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Part I

Executive summary

This deliverable provides a review of the work done in WP7 during the
second year of the MAPPER project.

The main goal of WP7 is to adapt or develop a set of selected multiscale
applications to the MAPPER framework. This amounts to expressing these
applications in a Multiscale Modeling Language (MML), and to adapt the
submodels in order to implement their mutual couplings. From that stage,
the application can be run on a distributed computing infrastructure, such
the European grid platforms.

Deliverable D7.2 discusses the status of adaptation of the selected ap-
plications, whether tightly or loosely coupled, as specified in task 7.1 and
7.2. Each application is described with respect to its level of integration as
a “multiscale distributed application”.

In short, all applications have now been able to use the proposed multi-
scale methodology and have been able to reformulate the existing code (or
develop new one) to integrate the coupling middleware. The tools provided
by WP8 have been successfully used for achieving this goal.

Most applications could be executed on parts of the MAPPER infrastruc-
ture (a set distributed clusters managed by a grid environment). Therefore
milestone 17 can be considered as attained. Production runs can be now en-
visaged and the computing infrastructure available for MAPPER will then
be needed.

Another aspect of this deliverable concerns performance evaluation, namely
task 7.3 that started at M18. This WP is specifically concerned with appli-
cation performance rather than service or infrastructure performance. Our
aim is to evaluate the cost/gain of the coupling methodology proposed by
MAPPER at the user level. This typically includes a performance com-
parison of the monolithic code versus the ”MAPPERIZED” one, and an
estimate of the time spent in coupling componants such as conduits and
mappers. These measurements should be done on several hardware config-
urations like, for instance, a sequential processeur, a university cluster and,
finally, a grid infrstructure.

The ultimate goal is to define a performance model which can predict
the performance of a MAPPER application, knowing the performance of its
submodels and the type of couplings between them.

This deliverable is the result of contributions from all partners involved
in the applications development. UNIGE, as workpackage leader has super-
vised the integration of all parts of this document.
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Part II

Report on the adaptation of
applications

1 Simulation of Clay-polymer Nanocomposites (Nano-
materials)

1.1 Description

Layered mineral composites have a substantial potential impact in areas
such as energy applications (oil industry additives), materials applications
(nano-composite materials) and biomedical applications (drug delivery) [14].
The microscopic structure and mechanisms of layered nanomaterials oper-
ate over many different length scales, ranging from nanometers to microns.
One of the key challenges in the simulation of such systems is efficiently
sampling these scales to understand how the microscopic structure affects
the macroscopic properties of the composite. To overcome this problem of
multiple length scales, we develop a multiscale scheme where separate sim-
ulations at one length scale pass input parameters to higher length scales,
starting from the electronic structure through classical atomistic molecular
dynamics to coarse-grained models [39, 38]. In this study, we address the
challenge of creating, deploying and executing this hierarchical multiscale
modelling scheme to study the behavior of clay-polymer nanocomposites.

There are many factors, operating over various length scales, that can
affect the mechanical properties of clay-polymer nanocomposites. For exam-
ple, the orientation of the clay tactoids in the polymer matrix will affect the
mechanical resistance of the composite, such as the transfer of stress, while
at the shortest scale the molecular arrangement and the adhesion energy of
the polymer molecules in the vicinity of the clay-polymer interface affect the
overall mechanical properties of the system.

We have developed a hierarchical scheme which uses an acyclically cou-
pled multiscale simulation mechanism that allows us to study and design
of layered mineral composites. Our simulation is initiated at the quantum
mechanical level, followed by fine-grained molecular dynamics simulations,
in turn providing the input for course-grained molecular dynamics simu-
lations (see Fig. 1). Several post-processing scripts are run between each
level of the simulation to perform data conversion. These scripts may be
preprogrammed, but can also (in some cases) be modified by the user be-
tween simulations. Because the simulations do not run concurrently, and the
frequency (and required performance) of data exchange between subcodes
is limited we use GridSpace to perform the acyclic coupling between the
submodels [8].
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Figure 1: Brief graphical overview of the coupling within the nanomaterials
application.

1.2 Status

We have developed a distributed acyclically coupled multiscale simulation
using CPMD and LAMMPS, the latter used to model both atomistic and
coarse-grained molecular dynamics. We demonstrated our scenario as part
of the MAPPER Year 1 Review using the GridSpace, QosCosGrid and AHE
tools from the project. Our efforts in the second year were primarily con-
centrated on bolstering the scientific strength of our multiscale simulation.
We are working on more sophisticated quantum mechanical models, incor-
porating larger sections of clay sheets and more surrounding water for the
calculation of the electrostatic potential. We also compare different ap-
proaches (e.g., constant volume vs. constant pressure) to obtain a more
reliable energy profile from these calculations. On the larger scales we have
run several large production simulations, using existing CPMD results, on
the HECToR Supercomputer at EPCC in Edinburgh. Additionally, we have
developed an improved polymer growth routine that we use between the
quantum mechanical and atomistic simulation. Initializing a stable multi-
scale clay-polymer system is a scientifically challenging endeavour, as initial
biases in the polymer distribution can have an adverse effect on the accu-
racy of the scientific result. Our work resulted in several publications in
conferences [20, 38] and a magazine article [12], although the main body of
our scientific output is currently being written up.

On the computational side we have made additional progress as well.
Our scenario now works in conjunction with GridSpace and AHE, where
the two tools are more reliably and robustly integrated than before. In
addition, we have performed a number of performance tests (described in
the next section) and are currently testing the codes for accuracy.
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Figure 2: Benchmark results of running LAMMPS on Huygens in atomistic
mode.

1.3 Performance Benchmarks

We have not performed scalability tests of CPMD, as we currently only cal-
culate the potentials of a single clay sheet edge within our multiscale applica-
tion. However, a report on several scalability tests can be found at: http://
www.hpcadvisorycouncil.com/pdf/CPMD_Performance_Profiling.pdf.

We have benchmarked a range of atomistic simulations of nanocom-
posites on the Huygens supercomputer at SARA in Amsterdam. This
65 TFLOP/s machine is equipped with around 3456 IBM POWER6 pro-
cessors. We provide the wall-clock time spent to run atomistic simulations
for 10000 steps as a function of the number of processes in Fig 2.

In our application we use SMT to run 2 processes on a single core.
Although this somewhat worsens the overall scalability in the plot below,
it also allows us to save 50% on our consumption of compute resources.
We have enabled SMT in all our tests that use more than 32 cores. The
idealized speedup lines do not take the inefficiency introduced by using SMT
into account.

We have also benchmarked a range of coarse-grained simulations of
nanocomposites on the Huygens supercomputer. We provide the wall-clock
time spent to run coarse-grained simulations for 10000 steps as a function
of the number of processes in Fig 3. Here, too, we have used SMT in all our
tests that use more than 32 cores.
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Figure 3: Benchmark results of running LAMMPS on Huygens in coarse-
grained mode mode.

2 In-stent Restenosis 3D (Physiology)

2.1 Description

The In-stent Restenosis 3D (ISR3D) has been described in detail in de-
livrable D7.1. In short it models what may occur after the stenting of a
coronary artery. The main submodels are: smooth muscle cell proliferation
(SMC) which causes the restenosis; blood flow (BF) which affects the pro-
liferation speed; and drug diffusion of a drug diffusing stent. This runs in a
loop, with one iteration of SMC triggering a blood flow and drug diffusion
simulation. Afterwards, SMC continues with their information. The model
continues as long as SMC has more iterations.

2.2 Implementation

The implementation details of In-stent Restenosis 3D have not changed sig-
nificantly since D7.1. There has been a conference publication of how ISR3D
runs on the MAPPER infrastructure [13].

The SMC code is under active development and now has more realistic
tissue modeling. It is also in the process of being parallelized, so that we
can make better use of the resources at hand.

2.3 Performance evaluation

ISR3D runtimes have been measured in several settings. First of all, each
of the submodels are used and tested locally. However, to do a coupling
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between the submodels a more advanced machine is needed, since then mul-
tiple submodels will run at once. The goal is to know both the runtime and
the efficiency of the setup used.

2.3.1 Test setup

ISR3D is executed in four different scenarios: locally, on a NGI cluster, on a
PRACE machine. Since the runtime behavior ISR3D is cyclic, determined
by the number of smooth muscle cell iterations, we measured the runtime
of a single cycle for each. Since reservation would only be done once per
total simulation, and not once per cycle, the total runtime is going to be
dominated by execution and not reservation time. We did therefore not
include it in our runtime statistics.

Local machine The local setup consists of an iMac with Mac OS X 10.6
installed, with a dual-core Intel i7 3.6 GHz processor and 4 GB of RAM
installed. It can run smooth muscle cell (SMC) and drug diffusion submodels
without much trouble.

NGI resources The entire model was also run on NGI resources, the
Polish PL-Grid site Zeus from Cyfronet, Krakow, to be precise. In this
instance, we used one node with 8 cores of an Intel 2.4 Ghz processor.

PRACE machine Next, the entire model was run on a PRACE resource,
the Dutch Huygens site of Sara, Amsterdam. In this case, all submodels were
run on two cores, except BF which was run on 64 cores of the IBM Power6
4.7 Ghz processor. This scenario required within site communication, since
the two cores running most of the submodels were run on a different node
than the BF code.

NGI-PRACE combined Finally, we spread the model into two parts:
BF running on Huygens with 64 cores and all other submodels running on
Zeus on two cores.

To optimize efficiency on Huygens, we created a setup which alternates
the blood flow calculations of one simulation with the blood flow calculations
of another, both running in the same reservation, thus doubling the efficiency
of the model on resource usage. This is enforced using a classical wait/notify
loop treating the two blood flow calculations as mutually exclusive, and
implemented as two light-weight wait/notify mappers with no busy wait.

2.3.2 Results

In Table 1 the runtimes of the scenarios above are given. The efficiency is
calculated as the CPU time taken, divided by the cores reserved times the
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Table 1: Runtimes with different scenarios. The first column is the scenario,
the final column the efficiency and the others are runtimes in minutes.
Scenario BF Other submodels Coupling Total Efficiency

Local 40 29 1 70 80%
NGI 35 19 1 55 80%
PRACE 8 21 1 30 27%
PRACE-double 8 22 2 40 45%
NGI-PRACE 8 16 2 26 32%
NGI-PRACE-double 8 18 3 29 56%

time taken per cycle.
By using the PRACE resource the runtime went down drastically, but the

efficiency was also severely decreased. This was somewhat ameliorated by
using a scheme where two simulations alternated on the same resource. In-
terestingly, the distributed simulation between NGI and PRACE was faster
and more efficient than running on the PRACE machine alone. The reason
is that the Blob submodel, which is a serial Fortran code, only compiled
with the GNU gfortran compiler, which is not fully optimized for the IBM
Power6 processor of the PRACE machine. The NGI resource, however, has
an Intel processor and since gfortran is well optimized for this Blob ran 3
times faster (from 12 to 4 minutes).

2.3.3 Conclusions

For ISR3D, doing distributed multiscale computing is a viable option. Com-
pared to running locally, distributed multiscale computing cuts the runtime
cost by more than a factor 2, although it is only 70% as efficient. Coupling
cost played a small role in this, taking about 1/10th of the total time. The
resource management cost is larger though, so another viable option is to do
only NGI computation, where we could launch many jobs at once and have
a very decent efficiency. Once the SMC code is parallelized, these options
should be reevaluated.

3 Equilibrium Stability Workflow (Fusion)

3.1 Description

In fusion devices, such as tokamaks, the study of equilibrium and stability
is a crucial issue. Not only should the plasma inside the tokamak be in
a state of magnetohydrodynamics (MHD) equilibrium but we must also
assure that it lies in a stable configuration on a long enough timescale. In
this context, the equilibrium stability workflow [25] application is one of
the tools used to simulate important aspects of nuclear fusion processes
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by measuring the competition between stabilizing and destabilizing force
fields. This workflow consists of two loosely coupled subcodes: an MHD
equilibrium code (HELENA) [21], which is a high resolution fixed-boundary
Grad-Shafranov solver, and a linear MHD stability code (ILSA), working in
the so-called MISHKA mode [22]. This was one of the first modules to be
developed by the EFDA Integrated Tokamak Modeling Task Force [6] and
is therefore also of the better established ones.

The equilibrium stability application is a loosely coupled workflow where
the data can be exchanged via files (such as in the present status of the ap-
plication) or via structured objects defined by the EFDA ITM task-force
(see [16, 23] and references therein). Within this application several alter-
native workflows are possible which vary the profiles from the equilibrium
code, recompute the equilibrium for each case and then calculate the MHD
stability. One such example, which we have been using for testing pur-
poses, is the j − α stability workflow [25]. In this case different profiles are
computed, taking into account parameters such as the maximum edge cur-
rent pressure gradient and edge current density of the plasma, and then fed
again into HELENA, which in turn passes the new modified equilibrium to
the ILSA code for stability calculations.

3.2 Implementation

A huge effort towards code coupling through the definition of a common
datastructure has been made by the ITM task-force over the past few years.
This unified datastructure is composed of complex objects called CPOs
(Consistent Physical Objects) which regroup quantities relevant for a given
part of the physics. As each simulation code involved in the ITM works on
such CPO objects, all codes solving the same physics have the same inter-
face. Thus they are interchangeable and code coupling is simplified. In the
scope of this work, we have decided to use codes coming from the ITM in
order to take benefits from the CPO datastructure and the code coupling
experience. Note that even if the datastructure is evolving each year, we
chose to stay in version 4.09a, which was the latest stable release when we
started working on adaptation of fusion applications.

The loosely-coupled fusion application is composed of two Fortran codes,
HELENA and ILSA, which are working on CPOs. HELENA is generating
an equilibrium CPO, given a set of code specific parameters stored in a XML
file and a set of input files. ILSA is taking this equilibrium CPO plus its own
XML parameters’ file as input and generates an mhd CPO. CPO exchange
between the codes is done through files, each program being composed of
the following steps:

1. read input CPO from file

2. read XML parameters
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Figure 4: Helena Ilsa application built with MAD tool.

3. call the main routine of the solver

4. write output CPO in file

HELENA and ILSA codes have been updated to version 4.09a of the
CPO and were tested on different MAPPER resources (Zeus at Cyfronet
and the linux cluster at LRZ). Both executables are installed as executors
in GridSpace2, where their executable snippet consists of specific parameters
given in XML format. Once this step was done by WP8, we used the
MaMe tool to register both codes in the Models repository, and build the
application through the MAD tool’s graphical user interface, as shown in
Figure 4. An XMML description of the experiment is then automatically
generated and the simulation can be run from Experimental Workbench.
This figure shows also two post-processing and visualization components.
They are composed of a Python module reading CPO from files and storing
it into a Python object, and a script using the Matplotlib library to draw
the relevant quantities. Figures 5 and 6 show the plots resulting from the
HELENA equilibrium and ILSA mhd CPO on a small test case, using real
Tokamak geometry (ASDEX Upgrade).

Note that until now, this experiment has been run only on the same site
(Zeus), but adding a second site (LRZ cluster) is currently being investi-
gated. Minor modifications should also be added to the application in order
to improve its ease of use, especially in the case of a parameter scan, but
this workflow is already close to production state.
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Figure 5: Shape of equilibrium
coming from Helena.

Figure 6: Two different poloidal modes com-
ing from Ilsa.

4 Transport Turbulence Equilibrium (Fusion)

4.1 Description

The multiscale physical processes occurring inside nuclear fusion devices
such as tokamaks are illustrated in Figure 7.

The transport turbulence equilibrium application [16, 27] is a simplified
version of a simulation of the full fusion core in a nuclear fusion reactor.
The three main subcodes involved are:

1. HELENA: 2D equilibrium solver (elliptic, no explicit time, but equi-
librium time dependent) [21].

2. GEM: 3D gyrofluid turbulence code [36], calculates transport coeffi-
cients.

3. ETS: 1D transport code [16] that calculates new profiles.

These are the main components. However, both for HELENA and GEM,
a number of modules can be substituted, with differing trade-offs of speed
and accuracy/complexity, which are quite useful for testing, debugging and
general implementation purposes. These include BDSEQ, which computes a
simple equilibrium, BOHMGB, related to neo-classical transport in tokamak
devices, as well as a few others. There are also some simple service modules
in addition to these physics modules.

This application is a tightly-coupled one, with data flowing (see Fig. 8):
from HELENA to GEM and ETS; from GEM to ETS; and from ETS to
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Figure 7: Space and time scales involved in Fusion physics.
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Figure 8: Transport Turbulence Equilibrium dataflow.

HELENA and GEM. Most of the codes are serial and/or do not require
much CPU time. The exception is GEM, in which most of the computing
time in production runs will be spent. For this code, 8 to 16 instances need
to run in parallel, each requiring between 64 to 256 cores, each instance
corresponding to a flux-tube, i.e., a local gyrofluid simulation covering a
given region of the core of the tokamak. This methodology of using several
flux tubes (as opposed to a very large global simulation) has a great potential
for scaling well up to the simulation of larger nuclear fusion devices, such as
ITER [7]. At the moment, however, we are still using some of the simpler
modules for testing purposes, instead of the proper turbulence code GEM.

4.2 Implementation

The tightly-coupled fusion application is composed of three submodels: Tur-
bulence, Equilibrium and Transport. As for the loosely-coupled application,
each submodel defines a set of CPO objects for organizing data calculated
by a model, and data exchanged between different models. Several codes
developed within the ITM, which correspond to the same or to equivalent
submodels share the same interface composed of a set of input and output
CPO. Such codes are interchangeable, allowing us to build different flavours
of the same experiment. Amongst the different codes shown in Table 2, we
have chosen the simplest ones for each submodel in order to test the adap-
tation of this type of application in the MAPPER framework: BDSEQ for
Equilibrium in circular geometry, BOHMGB for Turbulence, and ETS for
Transport.
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Submodel Input Output Code

Turbulence
equilibrium

coretransp
BOHMGB

coreprof
ETAIGB

GEM

Equilibrium equilibrium equilibrium
BDSEQ

HELENA

Transport

equilibrium

equilibrium
ETS

coreprof

coreprof
coretransp
coresource
coreimpur
toroidfield

Table 2: Uniformized input/output and interchangeable codes for each sub-
models.

Each code is written in Fortran (most codes in the field of Plasma Physics
are), the main procedure takes CPO derived types as arguments and is
compiled as a static library. As MUSCLE is developed in Java, a set of
wrappers has to be implemented around each native code (see Fig. 9), with
two different goals. The first goal is to make the main Fortran procedure
available from Java, and the second one is to provide a way to convert CPO
data objects made of complex Fortran derived types into some interoperable
data which can be handled in other programming languages. So for each
submodel implemented in Fortran, the three following pieces of source code
have to be provided:

1. Fortran wrapper: defines a routine which takes the interoperable data
format and converts it into a Fortran derived type for each input CPO
of the target procedure. Performs the inverse steps for each output
CPO. Moreover, this routine should use C-type variables and C name
binding capabilities (coming from the iso_c_binding module) in or-
der to be fully compatible with C.

2. C wrapper: defines a C function receiving Java objects, converts them
into C-type variables and passes them to the C-bound Fortran routine.
Then, it converts C-type returned values into Java-type objects. This
function interface and native type conversion are performed by JNI,
the programming framework for Java Native Interface.

3. MUSCLE Java kernel: instantiate the MUSCLE CAController class.
Declare the method corresponding to the Fortran procedure as native
and load the dynamic library which contains the JNI C function. Over-
write addPortals and execute methods of this class.

All three submodels are registered in the repository using the MaMe
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Figure 9: Wrappers around Fortran native code used in MUSCLE.

Figure 10: Turbulence Equilibrium Transport built with MAD tool.

tool, given the Jar file containing the kernel bytecode and a parameter to
specify the path to the shared library loaded by the kernel. In addition,
some utility kernels have been added: one for duplicating a conduit when
a submodel output is an input for more than one submodel, and a second
one for initializing the CPO when the experiment starts. Post-processing is
performed outside MUSCLE, through a visualization component based on
Python/Matplotlib, and by re-using the movie-frame-encoder component
initially defined for the canals experiment, where only the mencoder com-
mand line stored in its snippet under Experimental Workbench is modified.
Then, XMML description of the application is done directly by MAD tool
when the application is designed graphically as shown in Figure 10.

Data conversion between Fortran complex derived types and some inter-
operable format is still in proof of concept phase: at this moment we are
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Figure 11: Movie of some quantities mapped to a circular equilibrium and
evolving in time.

using file storage in order to pass CPO through the different components
of the MUSCLE experiment. Wrapper functions and kernel portals send
and receive simple strings giving the name of the file which stores the CPO
object. Concerning the implementation of our kernels, we are not using
MUSCLE willStop method to automatically perform the time evolution
as it is not fully compatible with our needs. As time evolution is handled
manually, the cxa script has to be slightly modified in order to define the
required global variables.

The full experiment composed of a MUSCLE snippet followed by two
post-processing steps runs on a single site at the moment (Zeus). Figure 11
shows a frame of the movie generated from data of equilibrium and coreprof
CPO produced by ETS and evolving in time. This is a test experiment
used to demonstrate all the steps involved in the adaptation of such Fortran
codes to the MAPPER infrastructure. We are currently working on three
aspects to transform this test case into a production run which can be used
to simulate real physics problems:

1. implementing a dedicated serialization library to transfer CPO from
Fortran to Java via byte streams

2. adapting more complex and parallel codes such as GEM

3. avoid XMML manual modifications for handling time evolution by
converting our kernels to MUSCLE 2.0
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5 HemeLB (Physiology)

5.1 Description

Recent progress in imaging and computing technologies has resulted in im-
portant advances in physiology. Using modern imaging methods, we are now
able to scan the geometry of individual vessels within patients and map out
potential sites for vascular malformations such as intracranial aneurysms.
Likewise, recent increases in computational capacity and algorithmic im-
provements in simulation environments allow us to simulate blood flow in
great detail. The HemeLB lattice-Boltzmann application [28] aims to com-
bine these two developments, thereby allowing medical scans to be used as
input for blood flow simulations. It also enables clinicians to run such simu-
lations in real-time, providing runtime visualization feedback as well as the
ability to steer the simulation and its visualization [29]. One principal goal
for HemeLB is to act as a production toolkit that provides both timely and
clinically relevant assistance to surgeons. To achieve this we must not only
perform extensive validation and testing for accuracy, reliability, usability
and performance, but also ensure that the legal environment and the medical
and computational infrastructure are made ready for such use cases [34].

Within MAPPER we are constructing multiscale bloodflow simulations,
featuring both the HemeLB application and the Python Navier-Stokes (PyNS)
full-body 1 dimensional bloodflow solver. The aim of coupling these codes is
to incorporate a full-body bloodflow, while maintaining a high spatial and
temporal resolution in the area of specific (clinical or scientific) interest.
The submodels are all tightly coupled, each providing boundary conditions
to the concurrently-executing, adjacent submodels. The frequent commu-
nication between models places demanding requirements on the latency of
the coupling library, although in the first instance the volume of data to
be exchanged is low. The coupling from the network model to HemeLB
will require construction of a flow profile (typically a parabolic Poiseuille
flow profile) and the reverse coupling will require computation of the the
average pressure and velocity. Coupling of the different resolution HemeLB
simulations will require resampling of the underlying lattice-Boltzmann dis-
tribution functions between resolutions. The number of submodels and the
coupling between them is determined during simulation setup. In our multi-
scale implementation we have chosen to ensure good performance from Day
1, establishing the coupling between the submodels using MPWide [19] in
the first instance, and then incorporating additional coupling mechanisms
such as MUSCLE or MPI where needed or convenient.

5.2 Status

We have performed an in-depth investigation of the simulation, steering and
visualization performance of HemeLB on the HECToR Cray-XE6 machine
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in Edinburgh. We have also developed a single-scale performance model that
allows us to predict the runtime of HemeLB in advance, something which is
a necessity on the pathway towards clinical use. Both these advances have
been written up in a paper and submitted to the Journal of Computational
Science [18].

We have also successfully implemented a Multiscale Intercommunicator
which allows HemeLB to publish shared values and to connect to any inter-
communication or coupling library by defining a template class. As a first
step we have defined an Intercommunicator class to connect HemeLB with
MPWide. The Multiscale Intercommunicator code is part of the HemeLB
code base and is subjected to unit tests, functional tests and integration
checks using Jenkins.

Using our multiscale code extensions in conjunction to MPWide, we
have made a preliminary coupling of HemeLB to HemeLB. In addition, we
have made a preliminary coupling of PyNS to PyNS using a newly developed
Python interface to MPWide. At time of writing the values we pass between
the simulations are still very simplistic, although we have identified the
correct parameters to exchange during the simulation. We have established
a coupling between HemeLB and PyNS, and incorporated velocity-aware
boundary conditions to enable a more realistic method of coupling between
the codes.

5.3 Performance Benchmarks

We have run a number of performance tests on the HECToR Cray-XE6
machine at EPCC in Edinburgh. The tests were carried out using three
different simulation domains, a Cylinder domain consisting of 15,607,040
lattice sites, a Bifurcation domain consisting of 19,808,107 lattice sites, and
a Large Bifurcation domain consisting of 81,132,544 lattice sites. The pre-
dictions from our performance model are generally in agreement with our
measurements, especially for the larger simulation domains. However, the
model does not predict the superlinear speedup measured in the results.
This is mainly due to the relatively large calculation and communication
load imbalances we find at these low core counts.

6 Irrigation Canals (Hydrology)

The goal of this application is to develop hydrodynamic submodels in order
to simulate a network of canals or any water course that need to be controlled
and managed to produce irrigation water, electricity, etc. We refer the reader
to deliverable D7.1 for more details.
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Figure 12: Wall-clock time spent to simulate 100 time steps as a function
of the number of cores used for the Cylinder, Bifurcation and Large Bifur-
cation simulation domains. Predictions by the performance model we have
developed are indicated by the dashed lines.
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6.1 Adaptation to the MAPPER approach

Due to the size of an irrigation network and the large variation in the flow
complexity across different sections, some parts of the canal section can be
described with 1D shallow water based models, whereas other sections need
a 3D, free-surface hydrodynamic model (FS3D) to properly capture the flow
properties. Our future plan is to construct the whole canal “on the fly”
based on these 1D and 3D models.

To do so, we performed a simulation to validate the 1D and 3D models
following the line proposed by the MAPPER project.

6.1.1 1D submodels

The 1D submodels are based on the D1Q3 lattice Boltzmann (LB) shallow
water equation and describe a long canal section where the water flow is
mostly in the direction of the canal. 1D submodels could be connected
(coupled) together directly or through water junctions. The implementation
of many 1D junctions (canal section, gate, spillway, pumping station, etc.)
is finished and validated through a prototype.

For validation, we constructed a canal section composed of three sub-
models and two mappers (junctions): a Gate and Spillway. In first step, the
coupling schema is done according to the MML specification and designed
using the MAME/MAD tools. In second step, the simulation is performed
over the GridSpace framework and presented in the last summer school (Lon-
don 2011) as a prototype: http://www.mapper-project.eu/web/guest/mad-
mame-ew.

The coupling algorithm for two submodels connected with a junction is
described as follows. Each submodel obeys the CxA based formalism, as
depicted in Fig. 13. In this formalism, a submodel:

1. Initializes its parameters from the CxA coupling file, send its maximum
number of iterations to the junction, and then starts execution.

2. Performs one step of computation (e.g collide and stream for a LB
model)

3. Updates boundary conditions. This is done by sending data to the
junction and waiting for updated information.

4. Makes an observation if needed.

5. Increments the iteration counter.

6. Repeats back to step 2 until the maximum number of iterations is
reached.

7. Sends End message to the junction and finish the execution.
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In the present case, the junction is implemented as a daemon program
that keeps listening to data from the two corresponding canal sections. It
is worth noting that a junction could also be modeled as a full-fledged sub-
model, with its generic CxA execution loop, solving the boundary condition
problem at each iteration and running until the whole execution ends.

The communication process requires synchronization in the following
way: the junction uses the receive() method, a blocking point-to-point op-
eration of the MUSCLE framework, to receive data from each canal section.
From the other side, canals send data to the junction and call the receive()
method to wait for updated boundary information. Once data has arrived
from both canal sections, the junction performs the boundary computation
and sends back the updated information to the recipient submodels. This
process keeps running until the maximum iteration number is reached for
each submodel. The submodel will then end their execution after sending
an End message to the junction.

Besides, in the case where the upstream and downstream canals have a
different spatial and temporal resolutions, grid refinement techniques must
be used for the coupling where the connecting junction must be programmed
to handle two different frequencies of send/receive operations for each side.
We have implemented such a coupling using the grid refinement algorithm
presented in [26]. The temporal resolution ∆tc of the coarse grid was twice
greater than the ∆tf of the fine grid. The junction component was running
on a separate computer node, thus illustrating the distributed multiscale
nature of the simulation.

The above results and a new coupling algorithm to implement a Gate
submodel are published in [11]

Init

Collide and Stream

Update boundaries

Observation

Init

Collide and Stream

Update boundaries

Observation

Junction

submodel 1 submodel 2

not end of
iteration

not end of
iteration

End End

End messages

Figure 13: (Left:) The MAD [1] tool, a software part of GridSpace platform,
generates automatically the XMML coupling description. (Right:) Template
of the coupling algorithm for two submodels and a junction.
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Figure 14: Simulation of the flow in the Rhone river in Geneva (left). Ex-
ample of a 3D, free surface simulation of a draining event at the dam in
Verbois (right).

6.1.2 3D submodels

This type of submodel resolves the details of the water flow around gates
and junctions. The implementation of the LB based 3D submodels is mostly
done using PALABOS and MPI environments and a free surface flow model
(see D7.1 for more detail). As a specific case, the bed profile of the Rhone
river in the Geneva area has been provided by the Services Industriels de
Genève, the electricity company in Geneva. It is described by an STL file [4].
The simulations are illustrated in Fig. 14 and will be described in an article
in preparation [31]. Such 3D LB submodel requires off-lattice boundary
conditions and considerable computing resources. Following the MAPPER
guidelaine, and for validation purposes, we divided a big 3D section into two
sections (or more) and connect them using MUSCLE2 API (C++ version).
Our objective is to simulate 13 km of the Rhne river over distributed clusters
rather than a local simulation.

The simulation is conducted using qcg-broker grid-middleware and based
on scripts and job description files. The workflow composing the jobs is
described on a XML file and sent to the QCG broker for execution. Then,
the QCG broker will starts all the jobs once the remote candidate clusters
are available at the same time. An example of XML based worker flow is
described in appendix A.2.

Simulating 13 km of a river course with a 3D free-surface hydrodynamical
model using a 40 cm spatial resolution is a numerical challenge. A few hours
of real time can be simulated with a several thousands cores in about two
weeks. By coupling several petaFlops supercomputers, as possible in the
MAPPER vision, a few weeks of real time can be considered. However, such
a detailed simulation may not be required along the full water course and
the coupling of the 3D section with 1D shallow water section is the most
promising way to reach the time scale that operators need to consider when
managing the river.
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6.2 Mapper performance prediction model

Regarding the performance measurement, we consider the time overhead
induced by the MAPPER approach when performing simulations of real
hydrodynamical problems. The considered MAPPER tools are: MUSCLE2
API, QCG broker, and PALABOS toolkit [3].

To do so, a PALABOS based lattice Boltzmann 3D submodel (cavity3D)
is considered to perform tests and simulations. The pseudo algorithm of the
code is shown in the listing 1

Listing 1: pseudo-code of the caviy3d example

Finit
While (it++<2000){
CollideAndStream()
GetBoundaryData()
SendReceiveBoundaryData()
UpdateBoundaryData()
}
end

• The CollideAndStream() operation: consists in a LB computing op-
erations.

• The GetBoundaryData() operation: retrieves boundary data scat-
tered over the same cluster nodes.

• The SendReceiveBoundaryData() operation: sends/receives the se-
lected boundary data to/from other submodels.

• The UpdateBoundaryData() operation: updates the boundary data
scattered over the same cluster nodes.

The simulation scenario consists in:

1. Running a monolithic simulation over one cluster.

2. Splitting the cavity into two equal sections (left and right) and coupling
them using MUSCLE API. Simulation will be first performed on the
same cluster and, then, over two distributed clusters (Galeera and
Reef) [2] using QCG grid middleware.

3. Comparing the execution clock-time and data transfer impact of the
distributed simulation to the monolithic one.

Inspired by the work of [9], we elaborated a performance prediction
model that approximates the execution time based on the computing re-
sources and the coupling strategy.
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We define Tmuscle(p,N), the execution time of a “mapperized” LB based
submodel over p cores and with problem size N as

Tmuscle(p,N) =
Tserial(N)

p
+ Tcom

= Tmono(p,N) + Tcom (1)

where Tcom is the communication time incurred by MUSCLE, Tmono is the
monolithic execution time of the submodel (kernel) on p cores (same cluster)
without using MUSCLE. We assume that the execution time of one kernel
is equal to Tmono(p,N) = Tserial(N)/p and the communication speed and
time between the same cluster nodes are similar. Hence, we can deduce the
submodel “MUSCLING” efficiency ε(p,N) with:

εmuscle(p,N) = monolithic execution time
muscle execution time = 1

1+θ
(2)

where θ is the communication overhead fraction of a submodel defined as

θ(p,N) =
Tcom(N)

Tmono(p,N)
(3)

In what follows, we develop a performance model for irregular canal
sectioning of a tightly coupled scenario with a problem of size Lx×Ly×Lz,
where Lx (resp. Ly and Lz) stands for the actual size along x-axis (resp.
y-axis and z-axis))). “Mapperization” is achieved by dividing the whole LB
application, along the x-axis, into several submodels sj , j ∈ {1..k}, where
each of them has a LB grid size of (nx,j , ny, nz), where nx,j (resp. ny and
nz) stands for the number of lattice sites of submodel sj along the x-axis
(resp. y-axis and z-axis). Note that

∑k
j nx,j = nx but the submodels do not

have necessarily the same grid size.
The total execution time per each submodel is determined by the com-

putation time required for its domain and the time required to exchange and
update its boundary data Bk. Let tk be the execution time of the submodel
sk over pk cores. We write tk as

tk = Tcpu + Tcom(Bk) (4)

where Tcpu is the computation time required for the submodel sk over pk
cores and Tcom(Bk) is the time required for the boundary condition opera-
tion, defined as (see details in A.1):

Tcpu(pk,∆x) = Ak/∆x
3

Tcom(Bk) = Bk/∆x
2 (5)

It is oblivious that Tmuscle will be determined by the slowest submodel,
i.e:

D7.2 Adaptation of applications Page 27 of 46



MAPPER - 261507

Tmuscle = Tmuscle(pk, N) = max
1≤j≤k

{tj} (6)

and, hence, the total communication fraction overhead of the application
can be written as

εmuscle(k,N) = Tserial(N)
p×maxj{tj}

= 1
1+θmuscle

(7)

where p=
k∑
j=1

pk and θmuscle is the total ”muscling” overhead defined as

θmuscle(pk, N) =
maxj{tj}

Tmono(pk, N)
− 1 (8)

By joining the eq (5) to eq (4), we finally obtain an equation for tk

tk = Ak/∆x
3 +Bk/∆x

2

= Ak/∆x
3 × (1 + Bk

Ak
×∆x)

= α(∆x)× (1 + β(∆x))

(9)

Consequently, we obtain from eq (5) and eq (6):

Tmono(∆x) = α(∆x)
Tmuscle(∆x) = α(∆x)× (1 + β(∆x))

(10)

In the next section, we will measure Tmono and Tmuscle for both the local
and grid simulation case. Then, we will validate empirically the relation
between Tmono and Tmuscle (in eq 12) and measure the muscle efficiency
(εmuscle).

6.3 Performance Measurements

The cavity section has a length Lx of 4500 meters, a width Ly of 100 meters
and a depth Lz of 25 meters. The Lattice Boltzmann (LB) implementa-
tion is based on MPI and simulation is carried out with different value of
∆x ranging from 0.4(m) to 2(m) with a step of 0.2(m). Regarding the LB
parameters, each lattice cell contains 19 distribution functions with DOU-
BLE precision data type (8 bytes). The size of one lattice cell is equal to
19×8 = 152 Bytes. To treat the off-lattice boundary condition, we need for
each submodel the e = 3 boundary cells along the x-axis, including all the
corresponding y-axis and z-axis cells.

Table 3 shows the different lattice grid sizes and the size of the boundary
data used for the simulations as a function of ∆x. The quantities nx, ny
and nz represent the number of lattice sites along tghe x-axis, y-axis and
z-axis of the cavity3D section, respectively.
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Table 3: LB grid size based on ∆x
∆x(m) 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nx 11250 7500 5625 4500 3750 3215 2813 2500 2250
ny 250 167 125 100 84 72 63 65 50
nz 63 42 32 25 21 18 16 14 13

Bk(Kb) 7182 3198 1824 1140 804 590 459 414 269

The monolithic execution is carried out over 20 cores on the same Gordias
cluster (hepia-unige), having the following configuration:

• 28 nodes with12 Gb and 8 cores(intel 64 bits) each.

• OpenMPI environment

• InfiniBand (IB) based network interface communication with a speed
of 832 Mb/s.

• Ethernet network interface with a speed of 112 Mb/s

For the “mapperized” simulation, we performed a local simulation on the
Gordias cluster and a distributed one over two geographically distributed
clusters (Galera and Reef).

6.3.1 Local execution

In order to run the local simulation on the Gordias cluster, we firstly run
the muscle manager in a separate node. Then, we run the left and the right
sections over 10 cores each using Sun Grid Engine (SGE) [5] middleware.

The total number of iterations we performed is equal to 2000 for both
the monolithic and muscle local simulations. For each iteration, we measure
the computation clocktime of the ”boundary” and ”collideAndStream” op-
erations. We repeated the simulation with different ∆x values as depicted
in the figure 15.

The difference of the execution clocktime between the monolithic and
MUSCLE implementation for the case ∆x=0.4 was 106 seconds over a total
elapsed time of 5498 seconds. For the case ∆x = 1.4, it was 141 seconds
over a total elapsed time of 370 seconds. This suggests that the time over-
head of MUSCLE on the same cluster (collideAndStream and data transfer
operations) vary slowly with ∆x and can be averaged to 120 seconds, for all
values of ∆x.

The measurements in figure 15 show that the execution time Tmuscle and
Tmono depend linearly on the number of iterations (iT ):

Tmono(∆x) = a× iT
Tmuscle(∆x) = b× iT (11)
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Figure 15: Execution time (wallclock time) versus iteration number for the
monolithic code (red line) and the multiscale approach (green). The sameon
cluster(Gordias)has been used in both case, with the same total number of
processors.

Where a and b stands for the slope coefficients of the execution lines in
the graph. After evaluating a and b for each ∆x case, we can use them with
the eq. (10) to fit empirically the relation between Tmuscle and Tmono. This
gives:

Tmono(∆x) = 0.1748/∆x3

Tmuscle(∆x) = Tmono(∆x)(1 + 0.43×∆x) (12)

From eq. (7), we can plot the efficiency of ”mapperizing” the LB test
application” in figure 16

It is clear that the benefit of a distributed execution becomes evident
when the size of such problem exceeds the capability of one computer or
cluster in term of computing resources. The benefit disappears when the
overhead of the distributed computation becomes larger than the gains of
faster processing, particularly, when the problem size is not large enough.
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Figure 16: Execution time efficiency as a function of ∆x - local cluster case

6.3.2 Distributed execution

For the distributed execution, we kept the same configuration (number of
cores, same executable and input data, etc.), but used two separate clusters:
Galera and Reef. The measurements shown in figure 17 show that the
distributed execution time Tgrid (stands for Tmuscle over the grid) depends
also linearly on the number of iterations (iT ). So we can write: Tgrid(∆x) =
c × iT , where c is the slope coefficient of the distributed execution line in
the graph.

Compared to the local execution (one cluster), the distributed execution
is mainly influenced by the network speed connection between clusters, in
addition to the size of the boundary data (fig 17). This also can be observed
on the distributed efficiency values εgrid = Tmono/Tgrid in table 4 and on the
comparison between εmuscle and εgrid depicted in Fig 18. Besides, we can
observe that the muscle overhead is inversely proportional to the simulation
size.

Thus, as a conclusion, it’s clear that the time overhead of “mapperizing”
a big application is negligible comparing to the procured benefits in time
and resource computation usage.
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Figure 17: Execution time on local cluster (Gordias) and on two separated
clusters (Galera and Reef). The number of performed iterations is equal to
2000. The data communication between clusters is handled by the muscle
MTO layer with a network speed of 22 MB/s between the two clusters.

7 Reverse-engineering of gene-regulatory networks
(Computational Biology)

7.1 Description

Regulation of gene expression (or gene regulation) refers to processes that
cells use to create functional gene products (RNA, proteins) from the in-
formation stored in genes (DNA). These processes range from DNA-RNA
transcription to the post-translational modification of proteins. Gene reg-
ulation is essential for life as it increases the versatility and adaptability of
an organism by allowing it to express protein when needed. While some as-
pects of gene regulation are well understood, many open research questions
still remain (Davidson & Levin, 2005 [17]). Due to the wide availability of
well-characterized components from biological gene networks, the stage has
been set for mathematical modelling and computational simulation of gene
regulatory networks. The dynamic behaviour and regulatory interactions
of genes can be revealed by time-series experiments, that is, experiments
that measure the expression of multiple genes over time (Spellman et al.,
1998 [37]). As this type of experimental data becomes more readily avail-
able, mathematical modelling and computational simulation become an im-
portant tool for investigating the structure and time-dependent behaviour
of gene regulation networks.

Besides logical (Kauffman, 1993 [33]) and stochastic (Perrin et al., 2003 [32])
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Table 4: εgrid: efficiency of distributed execution (2000 iterations)
∆x Tmono(s) Tgrid(s) εmuscle εgrid

0.4 5392.54 5498.85 0.980666867 0.583040329
0.6 1746.9 1939.85 0.900533546 0.424933106
0.8 846.53 1015.09 0.833945759 0.37978017
1 490.94 654.78 0.749778552 0.349712218

1.2 321.81 407.62 0.789485305 0.271171444
1.4 228.34 369.37 0.618187725 0.28150886
1.6 166.85 255.68 0.652573529 0.283036472
1.8 125.69 246.26 0.510395517 0.235763055
2 97.76 209.47 0.466701676 0.142777859

modelling approaches, various continuous modelling methods capable of cap-
turing such complex behaviour deterministically are commonly used. A
range of mathematical methods facilitating the reverse-engineering (auto-
mated inferences or construction) of quantitative, dynamic GRN models
from time-series expression data have been reported in the literature (Cho
et al., 2007 [15]). Typical methods based on differential equations include
the s-system method (Savageau, 1976 [35]), artificial neural networks method
(Vohradský, 2001 [40]) and general rate law of transcription method (Mendes
et al., 2003 [30]). These and similar methods are the basis of our Computa-
tional Biology application within MAPPER.

To-date the majority of the gene regulation models address GRN sys-
tems containing less than 20 genes. The reason for this is that the computing
requirements for reverse-engineering such models from data grows exponen-
tially with the number of genes in the underlying GRN system. The com-
puting requirements are also dependent on the connectivity topology of the
underlying GRN system, the number of parameters in the chosen GRN rate
law, the given time resolution, the numerical integration method chosen,
and other factors.

Currently, there is a trend in biology to investigate increasingly larger
GRN systems; ultimately many important life processes are regulated by
more than 20 genes. The study by Davidson & Levin (2005) [17] is an exam-
ple for such an investigation. Such large GRN systems are characterized by
an inherent biological organization composed of sub-networks, each regulat-
ing a separate biological function or process while still interacting with each
other. The sub-networks in such a multi-network structure may operate on
distinct temporal scales. Applying current GRN modelling and simulation
approaches to such large, multi-network GRN systems is problematic, both
conceptually and computationally. A promising approach to address these
challenges is MMS. In the MAPPER Computational Biology application,
we develop an MMS approach to GRN modelling and simulation.
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Figure 18: Execution time efficiency as a function of ∆x - The upper curve
shhows εmuscle and the lower one shows εgrid.

In a first step, we have developed GRN modelling and simulation solution
in Java and integrated it with MAPPER to enable distributed multiscale
execution. Currently, we adopt an MMS approach based on particle swarm
optimization (PSO) (Kennedy & Eberhart, 1995 [24]) where each sub-model
consist of a PSO island1. We have deployed and tested this version of
the GRN application and are now engaged in larger-scale experiments in
which we explore various novel elements in GRN modelling and simulation
(rate law, multi-condition reverse-engineering, validation of structure and
behaviour).

In the next step, we aim to cast the reverse-engineering algorithm into
the MMS framework by representing a single or a group of genes as individual-
scale models.

7.2 Summary of achievements

Based on the developments in Year 1 of the MAPPER project, we have
redesigned some aspects of the MAPPER Computational Biology applica-
tion. In particular, in Year 2 we have developed and refined the following
MultiGrain2 features:

1Essentially, a PSO islands represents a confined evolutionary environment where a
population of individuals (PSO particles) is allowed to evolve over a number of generations.
The number of generations may be pre-determined, based on time constraints, or derived
from a pre-determined condition.

2MultiGrain is the name given to the present GRN modelling framework
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• Various components that allow the switching between GRN rate laws
in a flexible way.

• Incorporation of a new ODE solver with improved performance char-
acteristics.

• A component to write GRN models in systems biology mark-up lan-
guage (SBML)3 format for the supported rate laws.

• A component that facilitates the separation of the reverse-engineering
process into two steps: one dealing with the determination of the net-
work topology of the model, and one which in which the parameters
to be optimized can be selected (typically this would be used to op-
timize all parameters except those that have been determined in a
previous step). This component is crucial to the envisaged novel ap-
proach to reverse-engineer GRN models where single-gene GRN mod-
els or multi-gene GRN models are treated as single-scale models in the
MMS framework.

• A component to visualize the network topology of GRN models.

• A component facilitating different validation strategies (multiple vali-
dation sets, model structure and behaviour)

The software modules have been implemented and tested, using the MUS-
CLE4 library, on production hardware of the MAPPER e-infrastructure.
While more implementation and tests are necessary, the milestones for Year
2 have been accomplished. Year 3 will focus on additional implementation
and testing, and, most importantly, on a number of studies demonstrating
the advantages we gain from the MMS to gene regulation modelling and
simulation.

7.3 Improved approach to ODE solver

After initially supporting only the artificial neural network (ANN) rate law
(Vohradský, 2001 [40]), we expanded the application and added support for
four additional rate laws: Hill, s-system and general mass action kinetics
(Voit & Schwacke, 2007 [41]). We replaced the previous ODE solver XP-
PAUT5 because of undesirable performance overheads associated with its
file-based approach to invoke its functions from Java. The latest version of

3http://sbml.org/
4MUSCLE Multiscale Coupling Library and Environment: http://apps.man.poznan.

pl/trac/muscle
5XPPAUT, a tool for solving stochastic, differential, and difference equations: http:

//www.math.pitt.edu/~bard/xpp/xpp.html
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our GRN tool implementation uses Flanagans scientific library6. This li-
brary is implemented in Java. This provides a considerable advantage (both
in development and performance) since our GRN tool is also implemented
in Java.

7.4 Analysis and visualization of GRN network topology

The current implementation of the GRN tool employs the JGraph7 Java li-
brary to add support for visualizing the network topology or structure of the
reverse-engineered GRN models. This component represents GRN graphs
in the simple interaction format (SIF); which is supported by Cytoscape8,
a widely used computational biology software tool for analysing and visual-
izing biochemical pathways and networks. Graph construction from a SIF
file is straightforward. The SIF is convenient for combining multiple sets
of interacting genes into a larger gene network, or add new gene-gene in-
teractions to an existing SIF file. Lines in a SIF file define a source node,
a relationship or interaction type, and one or more target nodes. In the
GRN modelling and simulation application we are dealing with only a sin-
gle node type (gene) and two types of interactions (activates, represses).
The following excerpt illustrates the SIF based on a 5-gene GRN:

geneA supresses geneB

geneC activates geneA

geneD activates geneE geneF

geneE

geneF represses geneC

The first line identifies two network nodes, geneA and geneB, and a repress-
ing influence of geneA on geneB. The second line is similar, except that the
relationship from geneC to geneA is an activating relationship. Line three
specifies an activating relationship of the node that represents geneD on the
nodes representing genes geneE and geneF. The fourth line shows a node
(geneE) that does not influence any other nodes but may be influenced by
other nodes (geneD). Finally, line five is similar to line one, except that it
involves geneF and geneC.

7.5 Flexible validation of GRN models

We are aiming to explore comprehensive validation scenarios currently not
covered in state of the art modelling of GRN systems. In particular, our
aim is to investigate:

6Michael Thomas Flanagans scientific library: http://www.ee.ucl.ac.uk/~mflanaga/
java/

7The JGraph library: http://www.jgraph.com/
8Cytoscape: computational biology software tool for analysing and visualizing bio-

chemical pathways and networks: http://www.cytoscape.org/
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• Model behaviour validation. While this is the de facto standard in
evaluating GRN models, we are keen to compare two (possibly more)
error scoring methods: mean absolute error (MAE), root mean square
error (RMSE) (Willmott & Matsuura, 2005 [42]).

• Structure validation. Validating the network structure representing
the interactions of a dynamic system is typically more important than
validating the dynamic behaviour against the measurements (Barlas,
1994 [10]).

• Multi-data validation. Flexible support for validating GRN models
against one or more data sets selected from a pool of training and val-
idation data sets. This feature allows us to explore scenarios involving
multiple training and validation sets, including multi-condition exper-
iments (repeated-measures design).

• Multi-model validation. Usually, an MMS study starts out with
linking or coupling multiple single-scale models that have already been
validated individually. Since we are planning to investigate multi-scale
reverse-engineering of large modular GRN systems, we will need to
investigate novel ways of validating such multi-scale models.

The current implementation of MultiGrain allows us to assign training and
validation sets in a flexible manner. As we proceed with our implementation
in Year 3, we will enhance MultiGrain to cover more of validation features
listed above.

7.6 Performance analysis

We evaluate the performance of some of the MultiGrain components/fea-
tures; here we focus mainly on the performance of fitness calculations. We
have executed the application under different hardware configurations, vary-
ing the number of PSO steps.

We reverse-engineered a five-gene GRN model from a gene expression
data set containing 40 time-points. Our test scenario included two PSO
islands, each populated with 100 PSO particles. The islands exchanged
particles every 100 steps and we varied the number of such particle exchanges
(10, 50 and 100 respectively, for each hardware scenario). Thus, we had
100,000, 500,000 and 1,000,000 fitness calculations respectively (see Table 5).

The two hardware configurations we considered are quite distinct. The
first consists of an Acer Aspire laptop computer with a dual-core processor
clocking at 2.2 GHz and 4 GB of RAM, running Arch Linux in a virtual
machine on Windows 7. The virtual machine was configured to use at most
1 GB of RAM and only one virtual processor. The second hardware config-
uration consisted of an HPC computer cluster (HP Cluster Platform 3000
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Hardware Fitness calculation Computation Time [s]

100,000 82
Laptop 500,000 340

1,000,000 669

100,000 29
Cluster 500,000 67

1,000,000 134

Table 5: Performance analysis of our application

BL 2× 220), consisting of 984 nodes with 20 TB of memory and capable of
105 Tflops. The operating system used here was Scientific Linux.

As expected, the application scales almost linearly on a sequential pro-
cessor (the laptop). On a distributed system, however, computation times
grow sub-linearly with an increasing number of fitness computations, show-
ing that the applications benefits a coupled insular (multi-model) PSO setup
when the number of fitness computations increases.

Part III

Conclusion

In conclusion the results obtained in WP7 after this second year of the
MAPPER project correspond rather well to the description of work. All
applications have been adapted to the proposed formalism, although with
different levels of maturity. For some applications, further developments and
testings are still needed whereas, for other ones the effort is now on running
a production codes in order to obtain new scientific results.

This inhomogeneity in the development and in the presentation of the
applications reflects the different needs, pre-exposure to the approach, and
historical backgrounds of each group. But, at this stage, we can say that
all applications are amenable to the MAPPER framework, and that a con-
vergence of the methodology is emerging, thanks to the tools offered by
WP8.

Several articles relating either the approach or advances in specific scien-
tific domains have been published or submitted. We can also notice that the
MAPPER project, with its proposed computational framework has stimu-
lated the development of better versions of the existing codes, with a larger
scales and more ambitious scientific goals.

Performance evaluation is still at an early phase for some groups but
rather elaborated for others. Execution times have been measured in various
situations but there is still a need for a uniform presentation and simple
metrics to assess the cost/benefit of the Distributed Multiscale Computation
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proposed in MAPPER. However, some analysis already show that, for large
enough problems, the overhed of the MAPPER approach is acceptable and
even negligible.
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A Hydrology

A.1 Tcpu and Tcom equations

In this appendix, we will develop a detailed equations of Tcpu and Tcom(Bk).
Let Fk be the theoretical floating-point computing speed (FLOPS) of a

cluster node, and x the number of floating point operations required to treat
one lattice grid. Theoretically, we can determine Tcpu as

Tcpu(pk,∆x) = c0 × Lx.Ly.Lz

∆x3
× x

Fk.pk
= c0 × (nx.ny.nz)× x

Fk.pk
= c0 × (nx.ny.nz)× σcpu
= Ak/∆x

3

(13)
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Where c0 is a constant and σcpu the time required to compute one lattice
node.

As described in listing 1, during each iteration, the communication time
Tcom(Bk) is determined by Tget, Texchange and Tup, the duration times taken
by the GetBoundaryData(), SendReceiveBoundaryData() andUpdateBound-
aryData() operations, respectively. We can write:

Tcom(Bk) = Tget + Texchange + Tup (14)

For communication between submodels (kernels), we consider a syn-
chronous blocking point-to-point communication model where a submodel
sends and receives data sequentially and not in parallel. Besides, each sub-
model sends and receives data to and from sj other submodels depending on
the coupling schema and the number of MAPPER conduits dk that a sub-
model has. In addition, during each iteration, a boundary operation requires
the processing of e×ny.nz (e stands for the number of required lattice along
the x-axis) lattice cells, each having f variables (distribution functions) and
a given data type T . Now, we can say that Tcom(Bk) depends also on the
conduits network speed S. With all these definitions, we can now write

Tget(pk,∆x) = c1
pk
× dk.e.ny.nz × f × sizeof(T )÷ S

Texchange(∆x) = c2 × e.ny.nz × f × sizeof(T )÷ S
Tup(pk,∆x) = c3

pk
× e.ny.nz × f × sizeof(T )÷ S

(15)

And finally we obtain:

Tcom(Bk) = ( c1+c3
pk

+ c2)× e.ny.nz × f × sizeof(T )÷ S
= Bk/∆x

2 (16)

A.2 XML based Jobs profiler for QCG broker

Listing 2: QCG based workerflow to connect two 3D canal sections over two
distributed clusters

<qcgJob appId=”MAPPER” xmlns:jxb=”http://java.sun.com/xml/ns/jaxb” xmlns:xsi=”
http://www.w3.org/2001/XMLSchema−instance”>

<task persistent=”true” taskId=”task”>
<requirements>

<topology>
<processes processesId=”LeftSection”>

<processesCount>
<value>10</value>

</processesCount>
<candidateHosts>

<hostName>galera.task.gda.pl</
hostName>

</candidateHosts>

<reservation type=”LOCAL”>NO RESERVATION</reservation>
<resourceRequirements>
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<computingResource>
<hostParameter name=”memory”>

<value>20000</value>
</hostParameter>

</computingResource>
</resourceRequirements>

</processes>
<processes processesId=”RightSection”>

<processesCount>
<value>10</value>

</processesCount>
<candidateHosts>

<hostName>reef.man.poznan.pl</hostName>
</candidateHosts>
<reservation type=”LOCAL”>NO RESERVATION

</reservation>
<resourceRequirements>
<computingResource>

<hostParameter name=”memory”>
<value>20000</value>

</hostParameter>
</computingResource>
</resourceRequirements>

</processes>
</topology>

</requirements>
<execution type=”mapper”>
<executable>
<application name=”muscle2”/>
</executable>
<arguments>
<value>canals.qcg.cxa.rb</value>
</arguments>
<stdout>
<directory>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/results/${JOB ID

}.output</location>
</directory>
</stdout>
<stderr>
<directory>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/results/${JOB ID

}.error</location>
</directory>
</stderr>
<stageInOut>
<file name=”canals.qcg.cxa.rb” type=”in”>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/inputs/link.cxa</

location>
</file>
<file name=”config.xml” type=”in”>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/inputs/config.xml

</location>
</file>
<file name=”canals.pre.sh” type=”in”>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/inputs/canals.pre.

sh</location>
</file>
<file name=”canals.post.sh” type=”in”>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/inputs/canals.post

.sh</location>
</file>
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<directory name=”stats” type=”out”>
<location type=”URL”>gsiftp://qcg.man.poznan.pl/˜/CANALS/results/${JOB ID

}.stats</location>
</directory>
</stageInOut>
<environment>
<variable name=”QCG MODULES LIST”>canals/MM</variable>

<variable name=”QCG PREPROCESS”>./canals.pre.sh
</variable>

<variable name=”QCG POSTPROCESS”>./canals.post
.sh</variable>

<variable name=”MUSCLE ARGS”>−−reverse</
variable>

</environment>
</execution>
<executionTime>
<executionDuration>P0Y0M0DT3H30M</executionDuration>
</executionTime>
</task>
</qcgJob>
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B Computational Biology

B.1 Abbreviations and Glossary of Terms

COPASI
Complex pathway simulator A software tool facilitating the
modelling, simulation and analysis of biochemical networks
and their dynamics.

DNA
Deoxyribonucleic acid Macromolecule storing genetic infor-
mation used to produce RNA and proteins.

GRN

Gene-regulatory network A biochemical network of genes
that controls biological processes by regulating the produc-
tion of RNA and protein in response to external and internal
stimuli.

GRN model A GRN model is a mathematical representation of a GRN.

GRN system Same as GRN.

MAE Mean absolute error The average of the absolute errors.

MMS

Multiscale modelling and simulation An approach to model
and simulate systems which involve features on multiple
scales (typically, time and space). A key issue involves the
linking or coupling of single scale models.

ODE
Ordinary differential equation An equation containing a func-
tion of one independent variable and its derivatives.

PSO
Particle swarm optimization Evolutionary optimization tech-
nique inspired by swarm behaviour.

RMSE
Root mean squared error The square root of the sum of the
squared errors divided by the number of observations.

RNA
Ribonucleic acid Macromolecule storing genetic information
transcribed from DNA.

SBML
Systems Biology Mark-up Language A standard XML-based
format to represent, store and share biochemical models.

SIF
Simple interaction format A simple, standard file format sup-
porting the storing and sharing graphs and networks.
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