight those areas to
which EGI-InSPIRE has contributed.

Furthermore, a success of EGI-InSPIRE TSA3.3 “Services for HEP” has been to identify areas of
potential commonality and foster common solutions.

In this section the main experiment-specific services are briefly described. These services are
typically (but not always) used by a single experiment, although, given the similarities of the use
cases of each VO, the functionalities they provide are similar.

Rather than giving a fully comprehensive description of all services, we choose to concentrate on
those providing the workload management and the data management and transfer functionalities,
which are undoubtedly the most important in a distributed environment.

In the next sections, we will first summarize the experiment-specific services and describe their main
dependencies, and then provide a more detailed description.

3.1 ALICE
In the case of ALICE, the computing system is fully integrated and based on a single framework with a
limited number of external dependencies.

ALICE framework

Problem area Service Depends on Interfaces

Workload
management

AliEN CE Web, CLI

Data management AliEN SE, xrootd Web, CLI

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 11 / 32

Data Catalogue AliEN Database Web, CLI, API

Security AliEN MyProxy, VOMS API

Monitoring MonALISA Web, API

3.1.1 AliEn

AliEn [R1] is the set of middleware tools and services developed by ALICE for data production and
analysis in the Grid. It is also used by other collaborations like PANDA and CBM. The ALICE computing
services are summarized in Error! Not a valid bookmark self-reference. and their most important
components are:

a) the file catalogue

b) a data management system based on xrootd and the File Transfer Daemon

c) a workload management system

d) authorization services

e) a monitoring system based on MonALISA

The file catalogue service provides the mapping from the logical file name (LFN) to one or more
physical file names (PFN), with an interface that resembles a UNIX file system. It is used to record all
data, including software packages used for data production and analysis. Furthermore, it supports
file collections as user-defined lists of entries and arbitrary metadata information. The file catalogue
is built on top of a relational database and accessed via several interface layers (the AliEn DB
interface, a generic Perl DB interface and a specific DB driver). Each branch in the catalogue directory
tree can, in principle, be supported by different RDBMS engines running on different hosts.

The AliEn data management allows remote access to any file by automatically resolving a LFN into
the closest working PFN given the client location. Direct access is usually handled via the xrootd
protocol, while scheduled transfers are run via the File Transfer Daemon (FTD). The workload
management system is based on the so-called pull approach. A central Task Queue contains all the
submitted jobs, while on each site a Computing Element (CE) service advertises its capabilities. The
AliEn CE asks the central Job Broker for jobs to do, and if there are any, they will launch Job Agents
(an implementation of the “pilot job” concept). When the Job Agents wake up on the worker node,
they will also ask the Job Broker for a job. The decision of which job to send is made taking into
account job requirements such as the input files needed, the CPU time, the operating system
architecture, the amount of needed disk space and the user and group quotas. At the end of each
job, the Job Agent takes care to register the job output files in the file catalogue.

Security is provided by the Authorization Service. The authentication service is implemented using
X509 certificates. This Authorization Service is also responsible of creating ‘authentication
envelopes’, which allows users to read or write files into the xrootd servers

The AliEn monitoring is based on the MonALISA framework [R2], which is used to collect and
aggregate all relevant information about jobs, resources and services. The MonALISA information
repository can also be used to take automatic actions depending on the information received.

The current version of AliEn is implemented in Perl, mainly because of the wide availability of
reusable Open Source modules, which provide a complete security support, a full featured SOAP
platform and easy Web integration.

Finally, AliEn is interfaced to several Grid middleware implementations, including all those used in
WLCG: gLite, VDT and ARC.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 12 / 32

Figure 2. ALICE computing services.

3.2 ATLAS
The ATLAS computing system is built on two high-level services: PanDA, the workflow management
system used for both production and analysis jobs, and DDM, the data management system. PanDA
is used also as a “back-end” for Ganga, a generic job management framework that will be described
later; Ganga is also used to directly send jobs to the gLite WMS as back-end, although this method is
gradually being phased out. In this section we describe their architecture and functionality and their
relationship with the underlying Grid services.

ATLAS framework.

Problem area Service Depends on Interfaces

Workload
management

Ganga
DDM, PanDA, CE, gLite
WMS, VOMS, MyProxy

API

PanDA
DDM, CE, Condor-G,
VOMS, MyProxy

Web, CLI, API

Data management DDM FTS, SE, VOMS Web, CLI, API

Data Catalogue DDM LFC, Oracle CLI, API

Monitoring

Dashboard Web, API

Panda monitor Web

DDM monitoring Web

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 13 / 32

3.2.1 PanDA

Figure 3. (a) PanDA architecture; (b) DDM architecture.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 14 / 32

The Production and Distributed Analysis (PanDA) system (Figure 3a) is a Grid workload management
system developed by the ATLAS collaboration [R3]. As in the case of AliEN, the system is built around
the concept of “pilot jobs”. Grid jobs (workloads) are submitted to a Task Buffer and generic pilots,
already running on a worker node, retrieve these jobs and execute them. The pilot is a generic
wrapper code, which executes a payload on a worker node. It handles the environment setup, data
stage-in/out, payload monitoring, and continually communicates the state of the sub job to the
PanDA server. The PanDA server implements fairshare policies and priorities and assigns work via a
brokerage module, while pilots contact the job dispatcher to request a job to run; this mechanism
allows reducing job latency and increases efficiency and throughput.

Pilots are submitted to Grid CEs from multiple pilot factories developed around Condor-G. The site
controls which batch queue the jobs go into, so the site is able to retain control, for example by
applying wall clock limits.

The PanDA server and clients are implemented in Python to allow trivial portability across operating
systems and architectures. The server maintains its state in an Oracle database.

PanDA is tightly coupled with the ATLAS Distributed Data Management system described in the next
section: this integration enables PanDA to replicate datasets to sites before jobs are submitted.

PanDA end-user clients (pathena and Ganga) are used by physicists to package and send user jobs to
the PanDA server, while production jobs are submitted via a dedicated interface. Finally, PanDA
provides a web-based monitoring tool that is used by users and operators to track the progress of
the Grid jobs. Since late 2006 PanDA has processed over 300 million jobs; in particular, during the
first half of 2012 PanDA processed over 48 million jobs

3.2.2 Distributed Data Management

The ATLAS Distributed Data Management (DDM) project (Figure 3b) is responsible for the
replication, access and bookkeeping of ATLAS data across the participating WLCG sites [R4]. It also
enforces data management policies defined in the ATLAS Computing Model and provides a central
link between the WLCG and ATLAS analysis components.

To ensure the DDM scalability and fault tolerance, the core of the system has been designed as a set
of independent clients and services. One of the main components of the system are the Central
Catalogues, which hold the information about which datasets exist in the system (repository), their
composition (content), where they are located (location), which replication requests have been
submitted (subscription), how often the datasets are accessed (data usage); finally an accounting
catalogue contains information such as the amount of data existing at each site and metadata.

The DDM Site Services are the software agents that take care of the transfer requests, of the
deletion of datasets, of finding and fixing consistency issues and of recording monitoring information.

At the lowest level DDM is interfaced to the WLCG data management and storage services: FTS to
run file transfer jobs, LFC to implement the local dataset catalogue and SRM to remotely access and
write files to storage.

The DDM interface to external components is implemented by the DQ2 Clients that allow users,
production and analysis systems to interact with DDM. ATLAS DDM is currently managing over 100
PB of data and has achieved aggregated transfer rates of over 10 GB/s between all ATLAS sites.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 15 / 32

3.2.3 PanDA Dynamic Data Placement (PD2P)

The early distribution of ATLAS data was defined in the ATLAS Computing Model in an overly
generous way in order to facilitate the analysis of the data and its access to the users. However, by
examining the data usage statistics, it was noticed that a large fraction of the replicated data was
never accessed and thus the usage of network and storage resources was done in a suboptimal
fashion: uninteresting data was being preplaced in the same way as interesting data.

The evolution of the early pre-placement model is known as the PanDA Dynamic Data Placement.
This new algorithm defines a minimal fraction of pre-placement to Tier1s according to their agreed
share in order to guarantee the persistency of the data. The workload management system
dynamically triggers further replication of datasets that have been recently accessed. The destination
sites are chosen by the probability to run promptly a job on the new replica.

3.3 CMS
The CMS offline computing system includes a large number of services, but for the purpose of this
document we will focus on those which are closer to the Grid infrastructure: the workload and data
management systems and the data catalogue. Other services, such as the Tier-0 production and
monitoring system, are not covered as they are inherently non-distributed. In the table below the
WMAgent is mentioned, it is a replacement for ProdAgent, thus used by the same community.

CMS Key Grid infrastructure services framework.

Problem area Service Depends on Interfaces

Workload
management

CRAB DBS, Analysis server CLI

Analysis server
DBS, CE, gLite WMS,
Condor-G, Condor
glideins, MySQL

API

ProdAgent
DBS, CE, gLite WMS,
Condor-G, Condor
glideins, MySQL

CLI

WMAgent

DBS, CE, gLite WMS,
Condor-G, Condor
glideins, MySQL,
CouchDB

Web, CLI, API

Data management PhEDEx DBS, FTS, SE Web

Data Catalogue DBS Oracle, MySQL, SQLite Web, CLI, API

Monitoring

PhEDEx Web, API

Dashboard Oracle Web, API

Data Popularity Oracle Web, API

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 16 / 32

Figure 4. A workflow diagram of the CMS user analysis system.

3.3.1 CRAB

The CMS Remote Analysis Builder (CRAB) is a tool to allow users to run analysis jobs over distributed
datasets and collect the results by hiding as far as possible the complexity of the underlying system
[R5]; it can be used to execute jobs both on CERN local resources (as the CMS Analysis Facility at
CERN) and remote (the WLCG sites).

As shown in Figure 4 the interaction with the Grid can be either direct, leaving to the user tasks such
as job submission, status check and output retrieval, or via a CRAB Analysis Server (see next section).
The direct interaction requires a very small set of operations by the user, but full workflow
automation can be reached only using the server, leaving to the user just the task of preparing a
configuration file, while the server will notify the user when the analysis is completed.

The user specifies the dataset to be analysed and CRAB queries the Database Bookkeeping System
(DBS), which is the CMS data catalogue, to resolve a list of sites hosting the dataset; then the analysis
task can be split in several jobs which are submitted to eligible sites. Finally, when the jobs are
finished, their output is retrieved to the user local host and the produced data is remotely copied to
an appropriate site and published in the DBS.

CRAB is implemented in Python as a batch-like command-line application. In order to interact with
the Grid middleware and with the CMS analysis software (CMSSW), CRAB must be installed on a Grid
user interface where CMSSW is also available. CRAB uses an SQLite database for logging purposes.
CRAB transparently interacts with all middleware flavours in WLCG (gLite, VDT and ARC) and can use
as back-ends the gLite WMS, Condor-G, glideinWMS and several batch systems.

During 2012 the CRAB user community has reached an average of one thousand users per day, with
peaks of 1200 users, and with an average submission rate greater then 200.000 jobs per day.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 17 / 32

3.3.2 CRAB Analysis Server

The purpose of the Analysis Server is to fully automate the workflow management, leaving to the
user just the preparation of the configuration file and notifying him of the output availability [R5]. It
also allows implementation of complex workflows, such as the possibility to automatically schedule
analysis jobs on new data as soon as it appears in the DBS.

The server architecture is completely modular and shared with the old CMS production core system
(ProdAgent, see next section). Thanks to its design model, the Analysis Server is comprised of a set of
independent components implemented as daemons and communicating asynchronously through a
shared messaging service supporting the publish/subscribe paradigm.

Most of the server components are multi-threaded to allow a multi-user scalable system and to
avoid bottlenecks in the most intensive and slower operations such as job (re)submission, job status
tracking and output handling. The status of the server is defined in a MySQL database.

A crucial element of the Analysis Server architecture is an external Storage Element where user input
and output data are stored.

A completely new implementation of the Analysis Server is near completion. It represents one of the
specializations of WMCore, the common data and workload management framework developed by
CMS in the recent years with the aim to improve the sustainability of the overall system.

3.3.3 ProdAgent

The ProdAgent is the system used to manage all production activities (simulation, reconstruction and
skimming) and was designed aiming at automation, scalability, absence of single points of failure and
support for different Grid middleware. In addition, ProdAgent is integrated with the CMS event data
model, data management system and data processing framework (CMSSW).

The ProdAgent interacts with the data management system to discover data to be processed or to
register produced data. Input data are read directly from the local storage system using the
appropriate local I/O access protocol and output data are staged out into the local storage system.
The CMS data transfer and placement system, PhEDEx, takes care of harvesting production files and
transferring them to the appropriate sites.

ProdAgent is implemented as a set of loosely coupled Python daemons that communicate through a
MySQL database. As for the Analysis Server, components use an asynchronous publish/subscribe
model for communication and their states are defined in the database. Scaling is achieved by running
in parallel several ProdAgent instances, where every instance makes use of a local ProdAgent MySQL
database for operation and monitoring of the components as well as a local DBS instance for data
bookkeeping. Produced data are published into the data transfer system database and into the
global DBS instance to make them available for transfer to the collaboration for analysis.

The ProdAgent is being gradually phased out and replaced by the WMAgent.

3.3.4 WMAgent

The WMAgent represents another example of a specialization of the WMCore framework.

In term of objectives and roles the WMAgent project does not have any main difference with respect
to the ProdAgent, but the implementation is completely different.

In the WMAgent the core framework and the adopted technologies were reviewed with the main
purpose to solve some known issues and to improve the overall performance of the system.
Although the distributed nature of the system and the modular approach has been preserved, the

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 18 / 32

various components are not communicating any more via a MySQL-based message service but they
use a well-defined Job State Machine, which prevents messages from being lost.

Another important change which improves the overall performance is the adoption of CouchDB, a
NoSQL database that it is fully integrated with an HTTP framework and also exposes a RESTful-based
interface.

Another new feature of the system indeed is the usage of the RESTful-based interface to expose APIs
and to enable the communication between the various pieces of the distributed framework.

The WMAgent is assessed to be of pre-production quality and the integration phase is close to
finishing in the next months.

3.3.5 PhEDEx

The Physics Experiment Data Export (PhEDEx) is a software project started by the CMS experiment in
2004 to reliably manage by a simple mechanism large-scale data transfers and data placement
policies across the Grid [R5]. It was derived from a prototype, developed for the DC04 CMS data
challenge, which consisted in a number of agents using a central database (the TMDB, see below) as
a central blackboard. It is notable how some of the PhEDEx architectural choices were later adopted
in the development of the gLite File Transfer System.

In PhEDEx, data transfers are requested by specifying only the destination storage area, while the
source is selected using an algorithm which calculates the path with the lowest estimated latency,
determined from the recent history of the corresponding link. This allows to automatically balance
the load and to be fault-tolerant in case a link becomes unavailable.

PhEDEx is based on a high-availability Oracle database cluster hosted at CERN (Transfer
Management Data Base, or TMDB) acting as a “blackboard” for the global system state, including the
data location and the current tasks.

Furthermore, PhEDEx is composed by software daemon processes or agents implemented in Perl,
which contact the central database to retrieve their work queue.

A set of service agents run centrally at CERN, while each site runs the agents that directly interact
with the local storage to execute file transfers to the site (usually by submitting a job to FTS), for file
deletion and to run on-demand data consistency checks.

Finally, PhEDEx provides two interfaces for data operations management (transfer request and
approval), and for transfer and activity monitoring: a web site implemented in HTML and JavaScript
as an interactive interface, and a Web Data Service using Apache, for the upload into and retrieval
from TMDB of data in machine-readable formats such as XML and JSON.

From March 2010 to July 2012, during the LHC physics runs at 7 and 8 TeV, CMS has been steadily
transferring data with PhEDEx at an average global speed between all sites above 2 GB/s with peaks
exceeding 4.5 GB/s, with up to 150,000 file transfers per day and 70 PB of replicas distributed over all
the sites.

3.3.6 DBS

The Dataset Bookkeeping Service (DBS) describes all the CMS event data by cataloguing CMS-
specific data definitions like run number, the algorithms and configurations used to process it and
the composition of each dataset in terms of files [R5]. It can be used for data discovery via either an
API or a Web interface. There are different DBS differing by scope: the global scope DBS is a single
instance describing all official CMS data, while local scope DBS instances can be used as temporary
data catalogues, by production teams or individuals.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 19 / 32

The DBS is a multi-tier Web application and supports Oracle, MySQL and SQLite as database back-
ends. The global scope DBS is hosted in the CERN Oracle RAC cluster and local scope DBS instances
are installed both at CERN and at remote sites.

The DBS does not contain the physical file names: it knows only the logical file names and the sites
where the dataset is replicated. Translation from the logical to the physical file name is performed
locally at sites according to a set of simple string manipulation rules, called the Trivial File Catalogue.

3.3.7 Data Popularity

The CMS Data Popularity project started at the beginning of 2011 inspired by the ATLAS Popularity
System. The main role of this service is to allow the experiment to measure data access patterns, in
particular by recording how often files are accessed, where, by which users, how much CPU time was
spent processing them, etc. Understanding these patterns is a crucial step ahead towards the
automation of data cleaning and dynamic data placement.

The project aims at providing a generic framework which can be adopted by the LHC experiments.
While the source of information can be experiment-specific, the core database and the presentation
layer can implement a generic design. For this reason the architecture is designed to be modular as
possible, where specific plugins can be added.

The current implementation is composed by three main components named as:

 Oracle popularity database

 Populator daemons

 Presentation framework

The populator daemon, written in Python, runs once a day and fills the popularity database by
extracting the information generated from analysis jobs and temporarily stored in the Dashboard
database and converting it in data-related information.

The presentation layer, which includes both the web application and an API, has been implemented
using the Django framework and is written in Python. This layer represents a key point in the overall
implementation since is at this level that data from the popularity database and other services are
combined, and this approach allows to keep the database schema as simplest as possible.

Finally the web interface provides three types of presentations: a JSON API, built-in graphics and
specialized interfaces for various external applications to guarantee versatilities of the tool.

The system is in production for the CMS experiment since June 2011. It has already collected O(50
GB) of monitoring metrics, covering the patterns of usage of the CMS data along time. The usefulness
of the system in terms of accounting and data management has been recognized by the CMS
Computing Coordination in several public meetings and conferences. In particular the architecture
and results of this system have been reported in a dedicated oral contribution at the recent
conference of computing for HEP (CHEP2012).

3.4 LHCb
As in the case of ALICE, in LHCb the computing system is based on a single, all-encompassing
framework, but with stronger dependencies on the middleware layer, as shown below:

Problem area Service Depends on Interfaces

Workload
management

Ganga DIRAC API

DIRAC gLite WMS, CE, MySQL Web, CLI, API

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 20 / 32

Data management DIRAC LFC, FTS, SE, MySQL Web, CLI, API

Data Catalogue DIRAC Oracle Web, GUI, CLI, API

Security DISET VOMS, MyProxy API

Monitoring and
accounting

DIRAC Web, API

3.4.1 DIRAC

DIRAC (Distributed Infrastructure with Remote Agent Control) (Figure 5) is a distributed computing
framework designed to meet all the requirements for the LHCb data processing [R6]. It covers all
tasks, including raw data distribution from the detector to the Grid storage, and data processing
from reconstruction to analysis. DIRAC provides a secure framework (DISET) for building service-
oriented distributed systems and a complete pilot job framework for workload management. Finally
it includes several subsystems to manage various operations like data production and distribution.

DIRAC is implemented as a network of lightweight agents written in Python and follows the Service
Oriented Architecture paradigm. It is interfaced to various types of batch systems and Grid
interfaces, including GRAM-based and ARC computing elements, the CREAM CE, PBS/Torque, LSF,
Sun Grid Engine, Condor, BQS and Microsoft Compute Cluster. For LHCb the DIRAC services maintain
their status in a MySQL database and are deployed at CERN and Tier-1 sites. The DIRAC user interface
includes command line tools, a Python API and a Web portal providing users with a secure access to
the system. In LHCb end users interact with DIRAC via Ganga to submit jobs.

In contrast to other experiment frameworks, the DIRAC development is not completely specific to
LHCb and is used by other communities, like the Belle II collaboration.

.

Figure 5. The DIRAC architecture.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 21 / 32

DIRAC Framework. The DIRAC secure client/service framework (DISET) provides authentication and
authorization to determine the user’s rights to access the service functions. Moreover, DIRAC
provides a set of tools for managing extended proxy certificates with VOMS attributes to encode
group membership information. Finally DISET offers a security logging service where all the
operations in the secure distributed environment are traced.

Workload Management. The DIRAC Workload Management System is again based on the pilot job
concept. Jobs are submitted to the central Task Queue where they wait until they are picked up by
pilot job agents running close to the computing resources. The pilot job agents are submitted by Pilot
Director components specialized for each type of computing resources and perform sanity checks on
the local environment before pulling jobs. This approach allows to increase the overall reliability and
to apply global policies on how to share common resources via a central prioritization system.

Configuration service. This component hosts all the static configuration data and makes it available
to all the clients

Data Management System. The Data Management System takes care of all data operations: data
transfer, data access from the worker nodes, data integrity checks and organized recall from tape. An
automatic data distribution system is used to create replication requests for incoming data and these
are executed using the FTS or specialized transfer agents. Another subservice, the Data Integrity
Checking System, takes care of finding and fixing inconsistencies between storage systems and file
catalogues.

File catalogue. In LHCb the file catalogue service used for data is provided by LFC (see next section),
with a single master write accessible instance at CERN and multiple read-only mirrors at Tier-1 sites.
Another simpler file catalogue is used in the context of the production management system.

Request Management System. The Request Management System is a specialized database with a
service interface, which allows collecting and serving requests for various operations (data
management operations, framework operations and WMS operations). The RMS itself is organized as
a distributed redundant set of services. An instance of the RMS system is running at each site.

Production Management System. The Production Management System allows a large number of
production jobs to be defined and managed by automating job submission and job management via
a set of convenient user tools and interfaces.

Bookkeeping. The Bookkeeping Database Service collects and serves the provenance information
about all the data files produced by LHCb. It contains all the necessary metadata to allow users
selection of their preferred data sets and to allow the production system to select the input data to
be processed.

Monitoring and accounting. This DIRAC component allows collecting, querying and displaying
monitoring and accounting information such as job-related information and history and data transfer
information.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 22 / 32

4 MIDDLEWARE SERVICES
In this section we describe the high-level Grid services developed by Grid projects to be VO-
independent. In the context of the LHC computing, they are deployed at different sites and are
operated as part of the WLCG infrastructure. They can be classified in four main areas of
functionality: data management, workload management, data persistency and monitoring. A more
detailed description of the middleware used by WLCG is available elsewhere [R7].

4.1 Data Management
The purpose of the middleware data management services is to address in a VO-agnostic way two
main needs: data discovery and data transfer. To do this, the traditional Grid paradigm of a central
File Catalogue, mapping logical file names to their actual replicas, is being adopted, while data
transfer is optimized to transfer very large numbers of files in a reliable way. At this level, data is
considered to be just a set of individual files, while the concept of dataset is implemented only in the
experiment service layer.

4.1.1 LCG File Catalogue

The LCG File Catalogue (LFC) is the evolution of the EDG Catalogues, providing more features and
fixing the performance and scalability problems seen on the previous file catalogues. Some of the
features it provides are the use of a hierarchical namespace, namespace operations, built-in security,
use of Access Control Lists, checksums and the possibility to use bulk methods to avoid long round-
trip times. It is implemented as a client/server model, where the server is multi-threaded and well
decoupled from the database backend. The available client interfaces span from a command line
interface to C, Python and Perl APIs. LFC instances are used in over 60 sites by several Virtual
Organisations, including ATLAS and LHCb.

4.1.2 File Transfer Service

The File Transfer Service (FTS) is a data movement service used by experiment frameworks to
manage high volume data streams. It provides site resources usage balancing and prevents network
and storage overload. Additionally it features service monitoring and statistics gathering.

FTS is based on the concept of channel, which defines a unidirectional management queue for
transfer jobs, where the endpoints can be single sites, site groups or all possible destinations. The
FTS channel defines the transfer protocol (direct GridFTP or via srmCopy), transfer limits and
parameters, as well as VO shares and transfer priorities.

The server is deployed as decoupled components communicating through a common database. The
Web service is responsible for receiving the transfer jobs submitted by the user. These transfer jobs
are picked up by the VO Agents, which queue them on an appropriate channel between the source
and the destination. Finally the Channel Agent is responsible to select the transfers according to
shares and priorities and start them.

The agents can be split across multiple nodes to ensure load balancing. FTS is security-aware using
X.509 credentials and logs all the operations carried out. In WLCG, FTS is used by ATLAS, CMS and
LHCb.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 23 / 32

4.2 Workload Management
The middleware provides several types of workload management. For all of them the basic goal is to
provide a convenient way for a user to submit and manage generic batch jobs on Grid resources.
Each system differs from the others in terms of the level of automation provided in the job
management and in the user interface. All systems described here are now able to interact with all
flavours of Computing Element used in the WLCG.

4.2.1 Ganga

Ganga [R8] is an end-user tool used to manage jobs running on arbitrary execution back-ends, be
they local to the user, on a nearby computing batch system, or on the Grid.

Ganga jobs are composed of a few configurable plugins including an Application plugin, Input and
Output Datasets plugins, a Splitter which divides the task into smaller work units, and a Backend
execution service.

Ganga is implemented in Python and is a community-driven project: the core of Ganga provides basic
job management functionality such as job persistency and functions to interact with jobs (submit,
retry, copy, kill), while end-user communities develop plug-ins which map their applications to the
execution back-ends.

Ganga is used extensively by heavy user communities in HEP (ATLAS and LHCb) and by many other
VOs including Life Sciences and Earth Sciences. Built-in back-ends provide the ability to run jobs on
gLite Computing Elements either directly or via the gLite Workload Management System. During the
first half of 2012 Ganga has been used by more than 700 users at 80 sites.

4.2.2 Condor-G

Condor-G is a Grid workload management system developed by the Condor project and based on the
Globus Toolkit and the Condor technologies. Condor-G allows submitting, managing and executing
jobs on distributed resources, while Globus is used to communicate with the remote resources via
the GRAM protocol for job submission.

Condor-G was and is still used for job submission by ATLAS and CMS, and it is used internally by other
workload management systems, like the gLite WMS and glideinWMS (see next sections).

4.2.3 gLite Workload Management System

The gLite WMS was developed as a high-level job submission service for EGEE implementing the
“push” paradigm. It takes care of the distribution and management of tasks to remote Grid resources
and supports several types of tasks, including single batch jobs, collections, MPI jobs and workflows
with arbitrary dependencies.

The gLite WMS includes several components: WMProxy, a Web Service interface to access the WMS
functionality; the Workload manager, which is the core component of the system; the Resource
Broker, which finds the best suitable resource for a job; the Information Supermarket, which
contains a local cache of the information needed for the matchmaking; the Task Queue, holding the
submission requests, CondorC, which performs the actual job management operations, the Log
Monitor, which is responsible to react to specific events in the job history, the Proxy Renewal
Service and finally the Logging and Bookkeeping, which records all information about submitted
jobs.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 24 / 32

The gLite WMS has been (and still is) extensively used by the LHC experiments and by several other
VOs, in particular on the EGEE and SEE-GRID infrastructures, and it is capable of submitting to
different types of Computing Elements (LCG CE, OSG CE, CREAM CE, ARC CE), which is why it is the
only WMS directly supported by the WLCG project. However, in the recent years part of the
workload has been migrated to pilot job-based systems; the only experiment running a significant
fraction of its jobs via the gLite WMS is CMS, but also in this case the plan for the future is to rely
exclusively on pilot jobs.

4.2.4 GlideinWMS

GlideinWMS [R9] is a general purpose pilot-job based Workload Management System that works on
top of Condor by creating and using a virtual private pool over Grid resources.

User jobs are handled by the glideinWMS Condor pool, whose execution daemons (called
condor_startd) run on remote Grid worker nodes; jobs are matched to the existing execution
daemons and sent to a matched worker node.

The condor_startd daemons are started by dedicated pilot jobs, called glideins; glideins are
submitted to remote sites by glidein factories using Condor-G. A component called VO frontend uses
a submission logic by which the number of glideins dynamically adapts to the number of centrally
queued jobs.

Among the LHC experiments only CMS is using GlideinWMS, for part of its production and analysis
activities. Outside CERN, it is used by the CDF and the MINOS experiments at Fermilab.

4.3 Persistency
The Persistency Framework consists of three software packages (POOL, CORAL and COOL) which
address the requirements of the heavy user communities in HEP for storing and accessing several
different types of scientific data produced by the LHC experiments. The software is developed by the
CERN IT department in collaboration with the three LHC experiments that are using it to store their
data (ATLAS, CMS and LHCb). In contrast to the middleware services that make up the infrastructure
for the submission and monitoring of data processing jobs and for the management and distribution
of the input and output data sets of these jobs, the Persistency Framework software is used inside
these jobs to allow the data processing algorithms to read or write data in the appropriate user-
defined format.

The Persistency Framework software is used by the LHC experiments for both of their main
categories of scientific data: event data (which contain information about the response of the
detectors to the passage of the particles generated in the collisions of the two LHC beams) and
conditions data (which record the state of the detector at the time the event data were collected).
The functionalities provided by the software are however not specific to the HEP experiments and
some of the components may be reused by other communities to store their own, different, types of
data.

All three software packages provide a set of libraries and APIs which are used directly by the user
code of the HEP experiments. The APIs are often defined via abstract interfaces which decouple the
user code specific from the details for a given storage technology. The APIs and implementation code
are all written in C++, but Python bindings are also available for most components.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 25 / 32

4.3.1 CORAL

The CORAL package [R10] is an abstraction layer with an SQL-free API for accessing data stored using
relational database technologies. It is used by ATLAS, CMS and LHCb to store their conditions and
other types of data, both directly by experiment-specific applications and via COOL or POOL. CORAL
supports data persistency for several back-ends and deployment models, including local access to
SQLite files, direct client connections to Oracle and MySQL servers, as well as client connections to
database servers through intermediate caching/multiplexing tiers using the Frontier and CORAL
server technologies (described in a later section).

4.3.2 POOL

The POOL package is a hybrid technology store for C++ objects, using a mixture of streaming and
relational technologies to implement both object persistency and object metadata catalogues and
collections [R11]. POOL provides generic components that can be used by the experiments to store
event data (ATLAS and LHCb, using object streaming to ROOT files), event 'tag' collections (ATLAS,
using Oracle collections) and conditions data (CMS, using object streaming to Oracle).

4.3.3 COOL

The COOL package provides specific software components and tools for the handling of the
conditions data of the HEP experiments (ATLAS, LHCb) [R12]. The main properties of conditions data
are that they vary with time and that they can exist in several versions. COOL defines a data model
where conditions data are assigned an interval of validity and provides an API for the retrieval of the
conditions data valid at a given point in time, with particular emphasis on the optimization of the
relevant database queries.

4.3.4 Frontier/Squid and CORAL server/proxy

The master repositories of the conditions data (and many other types of relational data) of ATLAS,
CMS and LHCb are hosted on Oracle database servers at CERN. These data, that are typically written
once and seldom updated, generally need to be read back simultaneously by several CORAL clients at
several geographical locations in the Grid (either from the Oracle master repository at CERN or from
one of the Tier-1 sites where an Oracle Streams replica exists). To reduce the load on the Oracle
servers and serve all relevant clients in the fastest and most efficient way, CORAL supports two
technologies that allow the deployment of intermediate multiplexing and caching tiers between the
database servers and the client applications.

In the Frontier/Squid technology [R13], based on the HTML protocol, a CORAL plugin in the client
application encodes SQL queries into HTTP requests that are decoded back into SQL queries by a
Frontier server deployed close to the Oracle server, to which it is connected using JDBC. The results
of the queries, encoded as HTML pages, may be cached in a tree of Squid caches deployed between
the client and the Frontier server. This read-only technology is used for conditions data access on the
Grid by both CMS (for several years) and ATLAS (since the end of 2009). It is also used in the CMS
online system for the configuration of the High Level Trigger farm.

Similarly, in the CORAL server/proxy technology, SQL requests and replies are exchanged using a
custom binary protocol between the client applications and a CORAL server deployed close to the
Oracle server. The CORAL server is itself a CORAL application that may connect to Oracle servers via
OCI, but also to any other supported backend (e.g. MySQL servers). The results of queries may be
cached in a tree of CORAL server proxies deployed between the client and the CORAL server. At

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 26 / 32

present, this technology is read-only and is used in the ATLAS online system to configure the High
Level Trigger farm. Work is ongoing to extend it by implementing read-write functionalities with
secure authentication based on SSL and Grid certificates.

4.4 Monitoring
In the context of the LHC experiment computing systems, monitoring is particularly relevant in two
areas: application monitoring and site monitoring. Application monitoring is crucial to understand
the status of the experiment activities and their time evolution, while site monitoring is important to
measure the health of the Grid infrastructure.

4.4.1 Experiment Dashboard

In order to monitor the computing activities of the LHC experiments, several monitoring systems
were developed, most of which are coupled with the Data Management and Workload Management
System of specific experiments. They were developed independently by each experiment along with
their data management and workload management systems. And as a consequence they work in the
scope of a single experiment. Experiment Dashboard is an attempt to provide a common solution
which can be shared by several experiments. In addition, the Experiment Dashboard was developed
as a generic monitoring framework for the LHC experiments.

The Experiment Dashboard system [R14] covers the complete range of the LHC computing activities,
that is job processing, data transfer and site monitoring, across the whole WLCG infrastructure (EGI,
OSG and NorduGrid).

It is extensively used by the LHC experiments; for CMS alone, more than 5,000 unique visitors use it
per month and approximately 100,000 pages are accessed daily. These numbers are steadily
growing.

The structure of the Experiment Dashboard monitoring system consists of several information
collectors, the data repositories (implemented in an ORACLE database) and the user interfaces. Its
framework is implemented in Python. All the output data produced by the Experiment Dashboard
can be retrieved in HTML, XML, CSV, JSON or image formats. This flexibility allows the system to be
used not only by the users but also by other external, third party, applications. A set of command line
tools is also available.

4.4.2 SAM/Nagios

The Service Availability Monitoring (SAM) framework provides a site-independent, centralised and
uniform monitoring for all Grid services. SAM can also offer greater flexibility for individual VO’s with
the option of tailoring the monitoring to align with their specific services. Within EGI, SAM is used in
the validation of sites and services and to calculate the site availability and reliability.

SAM is based on Nagios, a well-known open-source monitoring system, and provides a set of probes
which are submitted at regular intervals, and a database that stores test results. In effect, SAM
provides monitoring of grid services from a user's perspective. At the present time, SAM is being
used by more than 330 certified and production sites in 48 countries to monitor more than 3400 grid
services.

Due to the evolution of EGI from EGEE to a multitude of national grid initiatives, the resources and
responsibility for grid monitoring had to move away from a centrally administered monitoring
function. This is why the original SAM architecture was realigned to encompass the organisational

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 27 / 32

charges that took place as we moved towards EGI by using the Nagios open-source framework for
monitoring network hosts and services.

4.4.3 HammerCloud

HammerCloud [R15] is a distributed analysis stress testing system built around Ganga. Inspired by an
older and less advanced service, the CMS Job Robot, it was motivated by a requirement from the
ATLAS collaboration for site- and central-managers to easily test a set of Grid sites with an arbitrarily
large number of real analysis jobs. These tests are useful during site commissioning to validate and
tune site configurations, and also during normal site operations to periodically benchmark the site
performance.

HammerCloud generates a test report including metrics such as the event processing rate, the mean
CPU utilization, and timings related to various stages of the user analysis jobs. The report is
presented in a web interface which makes it simple to compare sites and observe trends over time.
Since its introduction in 2009, the system has been used by the ATLAS experiment to run more than
2 million test jobs per month. HammerCloud is implemented as a Django web application, with state
maintained in a MySQL database and job management built around Ganga in Python. Jobs can be
submitted to Grid sites using the gLite User Interface commands and to all ATLAS sites using PanDA.

HammerCloud has also been adopted by CMS who run some 700 thousand test jobs per month. In
2012, both ATLAS and CMS ran over 8 million test jobs each testing 130 sites for ATLAS and 80 for
CMS. Testing for the LHCb experiment is still in progress.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 28 / 32

5 SERVICES SUPPORTED BY SA3
The EGI InSPIRE WP6-SA3 activity supports or contributes development effort to almost all of the
experiment services and to some of the middleware services. The following table summarizes the
services supported by SA3 and their corresponding subtasks.

Summary of SA3 supported services.

Service Subtask

Analysis tools and support

Ganga TSA3.2.2

CRAB TSA3.3

CRAB analysis server TSA3.3

Data management

ATLAS DDM TSA3.3

PhEDEx TSA3.3

Data Popularity TSA3.3

Persistency and conditions

CORAL TSA3.3

CORAL server TSA3.3

POOL TSA3.3

COOL TSA3.3

Frontier/Squid TSA3.3

Monitoring

Experiment Dashboard TSA3.2.1

HammerCloud TSA3.3

5.1 Common Solutions with EGI-InSPIRE Involvement
As is shown in the table above, EGI-InSPIRE effort contributes to a number of common solutions,
including Ganga, the LCG Persistency Framework and the Experiment Dashboard that pre-date the
EGI-InSPIRE project, as well as HammerCloud and the Data Popularity framework – both of which
have been adopted (and, where necessary, adapted) via EGI-InSPIRE funded resources. The goal is to
increase the level of commonality within the HEP community, whilst ensuring that the solutions are
applicable also to others, with the additional goal of reduced long-term support as part of the overall
strategy for addressing sustainability.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 29 / 32

5.2 Services and Operations
In order to provide the above services to the HEP community, a number of additional tools and
services are required. These are defined in the Memorandum of Understanding (draft) between
EGI.eu and WLCG and are expected to be reviewed approximately twice per year. The current list is
given below:

 (EGI.eu) Quality verification and Staged Rollout of software provided by the EGI Technology
Providers, which is made available for deployment on EGI.

 (EGI.eu) EGI Community Repository for software contributed and supported by the WLCG
community.

 (EGI.eu) The EGI Help desk (GGUS): provided by EGI.eu and its partners to WLCG VRC and
other user communities.

 (EGI.eu) First, second and third-level support (this with the involvement of the Technology
Providers) to users and site administrators about EGI-supported software and operations
support.

 (EGI.eu) Support Units: EGI.eu will maintain and develop the EGI Helpdesk to ensure the
support units and workflow needed to support the WLCG VRC are implemented in a timely
manner.

 (EGI.eu) Core middleware services: EGI.eu in collaboration with its NGI providers will provide
a highly-available core middleware services according to the WLCG demand (e.g. top-level
information discovery services, workload management services, etc.) to support their
communities.

 (EGI.eu) Monitoring: EGI.eu provides in collaboration with its NGIs the distributed monitoring
infrastructure needed to check the status of the deployed services (central MyEGI portal, the
central databases and the messaging infrastructure).

 (EGI.eu) Configuration Database: EGI.eu will provide a configuration database (GOCDB) that
will provide information on the sites and services accessible to the WLCG VRC.

 (EGI.eu) Accounting: EGI.eu will provide an accounting database and portal that will allow
the WLCG VRC to review its usage of EGI resources, together with the messaging
infrastructure needed to centrally collect usage records.

 (WLCG) Dashboard: WLCG VRC will provide to EGI.eu and its community the Dashboard
functionality so that EGI’s user communities can integrate their own domain specific probes
into the Dashboard infrastructure.

 (WLCG) Availability Computation: WLCG will provide and maintain the system, including
consideration of functionality enhancements specific to EGI, needed to calculate availability
and reliability statistics for the (OPS VO) and to customise profiles according to the EGI
needs.

 (WLCG) GSTAT: WLCG will provide and maintain the system, including consideration of
functionality enhancements specific to EGI.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 30 / 32

6 CONCLUSION
We have seen how the HEP experiments rely on a very large number of services to implement their
computing systems. As expected, given the complexity of the experiment activities, both the core
functionality and the user interfaces are in the domain of the experiment services (with the
exception of Ganga). The boundary between the experiment and the middleware domains is not
always clear, with some functionality being sometimes offered by the middleware, sometimes by the
experiment, and this boundary moved over time (as an example, the diminishing role of the gLite
WMS in favour of a pilot job approach). The middleware services, on the other hand, play an
essential role in the operation of the WLCG infrastructure according to common and agreed policies
in the provision of the computing, storage and network resources.

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 31 / 32

7 APPENDIX
Several of the experiment services have a web interface. As a reference, we give some web links that
may be of interest.

Service URL

AliEN home page http://alien2.cern.ch/

MonALISA http://monalisa.caltech.edu/

PanDA monitor http://panda.cern.ch/

DDM monitoring http://bourricot.cern.ch/dq2/

PhEDEx http://cmsweb.cern.ch/phedex

DBS Data Discovery https://cmsweb.cern.ch/dbs_discovery/

LHCb DIRAC portal http://lhcbweb.pic.es/DIRAC/

Ganga home page http://cern.ch/ganga

Persistency home page https://twiki.cern.ch/twiki/bin/view/Persistency

Frontier home page http://frontier.cern.ch/

Experiment Dashboard http://dashboard.cern.ch/

HammerCloud http://hammercloud.cern.ch/

http://alien2.cern.ch/
http://monalisa.caltech.edu/
http://panda.cern.ch/
http://bourricot.cern.ch/dq2/
http://cmsweb.cern.ch/phedex
https://cmsweb.cern.ch/dbs_discovery/
http://lhcbweb.pic.es/DIRAC/
http://cern.ch/ganga
https://twiki.cern.ch/twiki/bin/view/Persistency
http://frontier.cern.ch/
http://dashboard.cern.ch/
http://hammercloud.cern.ch/

EGI-InSPIRE INFSO-RI-261323 © Members of EGI-InSPIRE collaboration PUBLIC 32 / 32

8 REFERENCES

R 1 S. Bagnasco et al, AliEN: ALICE environment on the GRID, J. Phys.: Conf. Ser. 119 (2008)
062012

R 2 I. Legrand et al, MonALISA: An Agent based, Dynamic Service System to Monitor, Control and
Optimize Grid based Applications, Comp. Phys. Comm. 180, 12, (2009), 2472

R 3 T. Maeno, PanDA: distributed production and distributed analysis system for ATLAS, J. Phys.:
Conf. Ser. 119 (2008) 060236

R 4 M. Branco et al, Managing ATLAS data on a petabyte-scale with DQ2, J. Phys.: Conf. Ser. 119
(2008) 062017

R 5
A. Fanfani et al, Distributed analysis in CMS, J. Grid Comp. 8 (2010) 159

R 6
A. Tsaregorodtsev et al, DIRAC: a community solution, J. Phys.: Conf. Ser. 119 (2008) 062048

R 7
S. Burke et al, gLite User Guide, https://edms.cern.ch/document/722398/

R 8 J. T. Mościcki et al, Ganga: A tool for computational-task management and easy access to
Grid resources, Comp. Phys. Comm. 180, 11 (2009) 2303

R 9 I. Sfiligoi, GlideinWMS – A generic pilot-based Workload Management System, J. Phys.: Conf.
Ser. 119 (2008) 062044

R 10 I. Papadopoulos et al, CORAL, a software system for vendor-neutral access to relational
databases, proceedings of CHEP06

R 11 G. Govi, POOL Developments for Object Persistency into Relational Databases, proceedings
of CHEP06

R 12
A. Valassi, COOL Development and Deployment - Status and Plans, proceedings of CHEP06

R 13 L. Lueking et al, CMS Conditions Data Access using FroNTier, J. Phys.: Conf. Ser. 119 (2008)
072007

R 14 J. Andreeva et al, Experiment Dashboard for Monitoring Computing Activities of the LHC
Virtual Organizations, J. Grid Comp. 8 (2010) 323

R 15 D. C. Van Der Ster et al, Functional and large-scale testing of the ATLAS distributed analysis
facilities with Ganga, J. Phys.: Conf. Ser. 119 (2008) 072021

