EGI-EDGI Accounting

Adam Visegradi, Jozsef Kovacs, Sandor Acs, Zoltan Farkas
Computer and Automation Research Institute
MTA SZTAKI
H-1518 Budapest, P.O. Box 63, Hungary
{visegradi.adam,kovacs.jozsef,acs.sandor,farkas.zoltan } @sztaki.mta.hu

1 Introduction

In order to fully integrate Service Grid infrastructure (gLite [1], ARC [2],
UNICORE [3]) with the Desktop Grid (BOINC [4], XtremWeb [5]) three
EU FP7 projects are collaborating: EDGI [6], EGI-Inspire [7], EMI [8]. a
short description of these 3 projects are following.

The European Desktop Grid Initiative (EDGI) project aims to deploy
desktop grid (DG) and cloud services for EGI user communities that are
heavy users of DCIs and require extremely large multi-national e-infrastructure.
In order to achieve this goal software components of ARC, gLite, UNICORE,
BOINC, XWHEP, ADICS, 3G Bridge [9], OpenNebula [10], Eucalyptus [11]
will be integrated into SGDGCloud platforms for service provision and as
a result EDGI will extend ARC, gLite and UNICORE grids with volunteer
and institutional DG systems. EDGI will create novel QoS support for the
DG systems and will explore new service provision models in order to en-
sure harmonized DGCloud interfaces to ARC, gLite, UNICORE resources.
EDGI will provide a workflow-oriented science gateway to enable user com-
munities to more easily access the EDGI infrastructure. EDGI will establish
the IDGF [12] organization to coordinate DG-related activities in Europe
both for solving technical issues as well as to attract volunteer DG resource
donors by disseminating results of the EDGI and EGI projects. IDGF and
EDGI will work in strong collaboration with EGI, EMI, NorduGrid, UNI-
CORE Forum and interested NGIs.

The Stichting European Grid Initiative Foundation (hereafter referred to
as EGI.eu) has been created under the Dutch law with the mission to create
and maintain a pan-European Grid Infrastructure in collaboration with its
Participants, i.e. the National Grid Initiatives (NGIs), and Associated Par-

ticipants (e.g. European International Research Organisations - EIROs) in
order to guarantee the long-term availability of a generic e-infrastructure for
all European research communities and their international collaborators. In
its role of coordinating grid activities between European NGIs EGIl.eu will:
1) operate a secure integrated production grid infrastructure that seamlessly
federates resources from providers around Europe; 2) coordinate the support
of the research communities using the European infrastructure coordinated
by EGl.eu; 3) work with software providers within Europe and worldwide to
provide high-quality innovative software solutions that deliver the capabil-
ity required by our user communities; 4) ensure the development of EGI.eu
through the coordination and participation in collaborative research projects
that bring innovation to European Distributed Computing Infrastructures
(DCIs).

The European Middleware Initiative (EMI) project is a close collabo-
ration of the four major middleware providers, ARC, dCache [13], gLite
and UNICORE. It plans to deliver a consolidated set of middleware compo-
nents for deployment in EGI, PRACE and other DCIs, extend the interop-
erability and integration between grids and other computing infrastructures,
strengthen the reliability and manageability of the services and establish a
sustainable model to support, harmonize and evolve the middleware, ensur-
ing it responds effectively to the requirements of the scientific communities
relying on it.

EDGI is working on integrating the SG and DG infrastructure together
with EMI and EGl.eu. The SG - DG integration has three main logical
parts:

1. Seamless transfer of jobs from glLite, ARC or UNICORE to BOINC or
XtremWeb-based Desktop Grid sites. This task belongs to EDGI and
this integration regarding job transfer has been successfully done by
EDGI. As a result modified computing elements has been developed
and became part of the EMI software distribution. SLA and OLA has
been signed between EDGI and EMI for further software support.

2. Monitoring Desktop Grid sites within the EGI monitoring infrastruc-
ture. This work has been done in the first half of 2012 within the
framework of the EDGI - EGI MoU. EDGI developed and maintains
probes for monitoring Desktop Grid. Probes are provided as RPM
packages which follow EGI probe development guidelines. Currently,
the Hungarian NGI is operating the nagios probes for the DG sites.

3. Accounting for Desktop Grid sites for the EGI infrastructure. This

EGI Accountingting

A

Legend

-<——> : Submitting jobs and
receiving the results.

------ > Sending the
accounting information.

NGl site

Normal NGI site with volunteers' support

EEnDG Servers

L F A

‘) @
ENECN N

= =
Volunteers

Figure 1: The big picture

work is being done in the second half of 2012 within the framework of
the EDGI - EGI MoU. The goal is to create a design plan how the ac-
counting information is going to be transferred for the EGI accounting
infrastructure.

The goal of this document is to give an overview, how the accounting
information can be provided by the modified computing element for glite
based onthe information provided by the Desktop Grid sites. Currently,
the Desktop Grid sites are not returning accounting related information
on the jobs they executing. This document as a design plan will detail
alternative(s) how this accounting retrieval could be implemented. The
document is organised as follows: Chapter 2 is giving the big picture i.e.
details the whole infrastructure including the gLite and Desktop Grid part.
It also details, how the gLite part should interface with the accounting
infrastructure behind. Chapter 3 is detailing how a Desktop Grid site could
extract the accounting information generated on the DG site and how it
could return the required information for the modified computing element
about a certain job.

2 Big Picture

Figure 1 presents the normal and the designed accounting architecture in
high abstraction level. The registered user of the NGI can submit jobs into
normal Service Grid (SG) resources via the Workload Management System
(WMS).

e In case of normal SG (e.g gLite):

The WMS sends the tasks to Computing Elements (CE). The CE
pushes the jobs into the Worker Nodes (WN). The WNs process the
jobs and send back the results to the CE. The CE makes the results
available for the WMS and generates and stores the related accounting
informations.

e In case of EDGI-like infrastructure:

The WMS sends the tasks to modified Computing Elements (mCE).
The mCE pushes the jobs into the Desktop Grid (DG) servers. The
desktop machines of the volunteers fetch the Work Units (WU), pro-
cess and send back the results through the mCE.

The user fetch the outputs via the WMS. Periodically, the (m)CE checks
the accounting information and synchronizing with the site level Apel [14]
node. The Apel node regularly sends the accounting information of the site
to the central EGI accounting server.

Table 1 shows the required information from individual jobs by the ac-
counting system.

3 Integration of Desktop Grid accounting

3.1 Required information

Most of the information about jobs, required by the APEL infrastructure,
is available at the modified computing element. The actual accounting in-
formation about them, however, can only be provided by the desktop grid.
The accounting metrics the desktop grid has to provide to the modified
computing element are summarized in Table 2.

Most of the metrics specified are readily available in the desktop grid
database; however, there are two exceptions.

Key Value | Description M.
Site str GOCDB sitename Yes
SubmitHost str Head node Yes
LocalJobID str Batch System Job 1D Yes
LocalUserID str Local username No
GlobalUserN. str User’s X509 DN No
VO str User’s VO No
GridGroup str Users VO Group No
Role str Users VO Role No
WallDuration int Wallclock time for the job (s) Yes
CpuDuration int CPU time for the job (s) Yes
Processors int Number of processors No
NodeCount int Number of nodes No
StartTime int Start time of the job (epoch time) Yes
EndTime int Stop time of the job (epoch time) Yes
MemoryReal int Memory consumed by job (kbytes) No
Memory Virt. int Virt. mem. consumed by job (kb) No
ScalingFactorU. | str HepSpec06, Speclnt or custom Yes
ScalingFactor doub | Value of HepSpec, Speclnt or custom | Yes

Table 1: Required information from individual jobs

Memory

The memory consumed by the job is not recorded by the desktop grid. On
the other hand, for each application, an upper limit for memory consumption
must be estimated. This information is stored as an attribute for each
workunit, and can be used by clients to filter out workunits that would
require too much memory. If a running workunits exceeds its limit, it will
be immediately terminated.

Because of the termination policy, it is guaranteed, that the memory
consumed by the workunit will be at most that estimated. Because of the
filtering policy, application developers are forced to provide tight estimates.
Therefore, the limit associated with the workunits is a suitable estimate for
the memory consumption of the job.

Start/stop times Time when the job has been started, and when it has
finished

Wallclock time Total time the job has spent running
(= stop time — start time)

CPU time Consumed CPU time measured by the kernel on the executing
host

Memory Real and virtual memory consumed by the job

Benchmark values Constant factors describing the performance of the
executing host

Number of CPUs Number of CPUs on the executing host

Table 2: Accounting metrics provided by the desktop grid

Benchmark values

Only the number of floating point operations per second (FLOPS) is pro-
vided as information about hosts’ performance. The current APEL records
store SpecInt2K and SpecFloat2K factors (although this seems to be chang-
ing!). To integrate the desktop grid with the APEL accounting system, we
have to find a reliable mapping between these two values.

As the specification of APEL seems to be changing, the simplest and best
solution is that the desktop grid will only provide the raw FLOPS value to
the computing element. Then, the computing element will be able to map
the raw value to a suitable number as necessary.

The parameters listed in Table 1, but not listed in Table 2 are filled
up by the computing element as it is performed by any non-modified gLite
CREAM CE.

3.2 Accessing information

The modified computing element communicates with the desktop grid via
a web-service interface of the 3G Bridge (Figure 2). The current interface

Yhttps:/ /twiki.cern.ch/twiki/pub/EMI/APELClient/ APEL-Messaging-v2.2.pdf

Modified computing element

1) accinfo

2) delete

WS interface)

Desktop grid

3G Bridge

Figure 2: The EDGI Desktop Grid architecture

does not define a way to access detailed information about a job; therefore,
a new method (accinfo) must be defined in the interface.

The 3G Bridge itself cannot provide the accounting information needed,
only its back-end desktop grid can. However, the desktop grid database and
the 3G Bridge database are physically the same; that is, the 3G Bridge web-
service can access it and extract the needed information from it directly. This
means, that the interface between the 3G Bridge and the back-end desktop
grid can be left intact.

The computing element must call accinfo with a job identifier as an
argument. As a result, the information specified in Table 2 is returned as
key—value pairs, in a clean text format.

The 3G Bridge does not employ a garbage collection system, the client
side—here, the modified computing element—has to explicitly delete a job
after execution. After deleting the job, no information about it will be
accessible—including the accounting information. Because of this, the spec-
ification of this interface must include that the accinfo must always be
called before delete.

4 Adding accounting handling to mCE

4.1 The current mCE

The goal of the mCE was to create a solution that requires only very few
modification in the existing CREAM code. Fortunately, we were able to find

CREAM CE with <
EDGI Executor EDGI

Application
™ ARWrapper Repository
__/_’_/

~. 3G Bridge

- > BridgeSubmitter X

____//
- = CREAM Job 3G g;;ggg
Database Service
\f__[/ 3G Bridge
Service

EventlLogger ConfigReader UpdateManager

Figure 3: EDGI Executor and related components overview

a solution that needs no modification at all. The idea behind the solution
is to create a new EDGI connector beside the BLAH connector, whose task
is to intercept gLite jobs, and send them to a target 3G Bridge service after
parsing incoming glLite jobs. Thus, from higher level CREAM component’s
point of view the new connector (EDGI Executor) behaves like a batch
system implementation with the difference that the job is not run on a
Worker Node belonging to the CREAM CE, but is sent to a 3G Bridge
service for execution by a grid plugin.

The EDGI Executor consists of a number of components as shown in
Figure 3: a ConfigReader, an EDGIExecutor, an ARWrapper, a BridgeSub-
mitter, an EventLogger and an UpdateManager.

4.2 The new component in mCE

In order to seamlessly integrate EGI accounting, the mCE functions should
be extended. The enumeration below shows the current and the new func-
tions of mCE in nutshell:

Receive job during this phase the mCE receives the job either from the
WMS or directly from the user. A worker thread is invoked to manage
the job

Prepare inputs this stage prepares the input files belonging to the job. All

the local input files are exposed through a web server for the desktop
grid

Submit to LRMS once the input files are ready, the job is submitted to
the desktop grid through the 3G Bridge component

Get the status an update thread of the mCE periodically updates the
status of jobs submitted to the desktop grids and reports any job
status changes

Get the output if a job has finished, its outputs are fetched from the
desktop grid server and are published as requested (are either sent to
the WMS or are placed under a GridFTP location specified by the
user). Additinally, the job is cleared from the desktop grid

Get accounting informations and insert it site Apel node (as Sec-
tion 3 describes)

Clear after the job’s outputs have been handled, the job is cleared from
the mCE

The gathered accounting information can be stored in a prepared database
or in XML file format. In the mCE, the Apel client periodically checks the
changes and synchronizes the database with the site Apel node. The site
Apel node regularly sends the accounting information to the central EGI
accounting system. (As we described in Section 2).

5 Summary

In this document we gave a rough overview of the planned accounting system
for jobs executed on DG resources. This design plan has the following logical
blocks:

e Exracting the account information about the workunits on the DG
sites. This requires an extra fuctionality in the 3G Bridge component.
See section 3.

e Providing an interface for the mCE to be able to query the account
information from the DG sites. This can be done through an updated
3G Bridge web service interface. See section 3.

e Integrating the account query into the job handling flow of the EDGI
Cream Computing element. See section 4.

Forwarding the account information of the jobs to the APEL account-
ing system. See section 4.

References

gLite grid middleware. http://glite.cern.ch/, 2012.

ARC grid middleware. http://www.nordugrid.org/arc/, 2012.
Unicore grid middleware. http://www.unicore.eu/, 2012.

Boinc desktop grid middleware. http://boinc.berkeley.edu/, 2012.

XWHEP desktop grid middleware. http://www.xtremweb-hep.org,
2012.

European Desktop Grid Initiative (EDGI). http://edgi-project.eu/,
2012.

European Grid Infrastructure (EGI). http://www.egi.eu/, 2012.
European Middleware Initiative (EMI). http://www.eu-emi.eu/, 2012.

Generic Grid-Grid (3G) Bridge. http://www.lpds.sztaki.hu/products/3g-
bridge, 2012.

OpenNebula cloud. http://opennebula.org, 2012.
Eucalyptus cloud. http://www.eucalyptus.com/, 2012.

International Desktop Grid Federation (IDGF).
http://desktopgridfederation.org, 2012.

dCache. http://www.dcache.org/, 2012.

Apel. https://wiki.egi.eu/wiki/APEL, 2012.

10

