

www.egi.eu

The SAGA

Project

	 1 / 3

	
	
	

MoU	 – 	 M i l e s tone 	 Repo r t 	
	
	

M2 . 1 : 	 S T A N D A R D S 	 R E P O R T 	
	
	
	

Document	 Link	 https://documents.egi.eu/document/<DOCID>	

Report	 by	 Sergio	 Andreozzi	

Last	 Modified	 DD/MM/YYYY	

Version	 1	

Due	 Date	 08/2011	

Delivery	 Date	 09/2011	

MoU	 URL	
	
https://documents.egi.eu/document/485	
	

	 	

	

	

	

www.egi.eu

The SAGA

Project

	 2 / 3

	
 As EGI's technology provider, the SAGA Project aims to deliver and implementation of
the SAGA API, with a set of language bindings (in particular C++ and Python), and with a set of
backend bindings (in particular gLite, Globus, BES, and ssh). As such, SAGA is very tightly
related to a wide range of standards and standardization activities, and is, in fact, in itself a
representation of the SAGA API specification, an OGF standard (GFD.90), and of several related
specifications.

> - the already supported standards/specifications

In Detail, the SAGA implementation as provided by the SAGA project

 implements
 - SAGA Core API Specification" - OGF, GFD.90
 - SAGA Advert API Extension" - OGF, GFD.177
 - SAGA Service Discovery API Extension" - OGF, GFD.144
 - SAGA Information Service Navigator API Extension - OGF, final draft
 - SAGA C++ Language Bindings - OGF, draft
 - SAGA Python Language Bindings - OGF, draft
 - SAGA Message API extension - OGF, GFD.178 - not delivered to EGI
 - Checkpoint and Recovery API as defined in
 Architecture for Grid Checkpoint and Recovery Services - OGF, GFD.93
 - not delivered to EGI

 interfaces to
 - Basic Execution Service / HPC Basic Profile - OGF, GFD.114
 - JSDL - OGF, GFD.136
 - JSDL HPC - OGF, GFD.111
 - JSDL SPMD - OGF, GFD.115
 - DRMAA - OGF, GFD.133 - not released to EGI
 - GridRPC - OGF, GFD.52 - not released to EGI
 - SSH - see
https://secure.wikimedia.org/wikipedia/en/wiki/Secure_Shell#Internet_standard

 plans to interface to
 - OCCI Core - OGF, GFD.185
 - OCCI Infrastructure - OGF, GFD.186
 - OCCI HTTP Rendering - OGF, GFD.187
 - DRMAA.v2 - OGF, draft

 references
 - GLUE-1.3 - EGEE
 - GLUE-2 - OGF, GFD.147

 uses
 - SOAP, XML, TCP, Corba, WSDL, and a wide range of related
 networking and communication standards (and non-standards)

www.egi.eu

The SAGA

Project

	 3 / 3

A large set of experimental backend bindings exist which are not scheduled for release toward EGI,
but nevertheless influence the standard related activities of the SAGA group.

> - the standards/specifications which will be supported in the future
> (please, provide estimate of release dates)

Most notably, we plan to support
 - OCCI within the next 6 months,
 - DRMAAv.2 within the next 6 months
 - SAGA Message API within the next 12 months
 - SAGA Resource API within the next 12 months

Those are tentative time lines!

> - missing standards/specifications that you identified

By definition, and contrary to the impression the list of supported standards above may
give, SAGA does not directly rely on standardized infrastructure, but in fact is designed to
handle proprietary backends as well. Having said that, SAGA *does* rely on the set
of SAGA specifications itself (obviously), and is well aware of the respective gaps (such as language
binding specifications). We are actively driving the activities to close those gaps.

Further, our implementation works very much *benefit* from the availability of standards, and of
standard compliant implementations. In particular JSDL and BES are considered, from our end,
incomplete, as they do not support all of our use cases, or make implementing those very difficult. We
participate in the respective standardization efforts, but, honestly, are somewhat unhappy about the
very slow progress the respective groups are making.

We badly miss technologies which allow to easily talk to web services. That may sound strange given
the wide range of WS related tools available, but in practice, it is an enormous challenge
to communicate to WSs implemented and hosted with a wide range of backend technologies, from a
set of programming languages (python, C++, Java). Pairs of [language / WS technology] are
working (relatively) well, but general approaches are not available. Similar problems are observed
toward different security technologies, which seem (to us) to be very hard to access programatically,
on a high level.
	

